26682

IEEE .
Sensors Council

The Application of Evo

IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024 \X‘

lutionary, Swarm, and

lterative-Based Task-Offloading Optimization
for Battery Life Extension in Wireless
Sensor Networks

Paula Gonzalez™, Gabriel Mujica™, Member, IEEE, and Jorge Portilla™, Senior Member, IEEE

Abstract—The proliferation of Internet-of-Things (loT)
devices has exponentially increased data generation, placing
substantial computational demands on resource-constrained
sensor nodes at the extreme edge. Task offloading presents
a promising solution to tackle these challenges, enabling
energy-aware and resource-efficient computing in wireless
sensor networks (WSNs). Despite its recognized benefits, the
exploration of task offloading in extreme edge environments
remains limited in current research. This study aims to bridge
the existing research gap by investigating the application
of computational offloading in WSNs to reduce energy con-
sumption. Our key contribution lies in the introduction of
optimization algorithms explicitly designed for WSNs. Our
proposal, focusing on bandwidth allocation, employs meta-

Searching for the Best Offloading
Strategy at Base Station Level

Edge

Available : 1

L - T Input Parameters '

ayer i i

Base Station : I 1—1" l :

| o) |

: LN i

P ! Iterative !

S I
)

Edge /,~ N I | Genetic swarm| |

’]]

I/ @\ C)\\ \\ | Proposed Algorithms .

1 !]

: ﬁ ~Bang | 1

) Wiy, | i

\ ! Allggy9th | 1

\ m ! Atiop, . Optimised)

\O | Offloading Strategy | |

N] i

Y
s O LS

heuristic and iterative algorithms adapted to WSN characteristics, enhancing energy efficiency and network lifespan.
Through extensive experimental analysis, our findings highlight the significant impact of task offloading on improving
energy efficiency and overall system performance in extreme-edge loT environments. Notably, we demonstrate a remark-
able up to 135% reduction in network consumption when employing task offloading, compared to a network without
offloading. Furthermore, our distinctive multiobjective approach, utilizing particle swarm algorithms, distinguishes itself
from other proposed algorithms. This implementation effectively balances individual node consumption, resulting in an
extended network lifetime while successfully achieving both specified objectives.

Index Terms— Edge computing, extreme edge of Internet of Things (loT), task offloading, wireless sensor networks

(WSNSs).

[. INTRODUCTION

S TECHNOLOGY advances, electronic devices have
become a ubiquitous part of people’s daily lives, gen-
erating a constant stream of real-time data. This influx of
information is a valuable resource in a wide range of applica-
tions, from medicine to strategic decision-making in business.
In this context, the Internet of Things (IoT) is poised
to be one of the most transformative technologies of the

Manuscript received 9 April 2024; accepted 17 June 2024. Date of
publication 2 July 2024; date of current version 15 August 2024. This
work was supported by the MCIN/AEI/10.13039/501100011033 through
the Project TALENT-HIPSTER under Grant PID2020-116417RB-C41.
The associate editor coordinating the review of this article and approv-
ing it for publication was Prof. Chen Yang. (Corresponding author:
Paula Gonzalez.)

The authors are with the Centro de Electrénica Industrial, Uni-
versidad Politécnica de Madrid, 28006 Madrid, Spain (e-mail:
paula.gonzalezdedu@alumnos.upm.es; gabriel.mujica@upm.es; jorge.
portilla@upm.es).

Digital Object Identifier 10.1109/JSEN.2024.3419558

21st century. IoT presents itself as a logical and promising
approach to addressing the challenges and opportunities of
the digital age. It enables a wide range of devices and systems
to be connected via the network, facilitating data collection,
transmission, and analysis in real time. This further increases
efficiency and adaptability in a wide range of applications
(1], [2].

As shown in Fig. 1, the IoT has a layered structure that
categorizes its component devices into different levels of
complexity with their associated constraints. Although there
is no unanimous agreement, it is widely accepted that the
following four layers exist: cloud, fog, edge, and extreme
edge [3]. Different computing strategies can be distinguished
depending on the layer responsible for the data processing.

Cloud computing is based on offloading the processing of
data collected at the edge to cloud servers. Its application to
IoT brings some limitations in terms of latency, security issues,
and reduced fault tolerance. In addition, the surge in data

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0007-1457-8734
https://orcid.org/0000-0002-2964-2846
https://orcid.org/0000-0003-4896-6229

GONZALEZ et al.: APPLICATION OF EVOLUTIONARY, SWARM, AND ITERATIVE-BASED TASK-OFFLOADING OPTIMIZATION

26683

D

Cloud
Fog = ~ A
Edge g g :=-_ E
Barere () [@) @ o) @—F
o) ((‘é’))

Fig. 1. Schematic overview of loT layers.

collected can lead to network bottlenecks. Therefore, the trend
in recent years has been to bring data processing closer to its
source, giving rise to fog and edge computing [4]. These strate-
gies succeed in reducing latency, therefore enabling real-time
applications. However, they also introduce new constraints due
to the limitations of the devices responsible for processing the
data.

Unlike fog computing, edge computing is independent of
the cloud, giving it autonomy in decision-making and enabling
collaboration between IoT devices at the edge and the extreme
edge participating in the wireless sensor networks (WSNs).
These are networks of spatially distributed autonomous sensors
placed at the extreme edge that communicate with each other
and or a central control system at the edge or the extreme edge
through wireless connections [5].

