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Abstract—Understanding the clinical implications of com-
bined patterns of blood pressure and brain oxygenation
dynamics during the transition from lying to standing
remains limited. These dynamics can be investigated non-
invasively in humans through a standardized active stand
(AS) test, which involves continuous monitoring of blood
pressure using digital artery photoplethysmography and
frontal brain oxygenation using near-infrared spectroscopy
(NIRS). While NIRS output is commonly assessed in terms
of the tissue saturation index (TSI), it can also be quantified
by the absolute concentration of oxygenated hemoglobin
(O2Hb). This study aimed to explore functional clustering of
systolic blood pressure (sBP) and frontal brain oxygenation
during the AS test within the Irish Longitudinal Study
on Aging (TILDA), comparing the health correlates of TSI
and O2Hb clustered with the K-shape algorithm. A total
of 2793 participants from TILDA wave three were included, with a mean age of 64.5 years and 46.9% being
male. Both clustering methodologies revealed statistically significant associations with participants’ characteristics,
including age, sex, body mass index (BMI), pulse wave velocity, cardiovascular medication usage, and usual gait
speed. Notably, the TSI_sBP clustering approach uniquely captured variations in the mini-mental state examination
(MMSE) cognitive score and history of cardiovascular disease, whereas the O2Hb_sBP clustering method specifically
identified variations in poststand orthostatic intolerance (OI) symptoms and future mortality. It was revealed that,
when coupled with sBP signal, O2Hb information was associated with a clinically important longitudinal outcome,
whereas TSI was not. However, external validation of this finding is warranted to confirm its robustness and
generalizability.

Index Terms— Functional clustering, neurocardiovascular signal, oxygenated hemoglobin (O2Hb) concentration,
tissue saturation index (TSI).
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I. INTRODUCTION

ORTHOSTASIS, the physiological responseto assuming
an upright posture plays a pivotal role in regulating blood

pressure and ensuring adequate perfusion to vital organs [1],
[2]. However, in certain individuals, this mechanism can
become dysregulated, leading to orthostatic intolerance (OI)
[3]. OI encompasses a spectrum of symptoms, including
light-headedness, dizziness, visual disturbance, syncope or
near-syncope, palpitations, and fatigue, upon assuming an
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upright position [4], [5]. These symptoms often result from
inadequate compensatory mechanisms to maintain cerebral
perfusion in the upright position [6], [7]. Concurrently,
conditions such as vestibular disorder [8] and functional
disorder [9] may contribute to the manifestation of OI. The
heterogeneous nature of OI symptoms results in adverse health
outcomes extending beyond physiological manifestations,
adversely impacting daily activities and quality of life [10].

The active stand (AS) test has emerged as a valuable
clinical assessment tool for identifying OI by evaluating
neurocardiovascular responses to a standard lying-to-standing
postural change [11]. Recently, near-infrared spectroscopy
(NIRS) has been integrated into the AS to monitor oxygenation
indices in the frontal lobe, providing additional insights
into cerebral perfusion dynamics [12], [13]. NIRS allows
for the continuous noninvasive measurement of oxygenated
hemoglobin (O2Hb) and deoxygenated hemoglobin (HHb)
concentrations in the cerebral tissue [14], [15]. Oxygenation
of the frontal lobe, as assessed by NIRS during an AS
test, can serve as an indicator of cerebral oxygen perfusion
adequacy as a result of the orthostatic stress [16], [17].
Tissue saturation index (TSI), derived from the ratio of
O2Hb to the total hemoglobin concentration (tHb = O2Hb +

HHb), is commonly utilized in clinical research settings [18],
[19], [20]. It has commonly been used as the representation
of the proportion of hemoglobin that is oxygenated within
the cerebral tissue, reflecting the balance between oxygen
delivery and consumption [21]. While both TSI [22], [23] and
O2Hb [24], [25], [26] are routinely used to monitor tissue
oxygenation, TSI is often preferred over the measurement of
O2Hb alone as it accounts for variations in tHb, arguably
offering a more comprehensive assessment of cerebral
oxygenation status [27], [28]. However, a study conducted by
Mol et al. [29] questioned the reliability of TSI for measuring
cerebral oxygenation, possibly due to an insufficient validity of
the assumptions needed to compute TSI, such as homogeneity
of brain tissue [30], [31].

