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Fiber-Optic Shape Sensing Using Neural
Networks Operating on Multispecklegrams
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Abstract—Application of machine learning techniques on
fiber speckle images to infer fiber deformation allows the use
of an unmodified multimode fiber to act as a shape sensor.
This approach eliminates the need for complex fiber design
or construction (e.g., Bragg gratings and time-of-flight). Prior
work in shape determination using neural networks trained
on a finite number of possible fiber shapes (formulated as a
classification task), or trained on a few continuous degrees
of freedom, has been limited to reconstruction of fiber shapes only one bend at a time. Furthermore, generalization to
shapes that were not used in training is challenging. Our innovative approach improves generalization capabilities,
using computer vision-assisted parameterization of the actual fiber shape to provide a ground truth, and multiple
specklegrams per fiber shape obtained by controlling the input field. Results from experimenting with several neural
network architectures, shape parameterization, number of inputs, and specklegram resolution show that fiber shapes
with multiple bends can be accurately predicted. Our approach is able to generalize to new shapes that were not in
the training set. This approach of end-to-end training on parameterized ground truth opens new avenues for fiber-optic
sensor applications. We publish the datasets used for training and validation, as well as an out-of-distribution (OOD) test
set, and encourage interested readers to access these datasets for their own model development.

Index Terms— Machine learning, neural networks, optical fibers, shape measurement, speckle patterns.

I. INTRODUCTION

SHAPE sensors based on optical fibers have been exten-
sively developed, greatly improving upon the performance

of traditional sensors (e.g., piezoelectric, electromagnetic,
shape-memory alloys, and so on) [1], [2], [3]. Typically, fiber-
based sensors benefit from low price, compactness, robustness,
and flexibility of silica fibers. These characteristics allow fiber
shape sensors (FSSs) to be deployed in critical environments,
such as for tracking medical instruments in surgery [4] or for
structural integrity monitoring in civil engineering [5], where
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no other solution is available. Over the years, the main avenues
to improve the performance of FSSs were to increase the
number of individual fiber cores or to modify the fiber itself
(e.g., embedded quantum dots [4] and fiber Bragg grating [6],
[7]) or to develop more elaborate interrogation techniques
(e.g., time-of-flight [8]).

Alternatively, shape information could be imprinted on the
phases of the spatial modes of the light propagating through a
multimode fiber at the locations of deformation and read out in
the form of an interference pattern at the end of the fiber. This
principle was demonstrated using a triple-core optical fiber [9].
However, it is only recently with the advancement of machine
learning techniques that it has become possible to process
and analyze these complex interference patterns (known as
specklegrams) (see reviews [10], [11], [12]). Specklegrams-
based fiber sensors can detect external perturbations, such as
deformation, temperature, or stress [13]. Deep neural networks
have emerged as an ideal tool to correlate specklegrams
with external perturbations without knowledge of the specific
changes in physical properties.

For shape sensing, deep neural networks were trained
to analyze specklegrams to extract curvature information at
predefined locations [14] based on classification. Curvature
sensing has been demonstrated for single [15] and multiple
bends [16]. Classification-based approaches typically work
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with a fixed number of discrete shapes and are not suitable
for continuous deformations, as they are unable to classify
an intermediate configuration. On the other hand, deflection
sensing [17] and spatially resolved bend sensing [18] have
been demonstrated using regression models, making it possible
for continuous measurements and thereby increasing general-
ization capability of the models. For example, in [19], a fiber
was deformed using three linear stages, generating a large
dataset of shape configurations that was used to learn the
relative changes of the stage position. While the absolute
positions of the linear stages were obtained via integration
of the relative position changes, the actual shape of the fiber
remained undefined.