WSNs are widely used for monitoring and surveillance
applications. However, the proliferation of IoT has led to
the development of more complex applications that require
advanced computing capabilities for sophisticated data anal-
ysis and decision-making. These applications implement
advanced algorithms such as target recognition and object
tracking, which require more processing power and energy
consumption. This demand highlights the limitations of WSN
sensor nodes, which are typically small and battery-powered.
Therefore, a new challenge arises where strategies are needed
to reduce the power consumption of these devices and thereby
extend the lifetime of the networks [6].

Optimal sensor selection is crucial not only to improve
system performance and reduce costs but also to overcome
the energy constraints of the nodes. In their study on sensor
selection for target recognition, Arora et al. [7] highlight the
complexity of balancing rich sensor data with the limited com-
putational resources of energy-constrained nodes in WSNs.
They propose using less complex sensors, but this approach
presents challenges in dealing with the imperfect nature of
sensor outputs.

To the best of the authors’ knowledge, there is limited
research on the integration of task offloading in WSNs.
Nonetheless, this strategic solution shows promise. By incor-
porating task offloading, nodes can potentially handle richer
sensor outputs without compromising energy constraints. This
allows the selection of sensors based on their suitability
for their task rather than being limited by individual node
capacities. Optimization of the overall performance of the
WSN becomes achievable. Additionally, task offloading can

be implemented through a collaborative approach, allowing
devices to share resources for an equitable distribution that
ensures optimization.

The proposal focuses on leveraging servers with high pro-
cessing capacity in proximity to the network. These servers
will engage in resource sharing by distributing idle computing
resources among the devices, as discussed in prior surveys [8].
The efficacy of this resource-sharing strategy depends on
various parameters, including the bandwidth of the base station
(BS) and the volume of data exchanged over the network.
Notably, our work delves into strategies aimed at optimizing
bandwidth allocation in computational offloading scenarios,
with a specific focus on edge IoT networks [9]. In these
networks, characterized by devices closely located to data
sources, resource-constrained sensor nodes actively participate
in the WSN.

The primary focus of the proposed algorithms is to address
the resource distribution challenges arising from applying
task offloading in WSNs. The aim is to minimize energy
consumption in WSNs while adapting to variations in the
number of devices and the bandwidth shared between the
network BS and the participating sensor nodes. To this end,
we have tailored existing optimization algorithms, specifically
genetic algorithms (GAs), particle swarm optimization (PSO)
algorithms, and iterative methods, meticulously adapting them
to suit the requirements of our resource distribution problem.
The choice of these algorithms is justified by their proven
effectiveness in handling complex optimization tasks, making
them well-suited for addressing the complexities inherent in
our computational offloading scenario involving variations in
the number of devices and shared bandwidth between the
network BS and sensor nodes.

In this way, the main contributions of this work are as
follows.

1) Propose an underexplored approach for energy sav-
ing on WSNs by applying collaborative task-offloading
strategies. This approach offers a promising route for
extending the operational lifespan of sensor nodes.

2) Present a set of optimization strategies to select the most
suitable offloading strategy throughout the network’s
lifecycle, with a primary goal of conserving battery
power in the sensor nodes. These strategies are orga-
nized into two main approaches: iterative methods and
metaheuristic algorithms (GA and PSO). Furthermore,
each strategy includes a spectrum of variations for the
proposed algorithms, enhancing adaptability. Extensive
experimental analysis on WSN has been conducted,
encompassing varied bandwidth scenarios and sensor
node configurations.

3) Provide a selection guideline framework to aid in choos-
ing the most suitable strategy based on the network’s
characteristics and the desired objectives.

The rest of the article is organized as follows. Section II
presents state-of-the-art research on different strategies to
apply computational offloading. Section III overviews the
problem of optimizing the resource and bandwidth distribution
in IoT sensor devices from the point of view of network
lifetime, by applying the concept of computation offloading.

26684

IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024

Section IV details the proposed offloading strategies to tackle
the optimization problem set, while Section V outlines the
main experimental results. The discussion of the results is done
in Section VI. Finally, Section VII presents the conclusion and
future lines of research for the proposed work.

[1. RELATED WORK

There are several trends in the state of the art addressing
the optimization of resources at the edge of the IoT by
offloading computational tasks of the nodes. In recent works,
mobile edge computing (MEC) has been widely used as a
strategy to implement task offloading in mobile networks.
MEC provides an infrastructure at the edge that facilitates
the efficient execution of computational tasks close to the end
users by extending cloud computing services to the edge of
networks, leveraging mobile BSs [10], [11].

Chen et al. [12] propose a multiuser task-offloading model
for mobile-edge cloud computing. This paradigm provides
cloud computing capabilities at the edge of radio access
networks. One critical factor affecting offloading performance
in this mechanism is the efficiency of wireless access. If many
users simultaneously choose the same wireless channel to
offload computation to the cloud, it may lead to low energy
efficiency and data transmission time. In this case, offloading
will not be beneficial. To achieve efficient offloading, they
address two key challenges: 1) how should a mobile user
choose between local and cloud computing? and 2) if a user
chooses cloud computing, how to choose the right channel for
high-efficiency wireless access? To address these challenges,
they use a game theoretic approach and propose a distributed
task-offloading algorithm to achieve the Nash equilibrium of
the game.

Sardellitti et al. [13] design an algorithm to jointly optimize
radio and computational resources for task offloading in a
multicell MEC scenario, where a large amount of radio access
points facilitates high bandwidth access to computational
resources but increases intercell interference. The offloading
problem objective is to minimize overall energy consumption
at the mobile terminals under transmit power and latency
constraints. The main challenge of this problem is consider-
ing the intercell interference, which makes the optimization
problem non-convex. To solve this, they developed centralized
and distributed SCA-based algorithms with provable conver-
gence to locally optimal solutions of the non-convex problem.
According to the results, the authors claim their proposed
schemes converge faster and lead to significant energy savings
compared to disjoint optimization procedures for applications
requiring intensive computation and limited data exchange to
enable offloading.