The implementation of NIRS into the AS test has enabled
investigations of the complex interplay between cardiovascular
regulation and cerebral perfusion in individuals with OI.
However, a comprehensive understanding of these signals
remains elusive, including the extent to which the cerebral
autoregulation may be able to potentiate the peripheral
poststand BP-rising mechanisms, or even replace them when
they are impaired; or the extent to which the peripheral
BP-rising mechanisms may be sufficient when the cerebral
autoregulation is impaired. These physiological scenarios are
expected to manifest in diverse combined cardiovascular
and cerebrovascular responses, generating distinctive patterns
within the intertwined signals. The intricate nature of these
signals poses challenges for analysis using conventional
methods, considering the complexity of combining two
simultaneous recorded time-series data. This is particularly
true for large datasets, where uncovering hidden trends and
patterns can be challenging, or even not possible without
computational aids [32].

Functional clustering, a method derived from unsupervised
machine learning, aims to organize functional data into

clusters based on their similarity within the functional
space [33]. This approach is founded on the premise
that functional data, such as time-series, can be modeled
and represented by mathematical functions, allowing for
comparisons and grouping based on their similarities [34].
Widely utilized across various disciplines including finance,
biology, and engineering, functional clustering has found
application in medicine for tasks such as identifying disease
subtypes [35], exploring gene-disease associations [36], and
uncovering diagnostic and prognostic biomarkers [37]. Despite
its widespread use, functional clustering remains underutilized
in the analysis of noninvasively collected cardiovascular and
neurovascular data during the AS test.

This study aimed to explore functional clustering of
systolic blood pressure (sBP) and NIRS-measured frontal brain
oxygenation during the AS test within the Irish longitudinal
study on aging (TILDA), comparing the health correlates of
TSI versus O2Hb clustering approaches.

II. MATERIALS AND METHODS

A. Study Population
The cardiovascular and neurovascular data collected during

the AS tests at Wave 3 of TILDA were utilized in this
investigation. The third wave of TILDA commenced in
2014 and concluded in 2015. A total of 6687 participants
underwent interviews in their own homes, with 80% also
undergoing a health assessment, either at their own residence
or at a dedicated health assessment center in Trinity College
Dublin. The AS test was only conducted at the latter
location [38]. Participants under the age of 50 years, and those
with missing AS data were excluded from the analysis. The
longitudinal outcomes were collected from waves 5 (2018)
and 6 (2022). Ethics approval was obtained for each wave from
the Faculty of Health Sciences Research Ethics Committee at
Trinity College Dublin, Ireland. Written informed consent was
provided by all participants, and the research was conducted
in adherence to the principles outlined in the Declaration of
Helsinki.

B. Active Stand
The AS is a standardized test employed to assess

cardiovascular and neurovascular reactions triggered by the
action of standing up. Its scope encompasses the evaluation
of neurovascular causes associated with OI. During the
standardized AS test conducted in TILDA Wave 3 [39], six
continuous noninvasive physiological signals were monitored.
Within the cardiovascular domain, measurements of the
systolic (sBP) and diastolic blood pressure (dBP), as well
as heart rate (HR), were captured using a digital artery
photoplethysmography device. Simultaneously, within the
neurovascular domain, readings of O2Hb, HHb, and TSI of
the frontal lobe were recorded via NIRS.

C. Instrumentation
1) Continuous Cardiovascular Signals: A Finometer device

(Finometer MIDI, Finapres1 Medical Systems, Enschede,

1Registered trademark.
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The Netherlands) was employed to noninvasively measure
reconstructed brachial artery pressure on a beat-to-beat (BtB)
basis [40]. Operating on photoplethysmography principles,
this device captures the pressure waveform from the arteries
that run on either side of a finger, at a rate of 200 Hz
utilizing the volume-clamp method. The volume of the finger
arteries, which is measured by optical sensors embedded in
the device, is maintained constant throughout the assessment
with the finger cuff actuated by a pneumatic control
system [41]. Noteworthy is the robust validation of the
volume-clamp method, showing strong agreements with both
intra-arterial monitoring [42] and the auscultatory method [43].
Additionally, the Finometer device integrates a position sensor
to account for and correct the hydrostatic height of the finger
with respect to the heart level.