Here, we present a direct, 2-D shape reconstruction of a fiber
using an end-to-end deep learning approach that addresses the
above shortcomings. The shape of the fiber was continuously
deformed, presenting multiple varying bends and captured
using a camera. A flexible parameterization of the shape was
developed to serve as ground truth for training neural network
models. A large range of fiber shapes and their corresponding
specklegrams were collected and used to investigate different
neural network architectures, as well as to study the impact
of different parameters, such as specklegram resolution, or the
minimum number of segments used to describe the fiber shape.
In particular, we introduced the concept of “multispeckle-
grams” where we actively positioned the input beam at differ-
ent positions on the proximal facet of the fiber end to obtain
multiple specklegrams per fiber shape. Reconstruction of the
shape from the specklegrams was achieved as a regression
task with N -dimensional output, allowing for representation
of nearly arbitrary shapes. The novelty of this approach is that
it allows us to reconstruct the shape of the fiber with multiple
bends at the same time, which represents an advancement over
prior work that can handle the reconstruction of fiber shapes
only one bend at a time. In this study, test sets that were not
part of the original training set were employed to evaluate the
generalization capabilities of the algorithms.

II. EXPERIMENTAL SETUP

Fig. 1 presents the optical setup for data collection for
training and testing of the deep neural networks. The setup
consists of a laser source (LaserQuantum, torus 532, not shown
in Fig. 1), a fiber shape manipulation assembly, and cameras
to capture the fiber shape and the speckle output of the fiber.
As the laser source, we are using a beam at a wavelength of
λ = 532 nm with a power of approximately P = 1 mW and
collimated to a waist of w0 = 1 mm.

The input position was controlled using a motorized galvo
mirror system (Thorlabs, GVS002), which focused the laser
beam via a microscope objective (Olympus Plan N 20×)
onto the input facet of the fiber. The fiber selected for the
experiment was a step-index MMF with a 200-µm-diameter
core (Thorlabs, FG200UEA) and a length of 550 mm.

A custom-built motorized assembly was used to system-
atically introduce fiber bending simultaneously in multiple
locations and with curvatures in the range of 0–17 m−1. This
assembly consisted of a flat rectangular surface of 425 ×

210 mm to support the deformed region of the fiber, and two

sliders, each stacked with four cylindrical permanent magnets
(Neodymium N45 zinc-plated rod magnet D 4 × 5 mm) that
were flushed against the rectangular surface, separated by
100 mm, and with a displacement range of 80 mm orthog-
onal to the main direction of the fiber. The fiber was then
passed through two metal rings (Alfa Aesar Stainless-Steel
Type 304 tubing, 0.82-mm (0.032 in) OD and 0.51-mm
(0.02 in) ID) before lying on an actual sheet of paper
(124 g/m2). As the sliders were moved underneath the paper
surface, the ring followed the position of the stack of magnets.
As illustrated in the zoomed-in view of Fig. 1, the rings were
free to rotate and reorient according to the local direction of the
fiber. As a result, the fiber curvature was freely adapting to the
two position constraints while remaining flat on the surface.
Each slider was attached to a rack and driven by a Maxon
motor with embedded encoder, gearbox, and pinion. The distal
end of the fiber was imaged using a microscope objective
and a 100-mm camera lens (Navitar, NMV-100M23) on a
CMOS camera (FLIR, CM3-U3-31S4M-CS), giving rise to a
resolution of 0.31 µm/pixel. This imaging setup was mounted
on a linear translation stage aligned with the main direction
of the fiber. The linear translation stage also controlled the
amount of fiber slack, allowing the fiber to assume different
shapes. The stage position dStage = 0 mm corresponds to
no fiber slack, such that the fiber shape is a straight line.
In this study, the position of the linear translation stage was
varied between 2.5 and 15 mm by a motorized linear actuator
(Thorlabs, Z825B). Finally, a second camera was used to
image the proximal end of the fiber in order to check the
position of the focused laser beam. The ground-truth shape of
the fiber was recorded using a third, external, camera (FLIR,
CM3-U3-31S4M-CS, with E3Z4518CS-MPIR objective with
a resolution of 189 µm/pixel) mounted above the plane of the
fiber on the flat rectangular surface.