However, these proposals, while beneficial, are still depen-
dent on the already saturated cloud and do not fully disengage
from it. Additionally, MEC primarily targets mobile devices
such as smartphones, which are more complex than the sensor
nodes of WSNs. This means that, on the one hand, the
computational tasks sent by MEC devices are more complex
than those of the sensor nodes of WSN and thus require
higher computing capacity at the BS (hence the need for cloud
support in some circumstances). Additionally, the operating

scheme is different from our objective. In MEC, the goal is to
satisfy the needs of a client node, so once the task is computed
for the client node, it must return to it. WSNs sought a
collaborative computing scheme to achieve a single objective:
to process the collected data and send it to the BS. This
discrepancy in complexity and operational objectives leads to
a closer look at opportunistic offloading as a complementary
strategy that addresses the limitations of MEC.

Opportunistic offloading leverages edge computing
resources, reducing the reliance on a centralized cloud
infrastructure. The term opportunistic offloading represents
a broad scheme that encompasses traffic and task
offloading [14]. While traffic offloading focuses on reducing
data redundancy and traffic load on the cellular networks, task
offloading allows nodes with limited computing resources
to offload tasks to nearby devices with idle computing
capacity, extending battery life, increasing storage capacity,
or improving application performance [15].

Shi et al. [16] suggest Serendipity, where mobile nodes
can delegate their computational tasks to other mobile nodes
through an opportunistic network. They model the computing
tasks as PNP blocks. Each PNP block consists of three
programs: pre-process, n-tasks that can be executed in parallel,
and post-process. Pre and post-process programs must be
executed locally, while the n-tasks are offloaded to neighbor
nodes in parallel. Each node has a profile that describes its
available capacities and is used to decide whether or not to
allocate a task in an encounter node. If the client node does not
receive the task result before a specified time, the offloading is
discarded and the task is executed locally. They consider three
models with different contact knowledge and control channel
availability and design a task allocation algorithm for each.

Rehman et al. [17] propose an opportunistic task-offloading
scheme to execute data mining tasks in mobile edge cloud
computing (MECC) systems. They prioritize the execution of
data mining tasks in mobile edge servers. However, when the
resources are limited or there are no edge servers available,
they offload the computation to the cloud. The algorithm works
in three modes depending on which computational resources
are used: local, edge servers, or the cloud. They propose a
rule-based scheduling strategy to switch adaptively between
different execution modes of the data mining algorithm. They
develop their simulator for MECC-based data stream mining
systems. Simulations show promising results for online mobile
activity recognition applications. Yet, the proposed framework
needs to be generalized.

However, these opportunistic offloading strategies, like
MEC strategies, still focus on complex mobile networks.
Furthermore, high node mobility is required to increase contact
opportunities for these schemes to be effective. As mentioned
above, this research focuses on WSNs in remote locations,
where the probability of establishing contact with external
devices is low. For this reason, opportunistic offloading strate-
gies, while offering advantages in mobile networks, are not
the most effective for WSNs.

To the best of our knowledge, a reduced number of works
have addressed the study of the task-offloading problem in
WSN. In such extreme edge conditions, energy conservation

GONZALEZ et al.: APPLICATION OF EVOLUTIONARY, SWARM, AND ITERATIVE-BASED TASK-OFFLOADING OPTIMIZATION

26685

becomes critical due to the battery-power nature of the sen-
sor nodes. These nodes, often located in challenging-access
locations like forests, vast agricultural fields, or the depths of
oceans and marine environments, impose constraints on com-
munication bandwidth, battery life, and processing capacities.

Samie et al. [18] propose optimizing communication
bandwidth by solving the so-called fragmentation issue.
This problem highlights the underutilization of the gateway
resources due to discrete coarse-grained offloading levels.
They propose a switching method between different offloading
levels at IoT devices such that it appears to the gateway as if
the IoT device would operate at an intermediate offloading
level and manage to reduce the battery consumption of the
devices. However, this proposal does not consider the pro-
cessing capability of the gateway and how its variation would
affect the nodes.

A software-defined mission-critical wireless sensor network
(MC-SDWSN) that can solve the existing challenging issues in
traditional WSNSs, such as resource utilization, data processing,
system compatibility, and strict latency requirements, is pro-
posed in [19]. Based on the MC-SDWSN architecture, they
propose a centralized task-offloading algorithm to minimize
the computing latency. They consider a network architecture
similar to ours but assume that there is an infinite buffer in
the edge servers. Their strategy consists of scheduling tasks
by prioritizing those with the most critical latency.

Rong and Pedram [20] propose to reduce energy consump-
tion on battery-powered mobile devices by task migration and
remote processing based on Markovian decision processes.
The dynamic power management problem is formulated as an
optimization problem and solved using a linear programming
approach. The experimental results prove the effectiveness of
their methods. Their framework comprises clients, a server,
and a wireless channel for communication. The server,
assumed to be mains-powered with superior computational
capability, handles local and remote tasks without energy
and processing limitations. Clients initiate the offloading with
remote process requests (RPRs) to the server with a time
constraint. If the server cannot meet the specified time con-
straint, it rejects the request and the client must process
the task locally, which wastes client resources. Hence, the
offloading decision logic is integrated into the clients. This
is viable for mobile nodes, but since this work focuses on
resource-limited sensor nodes, migrating this logic to the
server would eliminate the possible waste of the client’s
resources.