2) Continuous Neurovascular Signals: NIRS represents
a noninvasive and nonionizing technology that has been
employed for quantifying fluctuations in oxygenated and
deoxygenated hemoglobin concentrations across diverse
human tissues [22], [44], [45]. Extensive research shows
the coherence of NIRS measurements with other assessment
methods in various applications, including cerebral blood
flow [46] and skeletal muscle contractions [47]. The versatility
and high temporal resolution of NIRS, enabled by its
capacity in time-resolved, frequency-domain, and continuous
wave spectroscopic implementations, imply its broad potential
across an array of applications in both research and clinical
settings [48].

Based on optical sensing technology, NIRS measurements
capture light absorbance across various wavelengths, where
absorbance at approximately 850 nm corresponds to O2Hb
and absorbance near 760 nm corresponds to HHb. Frequently,
studies report combinations of O2Hb and HHb, such as the
TSI, calculated as 100 times O2Hb divided by the sum of
O2Hb and HHb ((O2Hb/(O2Hb + HHb)) x 100) [49].

In this study, the PortaLite1 (Artinis Medical Systems,
The Netherlands), a wireless NIRS device, was utilized
to measure O2Hb, HHb, and TSI signals employing the
absolute concentration method based on spatially resolved
spectroscopy. This device features an optical sensor consisting
of an emitter and three receivers, enabling transmission
of multichannel, real-time data through Bluetooth1 at a
maximum sampling frequency of 50 Hz. Oxysoft v3.0.53 was
used as the user interface for the setup, recording, and
export of NIRS data. The NIRS sensor was affixed
approximately 2 cm above the left eye approximately
the FP1 (left frontal) position of the 10–20 electrode
system (3 cm lateral and 3.5 cm superior to the nasion)
[50], with a consistent sampling frequency of 50 Hz
applied across all participants. To mitigate the influence of
ambient light, a blackout headband was used to cover the
sensor [39].

D. Signal Acquisition, Synchronization, and
Preprocessing

A one-minute segment of the AS data, spanning from 20 s
before standing to 40 s after, was the focus of this study.

The BtB cardiovascular signals from the Finapres1 MIDI were
interpolated at a rate of 5 Hz, while the neurovascular signals
recorded by NIRS were downsampled to match this frequency.
The Finapres1 device provides sBP measures in a BtB
format, whereas the NIRS device measures data continuously
at 50 Hz. Due to this discrepancy in sampling methods, and to
allow comparability between data, BtB data were interpolated
to 5 Hz, and NIRS data were decimated to 5 Hz. The 5 Hz
sampling frequency was chosen as it captures shape changes
while minimizing nonphysiological noise. This approach is
also consistent with the convention used in previous TILDA
NIRS/sBP studies [39], [51]. To ensure synchronization,
all signals were aligned using multiple manual markers
placed throughout the recordings. The onset of the stand
(i.e., the moment participants started standing up from the
supine position) was detected using an algorithm previously
described in detail by O’Connor et al. [52], based on the
Finapres1 MIDI’s height sensor data. Baseline values for the
cardiovascular and neurovascular signals were computed by
averaging readings from 60 to 30 s prior to standing (in supine
resting position), in keeping with previous investigations [11],
[39], [53].

Regarding data cleaning steps, the data used in this study
were unfiltered initially, as this aligned with the study’s
purpose. However, several data cleaning procedures were
routinely applied to the Finapres1 data after collection.
These included filtering out data with abnormal height
sensor readings, undetected beats, and considering notes
written by the research nurses during data collection.
Additionally, the exclusion criteria for NIRS data were as
follows.

1) Implausible mean TSI.
2) TSI Too Low: too many values < 10 (“too many values”

was defined as more than 4 of the values in the AS
signal).

3) O2Hb Too Low: too many values < 0.1.
4) HHb Too Low: too many values < 0.1.
5) Flat TSI Signal: the data team checked if the absolute

difference between consecutive values was <= 1e−05 in
over a quarter of the recordings.