A. Data Acquisition and Preprocessing
Using the above described setup, a dataset was generated for

training and shape reconstruction [20]. The linear translation
stage was employed to set the initial fiber slack, while the
sliders were manipulated in the increments of 2.7 mm to create
fiber bends in various configurations. At each slider position,
the shape of the fiber (i.e., ground truth) was first captured
by the externally mounted camera. Then, the input laser focus
was positioned on nine different locations on the fiber input
facet using the galvo mirror, as shown in Fig. 1(b). At each of
the nine positions, a specklegram was recorded. The resulting
nested for loops are detailed in Algorithm 1. The raw speckle
images at the distal end of the fiber were cropped to the
dimensions of 656 × 656 pixels. Subsequently, a circular mask
was applied to set all pixels outside of the core to 0.

B. Ground-Truth Generation
As shown in Fig. 2, an image of the fiber shape was first

captured by a camera mounted above the plane of the fiber.
The fiber was colored in black in order to increase the contrast
of the image, making the postprocessing and ground-truth
extraction more robust. The cropped image of the fiber was
processed using different computer vision methods, such as
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Fig. 1. (a) Illustration of the experimental setup. (b) Laser beam (source not shown) is controlled and focused by the motorized galvo mirror and
microscope objective, and injected into the fiber at nine different locations. (c) Fiber shape is formed by moving two sliders on the manipulation
platform. The speckle image at the distal end of the fiber is captured by the output camera. (d) Distal end and the camera are placed on a translation
stage allowing to vary the slack of the fiber. (e) 2-D shape of the fiber as imaged by the camera mounted above the manipulation platform is shown.

Algorithm 1 Training and Validation Set Acquisition

for stage_position in (2.5, 5, 7.5, 8.5, 10, 12.5, 15) do
move linear_stage to stage_position;
load range_1,range_2 =
slider_limits(stage_position);

for slider_1_position in range_1 do
move slider_1 to slider_1_position;
for slider_2_position in range_2 do

move slider_2 to slider_2_position;
capture GT = ground_truth_image;
for focus_position in (1..9) do

move laser to FP = focus_position;
capture SG = specklegram;

end
store datapoint = (GT, SG, FP);

end
end

end

Canny edge detection, eroding, and dilating, to finally extract
the contour of the fiber shape using methods provided by
OpenCV library [21]. We discretized the detected curve in
N + 1 discretization points separated by segments of length
R and calculated the angles αi between two consecutive
segments using atan2 function. The angles constituted the
ground-truth shape vector of size N, which was then used for
neural network training.

A single training sample consisted of one specklegram and
its corresponding focus coordinates as input and a vector
describing the shape as output. Thus, up to nine training
samples, each with a different specklegram for the same
ground-truth vector, constituting a multispecklegrams, were
used independently of each other during training.

1) Shape Reconstruction: To reconstruct the shape of the
fiber, the coordinates (xi and yi ) of the endpoints of the
segments were calculated as follows:

(xi+1, yi+1) = (xi + R ∗ cos α, yi + R ∗ sin αi ) (1)

with R being the length of the line segment and αi being the
angle between consecutive line segments. The quality of the
reconstruction is measured as the mean Euclidean distance
between the ground-truth coordinates and the reconstructed
coordinates.

III. MODEL ARCHITECTURES AND TRAINING

Multiple models for shape reconstruction based on deep
neural networks were devised and used for training. The
task of shape reconstruction from recorded specklegrams was
formulated as a regression, where the output was represented
as an N -dimensional real-valued vector.

A. Deep Neural Networks
The models employed in this study are summarized in

Table I. The networks consisted of a series of layers, such as
fully connected (dense) layers, convolutional layers (Conv2D),
physically motivated complex layers, and phase layers. Fur-
thermore, an activation function was applied to the output
of each layer. Dropout layer was added to make the neural
networks more robust against noise. Batch normalization (BN)
was employed to stabilize the training by centering and
rescaling the batches of training data.