In conclusion, this study highlights the lack of research
addressing the application of task offloading in WSNs as a
strategy to reduce power consumption. As we look at the
specific challenges of WSNs, particularly in remote environ-
ments, our focus narrows to the particular constraints and
opportunities in this context. Notably, our work stands out in
the WSN research for its unique emphasis on task offloading
as a powerful strategy for reducing power consumption. In a
landscape where energy efficiency is paramount, our contri-
bution aims to fill a gap by providing optimization algorithms
tailored to the specific needs of WSNs, thus contributing to
their enhanced durability and efficiency.

Offloading strategy
/ Subtasks to
()

o i
— Occupied
o process locally

— bandwidth

SB1 SB2 SB3 SB4 SB5 SB6

TASK = N BYTES

Fig. 2. Graphical depiction showcasing the division of tasks.

[1l. PROBLEM DESCRIPTION AND OBJECTIVES

This work compares different task-offloading algorithms in
WSN infrastructures. The primary objective is to minimize
battery consumption in extreme edge sensor nodes by applying
task offloading. The strategy is to have edge servers that
are connected to the power grid and have idle computational
resources to make this capability available to the sensor nodes.
By offloading some of the computational load from these
nodes, it is possible to reduce their energy consumption and
thereby maximize their lifetime.

An additional goal is set to make the battery consumption
of the nodes as homogeneous as possible, favoring greater
offloading in the nodes with lower batteries. In this way, if we
consider that the network lasts until the first node runs out of
battery, we will maximize the lifetime of the network. The way
to achieve this goal varies depending on whether the algorithm
is iterative or metaheuristic and is explained in more detail in
Section IV.

Regarding the method for implementing the task-offloading
strategy, a tiered system approach was selected. To define these
levels, the task to be carried out by the nodes is established
to be the same for all of them. This task has a fixed size of
N bytes and can be divided into two fragments of variable
size, each of which can be processed independently. Under
this assumption, each level corresponds to a specific division
of the task into two fragments, so that one of the parts is
processed locally and the other is transmitted unprocessed to
the BS to be handled by the BS. The levels defined used in
the experimental analysis are detailed in Table I and Fig. 2
shows a graphical depiction of the division of a task that can
be divided into six different size subtasks (SB).

This system can also be interpreted as each of the tasks can
be divided into different independent processing subtasks. For
example, if the task of the nodes is to capture the number of
cars on a motorway at a certain time, the processing of the
captured image could be divided into several subtasks such
as image compression, pre-processing, and vehicle detection.
Similarly, in healthcare applications involving the process-
ing of ECG signals, tasks can be subdivided into distinct
processing steps such as signal filtering, feature extraction,
and anomaly detection. In this way, each level can relate to
the decision of which subtasks are processed locally at the
nodes and which are sent to the BS for processing. Due to the
heterogeneity in the complexity of the subtasks, the definition
of the processing cycles needed on each level has been done
avoiding a linear progression.

Before describing the problem, it is necessary to define the
network architecture under consideration.

26686

IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024

TABLE |
LEVELS DESCRIPTION
Level Processed Bytes Cycles Bandwidth

1 300 1,500,000 0

2 210 700,000 90

3 100 500,000 200

4 40 400,000 260

5 12 50,000 300

A. Network Architecture

We consider a local network of N geographically distributed
IoT edge nodes I = { I1,...,Iny} and a BS, which are
connected through a local network with a star topology.
A similar system model is considered in [18]. The BS is a
peripheral server at the edge. It is considered that it performs
several tasks, including helping the nodes process the data
they collect. We use the term bandwidth in its data processing
connotation to refer to the number of processing bytes that
the edge server can share with the nodes in the network at
any given time. As the BS is not exclusively dedicated to
the network, we expect bandwidth to be a variable param-
eter over the lifetime of the network. The execution of the
algorithms to obtain the offloading strategy will also be the
responsibility of the BS. A similar strategy is also used by Li
and Zhu [21] and Fu et al. [22], where they employ genetic
algorithms (GAs), but the chromosomes in these algorithms
take into account scheduling to reduce task completion time
and power consumption, respectively. However, it is worth
noting that those approaches demand higher computation from
the edge device, which is a limitation in resource-constrained
networks.

Two categories of parameters are defined to create node
profiles: dynamic and static. Static parameters are linked to
establish offloading levels and node hardware specifications
which remain constant during network operation. In contrast,
dynamic parameters reflect attributes of the nodes that evolve
as they perform the tasks assigned by the BS. These parameters
are

Id = (Ql’ F’ TR’DC7 TC7 PC’Bat9 bdl’ Ed)’d =]" "‘7N'

1) Static parameters.

a) Q; denotes the number of different offloading
levels that the IoT sensor node can handle.

b) F denotes the clock frequency of the node.

c¢) Tgr is the data transfer rate between the node
and the BS, which must be set according to the
characteristics of the network.

d) DC represents the duty cycle of the node.

e) Tc denotes the energy consumption during the data
transmission from the node to the BS.

f) Pc denotes the processing battery consumption of
the nodes.

g) Bat represents the initial battery of the nodes.

2) Dynamic parameters.

a) by, represents the number of bandwidth bytes occu-
pied by node d working at level i.
b) Eg is the remaining battery of sensor node d.

B. Optimization Problem

The problem considered in this work belongs to the class
of generalized assignment problems (GAP). GAP consists
of assigning a set of tasks to a set of agents with limited
resources, taking into account a minimum total cost [23].
In this work, the resource is the bandwidth of the BS, which
has to be allocated to the IoT nodes to minimize the total
energy cost. All this applied to a network of IoT nodes
sharing computational resources with a BS is called task
offloading [24].