In addition to the above routine quality checks, one obvious
outlier was visually identified in the sBP plot and removed
from the analysis.

Plots of unprocessed signals, separately for sBP, TSI,
and O2Hb, are shown in Fig. 1. To balance the magnitude
of shape change within the region of interest among the
signals, these time-series were normalized against the standard
deviation of the baseline recordings. To prepare for K-shape
clustering analysis of paired neurovascular-cardiovascular
signals, TSI and O2Hb signals were adjoint with sBP
separately, yielding two coupled signals, TSI_sBP (Fig. 2)
and O2Hb_sBP (Fig. 3), respectively. To ensure a smooth
connection between the two adjoining signals, the normalized
TSI and O2Hb time-series were reversed before adjoining
the sBP signal, which greatly reduced the difference in
magnitude at the junction between each pair of signals,
keeping the introduction of shape information minimal during
preprocessing.
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Fig. 1. Raw data of (a) sBP, (b) TSI, and (c) O2Hb signals with
corresponding mean ± SD plots shown on the right. Baseline values
had been deducted from each signal for each participant, resulting in
the relative changes shown in the plots.

Fig. 2. (a) Combined signals of TSI and sBP, with (b) corresponding
mean ± SD plots shown in joint at which the two signals were combined
is shown at 60 s.

E. Functional Clustering
We employed the K-shape functional clustering algorithm,

developed by Paparrizos and Gravano [54] in 2015. Similar
to K-means, K-shape initializes a predetermined number of
clusters and then assigns each time-series to its corresponding
cluster based on distances calculated to the updated centroid
locations through iterative processes. However, unlike K-
means, which groups data points relying on positional
information within the Euclidean space, K-shape employs
shape-based distance (SBD) as defined as follows:

SBD
(
x⃗, c⃗k

)
= 1 − max

ω

 CCω

(
x⃗, c⃗k

)√
R0

(
x⃗, x⃗

)
· R0

(
c⃗k, c⃗k

)
 (1)

where ω is the position at which the cross correlation
CCω(x⃗, c⃗k) between each z-normalized sequence x⃗ , and the
centroid vector of each cluster c⃗k was maximized; R0 is the
geometric mean of autocorrelation of each individual sequence
x⃗ or c⃗k . Cross correlation measures the degree of similarity

Fig. 3. (a) Combined signals of O2Hb and sBP, with (b) corresponding
mean ± SD plots shown in (b) joint at which the two signals were
combined is shown at 60 s.

between two sequences, in this case two time series, calculated
as a function of the displacement of x⃗ over the centroid of the
cluster it belongs to, c⃗k .

The K-shape clustering algorithm was implemented in the
dtwclust package (version 5.5.11) in R version 4.0.5 using
RStudio 2022.07.1 + 554 (Boston, MA, USA). The joined
TSI_sBP and O2Hb_sBP data were entered into the K-shape
algorithm, with type = “partitional,” distance = “sbd,”
centroid = “shape” and the number of clusters set at eight
based on gap statistic measures for the data.

Gap statistic is a method for determining the optimal
number of clusters in a dataset using unsupervised learning.
The basic idea behind the gap statistic is to compare the
within-cluster variation of a clustering solution against that
expected under an appropriate reference null distribution [55].
It is expressed as

Gapn(k) = E∗

n {log(Wk)} − log(Wk) (2)

where k is the number of clusters and E[log(Wk)] is the
expected value of the log of within-cluster variation of the
reference dataset under the null distribution. The gap statistic
serves as a robust method for determining the ideal number
of clusters, exhibiting resilience against initial conditions due
to its iterative execution on the provided data via bootstrap
resampling. This approach ensures stability and reliability
in estimating the optimal clustering configuration. The R
package factoextra (version 1.0.7) was used to compute the
gap statistic. The optimal number of clusters was determined
using the “firstSEmax” method, which identifies the smallest
k such that its value f (k) is not more than 1 standard error
away from the first local maximum. This method was the
default setting in factoextra. We set the maximum number
of clusters at eight based on insights from a previous pilot
study [56], taking into account that exceeding eight clusters
could diminish both the clinical interpretability of the results
and the statistical power for the between-cluster comparisons.
With a bootstrap of 100, 8 was indicated as the optimum
number of clusters for both datasets, shown as the broken
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Fig. 4. Gap statistic plots for the coupled (a) TSI_sBP and
(b) O2Hb_sBP signals.

vertical lines in Fig. 4(a) and (b), for TSI_sBP and O2Hb_sBP
clustering setup, respectively.