Fig. 3 illustrates the neural network architecture, denoted as
the complex network. The motivation of this architecture is the
complex transmission matrix that describes the physical wave
propagation in a fiber (see [22], [23]). The input consists of a
specklegram and the input position (x and y) of the laser focus.
In this model, the 2-D specklegram is flattened and fed into
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Fig. 2. Steps for generating the shape vector. The contour is extracted from the captured image of the fiber using OpenCV contour function, and
then, the curve is segmented into 12 segments of equal length. The shape vector is calculated from the angle between two consecutive segments.

Fig. 3. Neural network-based shape prediction architecture. First,
speckle is projected into the complex valued dense layer, and only
the phase feature is taken out. Another dense layer is used to map
the phase feature with ground-truth shape vector. Finally, the predicted
shape vector is used to reconstruct the fiber shape.

a fully connected complex-valued layer, mimicking the trans-
mission matrix [24]. Subsequently, the output of the complex
layer is transformed into the polar representation, and only
the argument (phase) is retained. In the next layer, the (phase)
features are concatenated with the input position information
and further processed by a fully connected (dense) layer. The
output of this network is the N -sized angle representation of
the shape.

The dense network is identical to the complex network,
except that the complex and phase layers are replaced by a
single real-valued dense layer.

Our recursive neural network (RNN) consists of the complex
network with a recurrent neural network [25] added to the
output of the architecture. The recurrent layers are designed to
reproduce the shape reconstruction in position space as given
by (1), with additional trainable parameters. Thus, the output
of the RNN corresponds directly to the coordinates of the
discretization points of the fiber shape.

The convolutional neural network (CNN) uses convolutional
layers on the full image. Convolutional layers perform con-
volution operations on the input with a certain number of
trainable kernels and are commonly used for computer vision
tasks, such as pattern recognition [26]. The outputs of a stack
of convolutional layers constitute the extracted features and
are further processed in the same way as in the case of the
complex network.

B. Training
1) Datasets: The experimental data were divided into sev-

eral sets, as presented in Table II.

In total, 16 964 different shapes with nine specklegrams
per shape were recorded. The main dataset was recorded by
moving the output stage in 2.5-mm steps from 2.5 to 15 mm,
with 0 mm corresponding to a straight fiber. As described
in Algorithm 1, at each output stage position, sliders 1 and
2 were used to modify the fiber shape. This large dataset was
divided into the training set and a first test set by randomly
selecting 447 shape samples. Thus, this test set obeyed the
same distribution as the training set and is denoted as the
in-distribution (ID) set. An additional dataset was obtained by
placing the output stage at 8.5 mm and again using both sliders
to generate different fiber shapes. This dataset was denoted
as the validation set. The fiber shapes of the validation set
were generated using the same slider conditions as for the
training set, but the validation set obeyed a slightly different
distribution due to a stage position that was not present in
the training set. Finally, to generate a test set that would be
distinct from all the datasets obtained thus far, the translation
stage was placed at the position of 11 mm, and constraints
to the fiber shape were modified as follows: the metallic
ring that was following slider 2 was detached and placed
above an additional fixed magnet mounted between the two
sliders, in the center of the top surface, directly below the top
view external camera [see Fig. 1 (a) and (c)]. As a result, the
shapes were generated by moving slider 1 only. This way,
fiber shapes of this dataset differed substantially from the
other datasets and can be considered to be out-of-distribution
(OOD) relative to the training dataset. Such a dataset (OOD
set) presents the largest challenge for a machine learning
model.

In summary, the training set was used to train the neural
network models; the validation set was used to optimize
the parameters of the models (e.g., numbers and size of
layers) and the hyperparameters of the training, and ID set
and OOD set were used to evaluate the performance of the
models.