The task-offloading optimization problem can be formulated
in many ways, as surveyed in [25]. For the description of the
optimization problem of this work, the following definitions
are needed.

1) By represents the overall occupied bandwidth of the

network. Therefore, as shown in (1), it is obtained as
the sum of the by, of the nodes

N
By = by (1)
d=1

2) P; is the summation of the power consumption of all
the nodes and is computed as shown in (2), where py,
is the total power consumption of device d operating at
offloading level i

N
Pi=2" pa-)
d=1

3) The computation of pg4 of each node encompasses the
on-board processing consumption p,; and the consump-
tion due to the data exchange transaction py; al level i.
For the specific simulations of this work, py; is obtained
based on single-hop communication, according to the
considered star topology, as follows:

Cycles;
Pob; = Pc - yF : (3)
by
pu; = Tc - ﬁ €]
Pd; = Pob; + Ptr; - (5)

Given these parameters, the optimization problem is defined
by (6) and (7), where By, stands for the maximum available
bandwidth

Optimization goal : min (Py) (6)
Constraint : B; < Byy. (7)

Equation 8 formulates the objective of maximizing the
network’s lifetime. Here, L7 represents the lifetime of the
network, defined as the lowest battery value among the nodes.
This objective is intentionally left implicit in some of the pro-
posed algorithms to evaluate whether they inherently prioritize
network lifetime optimization without explicit guidance. Thus,
(8) is established as an additional objective

Aditional Objetive : max (L7) . (8)

1) During the simulations, Tz has been set in accor-
dance with the IEEE Standard for Low-Rate Wireless

GONZALEZ et al.: APPLICATION OF EVOLUTIONARY, SWARM, AND ITERATIVE-BASED TASK-OFFLOADING OPTIMIZATION

26687

Networks (IEEE 802.15.4) in the 2.4-GHz band. This
standard is widely used in WSNs. Nevertheless, this
parameter can be configured in the proposed algorithms
according to the used communication standard of the
target WSN.

V. PROPOSED ALGORITHMS

Once the problem is defined, algorithms are developed to
find the optimal bandwidth allocation and offload management
routines throughout the network’s dynamic lifetime. The pro-
posed algorithms are designed to be topology agnostic and
scalable, allowing them to adapt to variations in the number
of nodes and available bandwidth. In addition, they share an
initialization routine to help establish a common benchmark.

It is worth noting that although the algorithms can be
applied to different network topologies, the obtention of the
battery consumption of the node sending data assumes a
single-hop communication link with the BS. Nevertheless, it is
possible to transition to another type of network structure
by adding the computation of the power consumption of the
communication path accordingly, which allows the algorithms
to operate at a higher optimization level.

In terms of network deployment, while optimal sensor
placement (OSP) methodologies, such as those explored by
Shi et al. [26], [27] and Yang and Ouyang [28], are crucial for
addressing uncertainties in WSN and function as a deployment
optimization phase, the proposed algorithms operate from a
broader perspective. They aim to dynamically optimize the
usage and distribution of resources in WSN, serving as a
distinct phase from node placement. Thus, they work during
network operation, seamlessly incorporating possible dynamic
changes in WSN behavior.

We propose to solve the problem from two different per-
spectives: iterative and metaheuristic. Metaheuristic algorithms
apply computational intelligence methods with advanced
problem-solving capabilities to solve complex optimization
problems [29]. In this work, we will focus on two types
of metaheuristic algorithms that belong to the family of
nature-inspired algorithms: GAs and PSO algorithms. GAs
mimic evolution by searching large solution spaces, while
PSOs, inspired by collective behavior, encourage collaborative
exploration.

Conversely, iterative methods, while less complex, provide
robust problem-solving capabilities through a sequence of
incremental refinements. The decision to incorporate both
metaheuristic and iterative techniques is strategic, as it allows
for comparative analysis to identify the strengths and effi-
cacy of each approach. Sections IV-A-IV-C comprehensively
explain the proposed algorithms, highlighting their respective
applications and strengths in the context of the optimization
problem at hand.

A. lterative Algorithms

The proposed iterative bandwidth allocation (IBA) algo-
rithms use iterative strategies to distribute the available
bandwidth among the nodes so that the maximum possible
bandwidth is used, thereby minimizing the battery consump-
tion of the IoT node. Two different methods are considered to

Calculate how many
nodes can be in the

level

Assign this level to the
nodes obtained and update
the available BW

Proposed initial solution

L J

No

Downgrade of
anode’s level

s the available
BW exhausted or
have you tried all
levels?

" Doesit
_ exceed the S
~ available
~_BW? _—

No Yes
(@ (b)
Fig. 3. Solution search procedure of the IBA algorithms. (a) IDA.
(b) NA.

carry out the bandwidth distribution, the iterative decremental
allocation (IDA) and iterative incremental allocation (ITA)
algorithms. Both IDA and IIA algorithms share the same input,
information about the bandwidth and battery consumption of
each level ordered from highest to lowest consumption in
addition to the WSN characteristics.

1) As represented in the IDAs flowchart [Fig. 3(a)], this
algorithm gradually adjusts an initial solution until the
imposed bandwidth limit is satisfied. In the first step,
it identifies the level with the lowest consumption and
assigns all nodes to that level, thus forming the initial
solution. It then checks whether this allocation exceeds
the bandwidth limit. If it does, the algorithm iteratively
reduces the level of a single node at each iteration, trying
to meet the constraint. The resulting solution ensures
adequate bandwidth distribution without exceeding the
imposed constraint. This process is also described in
Algorithm 1.