F. Statistical Analyses
The statistical analyses for cluster characterization were

conducted using R version 4.0.5. Overall comparisons among
the clusters involved the independent-samples Kruskal–Wallis
test for nonnormally distributed continuous variables, and the
Chi-square test for categorical variables. Post-hoc pairwise
comparisons were conducted with Bonferroni correction. The
threshold for statistical significance was set at P < 0.05.

G. Characterization Variables
For cluster characterization, we employed both cross-

sectional (wave 3) variables and longitudinal outcomes from
future TILDA waves. The summary of these variables is
provided below:

Cross-sectional variables.
1) Mean age in years.
2) Percentage of male participants.
3) Mean body mass index (BMI) in kg/m2.
4) Percentage of participants with self-reported cardiovas-

cular disease (0: no; 1: yes).
5) Percentage of participants with heart disease (0: no;

1: yes).
6) Percentage of participants with cerebrovascular disease

(stroke or TIA/ministroke: 0: no; 1: yes).
7) Percentage of participants with diabetes mellitus (0: no;

1: yes).
8) Percentage of participants taking cardiovascular medica-

tions (0: no; 1: Yes).
9) Percentage of participants taking psychotropic medica-

tions (0: no; 1: Yes).
10) Mean pulse wave velocity in m/s (pulse wave velocity

measurement between the carotid and femoral arteries—
a noninvasive method of measuring arterial stiffness)
[57].

11) Mean minimental state examination (MMSE) cognitive
score.

12) Mean usual gait speed in cm/s.
13) Percentage of participants with self-reported falls in the

past year (0: no; 1: yes).
14) Percentage of participants reporting OI post-AS (0: no;

1: yes)
Longitudinal variables.

1) Percentage of participants experiencing any fall by
wave 6 (0: no; 1: yes).

Fig. 5. Visualization of the eight clusters (based on coupled TSI_sBP
signals) for all six original raw signals, including cerebrovascular signals
(upper row): TSI, O2Hb, and HHb; and cardiovascular signals (lower
row): HR, sBP, and dBP. For each signal, the mean is shown as the
solid line, and the 95% confidence interval is the surrounding shaded
area. Recovery period refers to the time after standing took place at
0 s in each plot. Note that the TSI and sBP were the host signals in
this clustering setup, based on which the clustering membership was
assigned to all six signals.

Fig. 6. Visualization of the eight clusters (based on coupled TSI_sBP
signals) for all six signals (with baseline values deducted from each
original raw signal), including cerebrovascular signals (upper row): TSI,
O2Hb, and HHb; and cardiovascular signals (lower row): HR, sBP, and
dBP. For each signal, the mean is shown as the solid line and the 95%
confidence interval is the surrounding shaded area. Recovery period
refers to the time after standing took place at 0 s in each plot. Note that
the TSI and sBP were the host signals in this clustering setup, based on
which the clustering membership was assigned to all six signals.

2) Percentage of participants deceased by wave 6 (0: no;
1: yes).

III. RESULTS

The cohort for this study comprised a total of 2793 partic-
ipants, with 46.9% being male. The mean age of the entire
cohort was 64.5 years. Regarding the clustering analysis, gap
statistic plots for the merged TSI_sBP and O2Hb_sBP signals
indicated that the optimal number of clusters was 8, as denoted
by the dotted line, for both clustering setups (Fig. 4).

The graphical overview of the eight clusters is shown
in Figs. 5 and 6, for the TSI_sBP clustering setup, and
Figs. 7 and 8 for the O2Hb_sBP clustering setup, respectively.
Both neurovascular signals (TSI, O2Hb, HHb) and cardiovas-
cular signals (sBP, dBP, HR) were plotted in each figure.