2) Training: ADAM [27] algorithm was used for optimizing
the network training. We trained the networks for up to
1000 epochs using a batch size of 224 and mean square error
(MSE) as a loss function. The MSE loss was calculated from
the angle representation of the shapes for the complex, dense,
and CNN models, while the RNN model used the MSE of the
x and y coordinates of the discretization points as the loss.
The training was performed on a GPU and depending on the
model took from 2 to 20 h.
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TABLE I
OVERVIEW OF DIFFERENT MODELS FOR FIBER SHAPE RECONSTRUCTION WITH CORRESPONDING NEURAL NETWORK LAYERS.

NUMBERS IN PARENTHESES INDICATE THE NUMBER OF NEURONS

TABLE II
DATASETS USED FOR TRAINING AND TESTING OF THE MODELS. ACCESS TO PUBLICLY

AVAILABLE DATASETS THROUGH [20]

Fig. 4. Range of representative samples from ID set, corresponding to
the distribution of the training set.

IV. RESULTS AND ANALYSIS

In this study, we conducted extensive hyperparameter
optimization, varying the neural network architectures, the
number of input specklegrams and their resolution, as well
as the number of segments used for the reconstruction. Fiber-
shape reconstruction capabilities of different trained models
are presented below. Deviation of the reconstructed shape
from the ground truth (Figs. 4 and 5) was measured by
the average Euclidean distance of the discretization points,
which we denote as mean position error. By averaging across
the discretization points, this figure of merit applies to all
models considered in this study. Figs. 4 and 5 illustrate the
typical samples of fiber shape reconstruction from the two
datasets obtained with the best-performing model. Box plots
in Figs. 6–8 show results comparing performance on ID set
(left-hand side of the box plots) and OOD set (right-hand side
of the box plots). In the presented figures, one parameter was
varied, while the others were kept at their optimal value.

A. Neural Network Model
The choice of the neural network model has substantial

impact on the quality of the reconstruction, as shown in
Fig. 6. The complex network outperformed all other models,
especially when applied on test set with the training set
distribution (ID set). More importantly, we observed that the

Fig. 5. Range of representative samples from OOD set, containing
shapes that are considered OOD of the training set.

neural networks are also able to generalize to OOD data
(see [28]). The larger deviation from the ground truth as can be
seen in Fig. 5 compared with Fig. 4 witnesses the difficulty of
the generalization. When considering only the mean position
error for OOD set, the architectural differences of the com-
plex, dense, and RNN models had little impact. Performance
of the CNN was notably inferior compared with the other
models. We believe that the translation invariance of CNNs
causes them to overlook crucial position-dependent informa-
tion within the specklegrams. Indeed, while the speckle grains
look very similar to each other, the information regarding the
shape is encoded in the arrangement of the speckle patterns.

B. Specklegram Resolution
As information about the shape of the fiber is encoded in

the pattern of the speckle grains, it follows that the resolution
of the specklegram plays a crucial role in the training of the
model. During the data acquisition process (see Section II-A),
the specklegram was recorded with a resolution of 656 ×

656 pixels. We trained our models with downsampled speckle-
grams obtained using bilinear interpolation and presented the
results for the complex model in Fig. 7. When evaluated on
the ID set, the model’s performance improves with increasing
speckle resolution. Since the number of trainable parameters
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Fig. 6. Comparison of different models, trained with 56 × 56 sized
specklegrams and ground-truth discretization with 12 segments. (L)
Training set distribution = ID set. (R) Out of training distribution = OOD
set.

Fig. 7. Reconstruction error as a function of speckle resolution. (L)
Training set distribution = ID set. (R) Out of training distribution = OOD
set.

of the complex layer scales with the total number of pixels,
improvement in performance could be attributed to overfitting.
It is surmised that due to the data acquisition process, samples
in the ID set likely have very similar shapes to certain samples
in the training set, potentially benefiting from the overfitting of
the training process. This hypothesis is supported by the large
decrease in generalization capability, as evidenced by the large
mean position error as a function of speckle resolution, when
evaluated on OOD set. Indeed, the 16-fold increase in the
number of trainable parameters of the first layer (for speckle
size 56 versus 224) allows the network to memorize the cor-
responding input–output combinations instead of learning an
approximation of the physical model. Another challenge posed
by the increasing layer size is the escalating computational
cost during training, impacting memory demands, the number
of required training epochs, and the duration of each individual
epoch.