2) The IIA algorithm starts with an initial allocation where
no node occupies bandwidth. The adjustment process
is based on dividing the available processing bytes
shared by the BS among the bandwidths of each level.
Starting with the level that occupies the most space, the
algorithm determines the maximum number of nodes
that can operate on it. It then calculates the remaining
available bandwidth and repeats the process for the
next level with the second-highest byte usage. This
sequence continues in descending order of levels until
the available bandwidth is exhausted. The algorithm
employs a greedy strategy to incrementally allocate
bandwidth, optimizing resource usage at each step. The
flowchart in Fig. 3 shows the process followed by this
algorithm.

These iterative algorithms lack the ability to generate
offloading strategies based on the state of the batteries in
the network. Consequently, the execution of this type of
algorithm divides the problem solution into two stages. First,
the algorithm selects the optimal offloading strategy and then
implements it, cyclically switching the levels of each node
to achieve homogeneous network consumption. This process
is repeated each time there is a variation in the available
bandwidth, ensuring optimal redistribution.

26688

IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024

Algorithm 1 Bandwidth Allocation IDA

Ensure: sol: List of the bandwidth allocation with the lowest

consumption

sol <[]

min < None

min_idx < None

: lev_cons < get_consumption(levels)

: for idx, cons in ENUMERATE(lev_cons) do

if (min is None or cons < min) then
min_idx < idx

end if

9: end for

10: sol < n * [levels[min_idx]]

11: if SUM(sol) > BW then

X DN A RN

12: nd <0

13: while suM(sol) > BW do

14: if nd == n then

15: nd <0

16: end if

17: sol < DOWNGRADE_LEVEL(sol, nd)
18: nd < nd +1

19: end while

20: end if

21: return sol

B. Genetic Algorithms

GAs, first introduced by Jh [30], are a type of evolu-
tionary strategy that belongs to the family of nature-inspired
algorithms, which allow finding optimal solutions to complex
problems. There is a wide variety of applications for which
GAs are useful in MEC, one of them being bandwidth
allocation. This can be seen in the study by Al-habob et al.
[31], where they use a GA for scheduling sequential tasks in
a multiserver network.

As depicted in Fig. 4, the foundation of a GA lies in
the definition of chromosomes, as they represent the poten-
tial solutions. Historically, chromosomes were binary-coded.
However, this approach posed limitations, particularly when
addressing continuous optimization problems. To overcome
these limitations, real-coded GAs (RCGAs) emerged. RCGAs
represent solutions as vectors of real numbers, enabling a more
natural and efficient exploration of continuous search spaces.
The transition to RCGAs was motivated by the recognition
that, for many real-world optimization problems, the flexi-
bility and simplicity of using real numbers in chromosome
representation outweighed the constraints imposed by binary
coding [32].

The proposed algorithms are categorized as RCGAs, with
their chromosomes representing the list of bandwidths to be
occupied by each node in the network. In other words, each
chromosome embodies a specific offloading strategy, with its
size corresponding to the number of nodes in the network.
Fig. 5 illustrates the structure of these chromosomes.

The initial population consists of randomly generated chro-
mosomes that evolve through crossover and mutation over
several generations until an optimal solution is reached.
Random generation of the initial population is essential to

Task

GA parameters Levels BW
[bo [by [bs: [o [bui]

Chromosome

Initial
population §
Fitness
New Progenitor
generation selection
\ Crossover /
and mutation

Termination
condition

[Offloading decision]

Fig. 4. Outline of the process followed by the GAs.

(b, [b5, [= [bn,

Fig. 5. Chromosome description.

ensure maximum diversity. However, despite this randomness,
all chromosomes must obey the constraint outlined in (7).
In addition, to maintain said diversity, the population size must
be sufficiently large, a parameter whose selection is considered
in Section V.

The next step is to select the most suitable individuals
for mating, as determined by their fitness level. This fitness
level is assessed using a fitness function, which calculates a
score indicating an individual’s likelihood of reproducing. The
effectiveness of several proposed fitness functions is evaluated
in the following section.

As shown in [33], there are several ways to implement
the selection of the individuals. After considering the various
options, we decided that selection by tournament was best
suited to the problem at hand. The first step in Tournament
Selection is to randomly select a set of individuals. These
individuals are ranked according to their calculated fitness,
and then the fittest one is selected for mating. The number of
individuals selected for each tournament is set to two. Since
the descendants come from the crossing of two parents, this
process is repeated twice for each time a new chromosome is
to be generated.

Once the progenitors have been selected, the mating process
will begin. The mating is done by single-point crossover. For
the problem formulated, none of the solutions must exceed the
bandwidth. Thus, after the generation of the children, they are
checked for compliance with this constraint and the offspring
that do not satisfy it are discarded. The process of selecting
and mating the parents continues until a new generation of the
given population size is obtained.

The last step is mutation. The mutation maintains diversity
in the population, preventing the solution from stagnating at
a local optimum. As in Darwin’s theory, mutation applies
to a random number of individuals. In our algorithms, the
probability of an individual being selected for mutation is an
adjustable parameter. Once an individual has been selected
for mutation, the mutation routine selects a random node

GONZALEZ et al.: APPLICATION OF EVOLUTIONARY, SWARM, AND ITERATIVE-BASED TASK-OFFLOADING OPTIMIZATION

and changes its bandwidth to that of another random level.
The mutated individual may exceed the bandwidth. Given this
case, this individual is discarded and the original individual is
reintroduced into the population. This implies a reduction in
the previously set mutation rate. It has been experimentally
determined that the number of mutations rejected due to
noncompliance with this constraint does not exceed 30%. This
is taken into account in the selection of the GA experimental
parameters, where it has been decided to set a higher value
for the mutation rate to compensate for this effect.