The results of cluster characterization are shown
in Tables I and II, for TSI_sBP and O2Hb_sBP, respectively.
Due to the nature of random seeding [58] used in the algorithm
for implementing the K-shape clustering, the cluster numbers
do not correspond between the two clustering setups and
should be considered separately when interpreting the
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Fig. 7. Visualization of the eight clusters (based on coupled O2Hb_sBP
signals) for all six original raw signals, including cerebrovascular signals
(upper row): TSI, O2Hb, and HHb; and cardiovascular signals (lower
row): HR, sBP, and dBP. For each signal, the mean is shown as the
solid line and the 95% confidence interval is the surrounding shaded
area. Recovery period refers to the time after standing took place at
0 s in each plot. Note that the O2Hb and sBP were the host signals in
this clustering setup, based on which the clustering membership was
assigned to all six signals.

Fig. 8. Visualization of the eight clusters (based on coupled O2Hb_sBP
signals) for all six signals (with baseline values deducted from each
original raw signal), including cerebrovascular signals (upper row): TSI,
O2Hb, and HHb; and cardiovascular signals (lower row): HR, sBP, and
dBP. For each signal, the mean is shown as the solid line, and the 95%
confidence interval is the surrounding shaded area. Recovery period
refers to the time after standing took place at 0 s in each plot. Note that
the O2Hb and sBP were the host signals in this clustering setup, based
on which the clustering membership was assigned to all six signals.

results. Both clustering methodologies revealed statistically
significant associations with participants’ characteristics,
including age, sex, BMI, pulse wave velocity, cardiovascular
medication usage, and usual gait speed. Notably, the TSI_sBP
clustering approach uniquely captured variations in the
MMSE cognitive score and history of cardiovascular disease,
whereas the O2Hb_sBP clustering method specifically
identified variations in post-stand OI symptoms and future
mortality.

IV. DISCUSSION

In this study, we performed K-shape functional clustering
of noninvasively collected, continuous cardiovascular and
neurovascular signals during an AS test in a large population-
based sample. Our aim was to compare the clinical relevance
of TSI, a commonly used derived variable, with that of
O2Hb, a directly measured variable for brain oxygenation,
in the context of the combined shape signatures of
neurocardiovascular response. Eight clusters were obtained for
both clustering setups and characterized separately with both
cross-sectional and longitudinal variables in TILDA. While

both approaches captured significant differences between the
clusters, it was revealed that, when coupled with sBP signal,
O2Hb information was associated with clinically important
associations such as OI and mortality, whereas TSI was not.

From a cross-sectional characterization perspective, the
TSI_sBP clustering approach uniquely captured variations in
MMSE score and history of cardiovascular disease. Cluster
2 had the second-highest proportion of cardiovascular disease
(64.4%), while cluster 3 had the lowest proportion (51.9%).
Similarly, for MMSE scores, cluster 2 shared the highest mean
score (29.1 points), and cluster 3 had the lowest score (28.8),
although these small differences (<1 point) in mean MMSE
are unlikely to be clinically significant [59]. Looking at the
neurovascular profiles, the unhealthier-looking cluster 2 (red
lines, N = 444) was characterized by the largest absolute
(Fig. 5) and relative (Fig. 6) TSI drops by 40 s post-stand
and the most pronounced O2Hb drop relative to baseline
(Fig. 6). On the other hand, the healthier cluster 3 (green lines,
N = 285) exhibited a vigorous TSI overshoot between 10 and
20 s poststand, with average sBP and dBP recoveries by 40 s
poststand.

As regards poststand OI and future mortality, only the
O2Hb_sBP clustering approach revealed significant differ-
ences between clusters. Pairwise analyses suggested that
cluster 6 was unhealthier with the highest OI proportion
(38.3%); additionally, it had the second highest mortality
proportion (7.3%), contrasting with cluster 1 which had the
second lowest OI proportion (24.6%) and the lowest mortality
(1.9%). Looking at their neurovascular profiles in Fig. 7,
cluster 6 (pink lines, N = 289) had the lowest absolute TSI
and BP values poststand. In contrast, cluster 1 (black lines,
N = 372), displayed the most vigorous BP responses by 40 s
post-stand, as seen in Figs. 7 and 8.