C. Number of Inputs
With our unique setup, it is possible to inject arbitrary light

fields into the fiber, connecting our work to the research of

Fig. 8. Reconstruction error as a function of the number of
specklegrams used per fiber shape. (L) Training set distribution = ID
set. (R) Out of training distribution = OOD set.

imaging through multimode fibers (see [24]). In preliminary
experiments, we have tested various input patterns and found
that injecting a single tightly focused beam [see input in
Fig. 1 (c)] yields the best results for learning of the shape
reconstruction. Here, we analyze how multispecklegrams, i.e.,
increasing the number of specklegrams for the same fiber
shape, could lead to a better reconstruction. Since the network
architecture was agnostic to the number of specklegrams per
shape, each training sample was used independently during
training. However, in testing, the output vectors that were
regressed from individual specklegrams were averaged before
applying the reconstruction (1). This procedure significantly
improved the reconstruction capability of our models. Fig. 8
shows that the reconstruction error increased when the num-
ber of specklegrams per fiber shape sample was decreased
from 9 to 1. This behavior is observed for both test sets (Fig. 8)
and is also found for other models (data not shown). In the
case of a single specklegram per fiber shape, the information
about the location of the input loses its relevance. Injecting
the light at different locations of the fiber facet breaks the
rotational symmetry of the fiber, thereby exciting different
modes of the fiber. The slight improvement observed for
9 versus 3 specklegrams suggests that going beyond nine
would not significantly improve results.

D. Number of Segments
A novelty in our approach is that the shape of the fiber

can be parametrized via an arbitrary number of discretization
points, i.e., segments of equal length connecting the points.
In this section, we study how the number of segments used
to approximate the shape of the fiber affects the fidelity of
the approximation, and the capabilities of the trained model
to reconstruct the shape of the fiber and to generalize to
yet unseen types of shapes (i.e., OOD set). Depending on
the number of bends, more or fewer segments are needed
to faithfully represent the shape of the fiber. In our setup,
the number of bends was not defined a priori and varied
depending on the shape. Therefore, a minimal number of
segments needed to represent the shapes of our datasets were
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Fig. 9. Examples of fiber shape segmentation.

first established by calculating the area enclosed between the
original and discretized fiber shapes as a function of the
number of segments. In principle, the enclosed area should
tend to zero with the increasing number of segments, as shown
in Fig. 9. In practice, however, determining the segment length
generates finite-size errors that lead to a residual enclosed area.
Fig. 10 shows the calculated areas for the ground-truth shapes
contained in the two test sets. The left panel displays the
enclosed area over a wider range of curvature (and number of
curves), encompassing the entire spectrum of the training set.
This breadth is reflected in the substantial variance observed
for segmentation with only four segments. The OOD set results
shown in the right panel were acquired at a single linear
stage position dStage = 11 mm. Therefore, the fiber shapes
had similar curviness and yielded values for enclosed areas
that are more concentrated. For both test sets, a minimum
in the enclosed area is reached at 18 segments, followed
by a slow increase for a larger number of segments. This
increase stems from the aforementioned finite-size error during
the determination of the segment lengths. We have trained
and evaluated the complex model with different numbers of
segments (Fig. 11). As described above, the mean position
error plotted in the figures is an average value over the number
of discretization points and, thus, is meaningful even when
comparing models with different numbers of discretization
points. It appears that the performance of our complex model
only weakly depends on the number of segments. As for the
other neural network models discussed, we have conducted
training with different numbers of segments and have observed
qualitatively the same behavior (data not shown). Nevertheless,
a trend of larger errors for fewer segments suggests that the
reconstruction of shapes within our datasets benefits from a
higher number of segments. In other words, the neural network
models with an insufficient number of discretization points
not only fail to represent the ground truth faithfully but also
struggle to learn the inversion of the model underlying the
formation of the specklegram. Based on results presented in
Figs. 10 and 11, and considerations on computational costs,
we have selected the model with 12 segments as the overall
optimally high-performing neural network model. Increasing
the number of segments to 18 would only marginally improve
the reconstruction, while significantly increasing the training
time.