The proposed algorithms incorporate elitism. Elitism is an
operational feature of GAs that provides a means of reducing
genetic drift by ensuring that the best chromosome is passed
without modification to the next generation [34]. In this way,
the best individual of the current generation called the elite
is passed on to the next generation. There are several ways
in which the elite can be incorporated. This article considers
two of them. GA-mean consumption (GA-M) and GA-lifetime
(GA-LT) add the elite to the next generation when the mutation
of its offspring is complete. GA-hybrid (GA-H) replaces
the worst individual in the next generation with the elite.
Furthermore, each of these algorithms uses a different elite
selection criteria.

The new generation completes once elitism has been per-
formed. The number of generations must be large enough
to allow the GAs to reach the best solution and can be
determined empirically. Another option is to add a termination
condition that stops the creation of new generations when a
high percentage of the population satisfies it. To ensure that
the number of generations is sufficient, all three proposed
algorithms have a termination condition that stops the creation
of new generations when more than 80% of the population has
the same fitness.

The solution given by the GAs is the chromosome with the
best fitness in the last generation. In most cases, there will be
more than one individual with the best fitness. Selecting the
final solution from these individuals is similar to selecting the
elite chromosome and is discussed below.

Three different GAs have been developed: GA-M, GA-LT,
and GA-H. These algorithms differ in their fitness functions
and the method used to select the elite individual as summa-
rized in Table II.

GA-M and GA-H prioritize minimizing the average network
consumption as their main objective, defined in (6). Con-
sequently, the best chromosomes have the lowest Fitnessy,.
In GA-LT, a more homogeneous network consumption is
prioritized. The fitness of the chromosomes is set as the
minimum battery capacity the network would require if this
solution were chosen, and following the objective in (8), the
algorithm seeks solutions with higher Fitnessyr.

GA-M and GA-LT employ the same elitism method, where
the first individual in the list with the highest fitness is selected
as the elite and is added directly to the next generation. GA-H
is an update to GA-M that purports to achieve a lower standard
deviation between node batteries by modifying the elitism
method. Instead of selecting the elite as the first chromosome
in the list with the highest fitness, the elite is selected as

26689
TABLE Il
GA SPECIFICATIONS
Algorithm Fitness Function Elitism
P Random chromosome
GA-M Fitness); = ﬁd within the ones with lowest
Fitnessyy
Random chromosome within
GA-LT Fitnesspr = Lt the the ones with highest
Fitnessy
Chromosome with highest L
GA-H Fitnessp; = % within the he ones with lowest

Fitnessyr

the one with the highest minimum network battery among
all individuals with the highest fitness. Additionally, GA-H
replaces the worst individual in the next generation with the
elite of the current one, to get to the best solution faster.

The functional behavior of GAs is different from the one
of iterative algorithms. Instead of only finding a new solution
when the bandwidth is modified, GAs are designed to discover
the best solution for the current network configuration at
each of the execution’s DC. This distinction results from the
compatibility of GAs for dynamic networks, where nodes
possess varying initial battery levels, and the number of
nodes can fluctuate. GA-M and GA-LT are executed through
the two functions represented in Algorithm 2, and GA-H in
Algorithm 3.

Algorithm 2 GA for GA-M and GA-LT

procedure NEXTGENERATION(current Gen, mutation_rate)
fitness_list < GET_ALL_FITNESS(currentGen)
best_idx <—GET_BESTFIT_IDX(fitness_list)
elite <—currentGenlbest_idx]
children <—MATING(currentGen, fitness_list)
nextGen <MUTATE_POPULATION(children, mutation_rate,
elite)
return nextGen
end procedure

procedure
generations)
pop <— GENESIS(popSize)
for i < 1to generations do
pop < NEXTGENERATION(pop, mutation_rate)
fitness_list <~ GET_ALL_FITNESS(pop)
max < None
for numin fitness_list do
if max is None or max < num then
max <— num
end if
end for
index < FIND_INDEX(fitness_list, max)
if len(index) > popSize % cond_fin then
break
end if
end for
best_sol < []
for i < 1tolen(index) do
best_sol.append(poplindex[i]])
end for
return best_sol[0], len(index)
end procedure

GENETICALGORITHM(mutation_rate, popSize,

26690

IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024

Algorithm 3 GA for GA-H

procedure NEXTGENERATION(currentGen, fitness_list,
mutation_rate, elite, elite_fit)
children <—MATING(currentGen, fitness_list)
nextGen <MUTATE_POPULATION(children,mutation_rate)
next_fitness_list < get_all_fitness(nextGen)
worst_idx < get_worstfit_idx(next_fitness_list)
nextGen[worst_idx] < elite
next_fitness_list[worst_idx] < elite_fit
return nextGen, next_fitness_list
end procedure

procedure
generations)
pop < GENESIS(popSize)
fitness_list < GET_ALL_FITNESS(pop)
for i < 1to generations do
elite,elite_fit, repeated <—FIND_ELITE(pop, fitness_list)
pop, fitness_list <«<NEXTGENERATION(pop, fitness_list,
mutation_rate, elite, elite_fit)
if len(index) > popSize x cond_fin then
break
end if
end for
return nextGen, next_fitness_list
end procedure

GENETICALGORITHM(mutation_rate, popSize,

C. Particle Swarm Optimization Algorithms

PSO algorithms, first proposed by Kennedy and Eber-
hart [35] and inspired by the flocking behavior of birds, use
exploration techniques to search for parameters that optimize
a defined objective. Their origin is based on two concepts,
swarm intelligence and evolutionary computation [36].