Visual inspection of Figs. 5–8 suggested that clustering
by TSI seemed to result in capturing mainly overall mean
magnitude differences in O2Hb and HHb signals (Fig. 5),
resulting in this approach capturing less information with
regards complex shape change of these signals from baseline
(Figs. 6 versus 8). This most likely derives from the fact
that TSI is a composite of O2Hb and HHb measures.
Conversely, clustering by O2Hb appeared to capture more
complex patterns of relative shape changes in O2Hb and HHb,
as shown in Fig. 8. This may be a factor contributing to the
greater performance of this approach with regards associations
with OI and mortality.

Our results are in keeping with previous observations by
Fitzgibbon-Collins et al. [60] who explored the link between
posture-related reductions in cerebral tissue oxygenation
and postural stability in older adults, finding that lower
oxygenation during standing was associated with increased
instability and potentially higher fall risk. Even though in
our O2Hb_sBP clustering the overall significant difference
in future falls (P = 0.022) did not achieve significance
in the Bonferroni-adjusted pairwise comparisons, overall
difference in future falls was not detected by the TSI_sBP
clustering approach. Moreover, a study by Klop et al. [61]
compared NIRS-measured oxygenation with continuous BP
and cerebral blood velocity (CBv) in 41 participants, finding
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TABLE I
TSI_SBP CLUSTER CHARACTERISTICS

good early correlations between BP and oxygenation, but
weaker associations between CBv and oxygenation, suggesting
that NIRS may effectively reflect cerebral blood flow during
the initial stages of postural transitions in OH.

Methodologically, we believe that the implementation
of K-shape functional clustering algorithm on the adjoint
neurocardiovascular signals was appropriate, based on the
fact that, despite the algorithm being primarily applied
to time series data, the distance measure used in the

algorithm, SBD, is not inherently temporal-dependent [54].
Thanks to the signal preprocessing procedures used in this
study, which resulted in smooth connections at the joints
between neurovascular and cardiovascular signals, a minimal
introduction of undesired shape information in the combined
signals was achieved. This ensured that the K-shape algorithm
captured the features intrinsic to the original signals to
the maximum extent, maximizing the accuracy of clustering
results.
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TABLE II
O2HB_SBP CLUSTER CHARACTERISTICS

From a technical perspective, we demonstrated that plotting
all six continuous physiological signals in a synchronized
fashion, as shown in Figs. 5–8, provided not only an
efficient way to visually inspect the physiological responses
of different groups during the AS but also made it possible
to postulate possible connections between cardiovascular
and neurovascular responses, allowing for the generation
of hypotheses to be tested in further studies. The addition
of functional clustering results in the plots enriches the
availability of the stratified information embedded in the
assessment data, making it possible in the future to provide a
machine learning based knowledge pool for the early detection

of deteriorating health. Indeed, it may be possible to identify
individual risk based on similarity to a cluster, and this
approach can be applied in future clinical research outside
population-based studies.

To our knowledge, our study is the first to investigate
the clinical relevance of TSI versus O2Hb coupled with
cardiovascular data in the context of an orthostatic challenge
using an unsupervised machine learning approach. A strength
of the current study is the data-driven nature of the
methodology, which eliminates subjective influences on the
clustering outcome. Another strength is that the study is
based on a large population-based sample from which the
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physiological data were collected. However, despite the large
departing sample size, the sizes of the resulting clusters were
relatively modest, precluding subanalysis by sex, which could
be of potential interest [62]. Another limitation was that some
variables used in this study (including OI) were self-reported.
However, mortality is a reliable outcome in TILDA [63].
We also acknowledge that while TILDA offers insights into
the Irish community-dwelling context, it will be important
to replicate the research in different settings to enhance the
external validity of our findings. Our study was not intended to
maximize the prediction of clinical outcomes such as OI, falls
or mortality risk, but instead emphasizes the importance of
considering both signals simultaneously, which could facilitate
further comparative clinical research in the future, beyond this
research-oriented, population-based setting.

V. CONCLUSION

Our findings in TILDA suggested that, compared to TSI, the
O2Hb signal recorded by NIRS had superior discriminative
capacity in identifying associations of important clinical and
prognostic significance, such as OI and mortality, when
examining a coupled neurocardiovascular response in an AS
test. However, external validation of this finding is warranted
to confirm its robustness and generalizability.
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