V. DISCUSSION AND CONCLUSION

We have generated a large dataset and extensively inves-
tigated the reconstruction of fiber shapes using trained
neural networks. We have established that multiple input

Fig. 10. Fidelity of shape segmentation as a function of the number
of segments, measured by the enclosed area between the original and
the segmented curve. (L) Training set distribution = ID set. (R) Out of
training distribution = OOD set.

Fig. 11. Reconstruction error as a function of the number of segments
for the complex model. (L) Training set distribution = ID set. (R) Out of
training distribution = OOD set.

specklegrams and a minimum number of discretization seg-
ments are required for a faithful reconstruction of the fiber
shape. Furthermore, we have observed strong dependence
on the resolution of the specklegram, highlighting the risk
of overfitting and showcasing the usefulness of OOD test
sets. Our results can, thus, serve as a baseline for further
developments of machine learning models for our dataset [20].
In quantitative terms, we achieve an average position accuracy
of 5.2 mm for ID test set and 7.7 mm for OOD test set, which
is an improvement compared with the state-of-the-art results
of 13.9 mm reported in [29].

While, on average, the neural network model delivers faith-
ful reconstruction, as shown in Fig. 4, the box plots in Fig. 6
also contain outliers with large reconstruction errors, which
correspond to cases of failed reconstruction. We have exam-
ined the failed samples closely and have found that local twists
of the fiber that occur during data acquisition caused increased
reconstruction errors. Indeed, in certain configurations, an arc
section of the fiber can undergo a flip during the positioning
of a slider, creating a local twist. This means that the image
of the shape of the fiber on a 2-D plane does not contain the
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full information about the fiber geometry, as it fails to detect
possible local twists along the fiber. Fibers that have similar
2-D shapes might have different twist configurations, leading
to entirely different speckle patterns. This ambivalence of the
training data generally reduces the reconstruction capabilities
of the trained model. Another source of ambivalence in the
training data is changes in environmental factors, such as tem-
perature, air pressure, and humidity. For instance, temperature
affects the refractive index of fiber and, thus, influences the
speckle formation process. The impact of temperature on the
specklegram has been shown by [30] and [31]. Our results
were obtained in a laboratory with the temperature maintained
at a constant value; however, we do not exclude that a part of
the reconstruction error could be caused by variations in the
temperature in the range of 1 ◦C.

In future experiments, environmental parameters could be
recorded along with the training data and used in training to
eliminate the ambivalence of the training data. Furthermore,
the algorithms presented in this work can be equally used
to train models that can predict these environmental factors.
These factors may play an important role in such applications
as in vivo shape sensing of medical devices, such as guidewires
and catheters.

Another intriguing research direction would be to attach a
multimode fiber to deformable objects of interest [32] (such as
an airplane wing, as shown in [1]) and to learn their deforma-
tion from the specklegrams generated by the fibers. In such a
case, the knowledge of the actual shape of the fiber itself would
not be required, as long as it is fully defined by the shape of
the object it is attached to (airplane wing). Hence, it should
be possible to directly learn the (parametrized) shape of any
object in question from the specklegrams generated by the
fiber. Here, the main tasks consist of recording a sufficiently
general training dataset of parameterized deformations, for
example, using algorithms and tools of CV (stereo cameras,
scanning, and active illumination). In the future, many more
new applications, thus, become feasible.
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