The operation of PSO algorithms is based on the movement
of a swarm of particles through a D-dimensional search space
to find an optimal solution. The position of each particle
defines a proposed solution. The particles are defined by
a current position vector X; = (xj1, Xi1,...,Xip) and its
current velocity vector V; = (v;1, vi2, ..., Vip), where D is
the number of dimensions [37].

The algorithm starts by randomly initializing V; and
X;. Then, at each iteration, the best position found by
each particle i, Poesy = (Poest;> Poestins - - - » Poesyp) and
the best position found by the whole swarm Gpest =
(Goest; » Goestys - - - » Goestp,) both guide the particle i by
updating its velocity and position using the following
equations:

v, ¢+ =w-v, (1) +Cl-rl- (Pbest,-d () — xi, (t))
+ C2 r2- (Gbestd (t) - xid (t)) (9)
X, @+ D) =x;, @) +v, -+ 1). (10)

1) w: It represents the inertia weight, which controls the
effect of the particle’s current velocity on its new veloc-
ity. Selecting this parameter adjusts the local and global
search capabilities. If w = 0, the new velocity of the
particle is independent of the previous one, this means
there is no memory involved and that it only depends
on the best local and global (Ppes; ¥ Goest)- Conversely,
when w # 0, the tendency of the particle to explore new
positions is inspired. This tendency grows as the value

Best historical offloading Best global offloading
strategy of the particle Strategy of the swarm
Final

Velocity

Current offloading
strategy

Inertial velocity
Fig. 6. Particle’s velocity representation.

of w increases, resulting in longer flight steps. On the
other hand, decreasing w will reduce the flight speed,
causing the particles to focus on local exploration.
The value of inertia weight can be fixed or given a
linearly decreasing weight (LDW). This method encour-
ages global exploration during the first iterations of the
algorithm and shifts the focus to local exploration as the
particles approach the optimal solution. Its implementa-
tion follows the formula:

Wmax — Wmin

W= Wnax — ——— 1
Tmax

(1)

where wmgax 1S the maximum value of the inertia weight
and wpp is the minimum; ¢ represents the current
iteration and Ty.x the total number of iterations.

2) CI and C2: These are the acceleration coefficients and
represent the weight of the stochastic acceleration of
each particle toward its historical best position (Ppest)
and the best global position (Gpegt), respectively. Cl1 is
the cognitive parameter, which represents the maximum
influence of the particle’s best position on its new
velocity, and C2 is the social parameter and indicates
the maximum influence of social information on the new
value of the particle’s velocity (Gpes). Both usually have
values close to two.

3) rl and r2: These are random values between 0 and 1.

Fig. 6 represents graphically how the best local and global
positions affect the calculation of the new velocity of a
particle.

Specific to the problem posed, it is established that each
dimension of the search space corresponds to the bandwidth
occupied by each node in the network, giving a total of D
dimensions, equal to the number of nodes present. Due to the
nature of the problem, the range of values that each dimension
can take is discrete and must coincide with the bandwidth of
each offloading level. In this way, each position in the search
space represents a unique computational offloading strategy,
and the velocities of the particles determine whether the node
increases decreases, or maintains its level.

Being a discrete space, it is necessary to introduce certain
adaptations to the PSO related to updating the positions of
the particles. Velocity values obtained by (9) are not integers
and using them to update the particle positions ((10)) can
result in bandwidths that most probably would not correspond
to any of the predefined levels. To deal with this situation,
a procedure is established whereby, once the new particle
position is obtained, the bandwidth of each node must be
approximated to the nearest available level.

GONZALEZ et al.: APPLICATION OF EVOLUTIONARY, SWARM, AND ITERATIVE-BASED TASK-OFFLOADING OPTIMIZATION

26691

Another essential adjustment when applying PSO is related
to the restraint (7), which states that the sum of the bandwidths
occupied by all nodes in the network must not exceed the
available bandwidth. In the first approach, it was found that if
the new position of a particle exceeded the bandwidth limit, the
calculation of its velocity had to be repeated until this condi-
tion was met. Although this alternative proved satisfactory for
networks with five nodes, as the number of nodes increased,
the algorithm became stuck, preventing the completion of the
execution program. After an exhaustive search for solutions,
an approach was found in the work of [38] that penalizes
the fitness of those particles that do not satisfy the constraint.
This method proved to be very compatible with the problem at
hand. Consequently, it is decided that particles exceeding the
bandwidth constraint will be assigned a fitness of zero. This
approach does not affect either the Ppege or the Gpegt, While
the exploration of the space is unaffected.

Algorithm 4 presents the steps followed by the PSO
algorithms.

Algorithm 4 Particle Swarm Algorithm

1: function PSOalgorithm

2: particles, vel < genesis(num_part_2)

3 part_fitness < get_all_fitness(particles)
4: pBest < [[0] % n]] x num_part_2

5: pBest_fit < [[0] «x num_part_2]|

6: gBest <[]

7 gBest_fit <0

8 for i < 1to generations do

9: w <« Parameters.w—i x (Parameters.w/generations2)
10: for j in [0, num_part_2) do
11: if part_fitness[j] > pBest_fit[j] then
12: pBest[j] < particles|j]
13: pBest_fit[j] < part_fitness[j]
14: end if
15: if part_fitness[j] > gBest_fit then
16: gBest < particles|j]
17: gBest_fit < part_fitness|j]
18: end if
19: end for
20: new_pop <[]
21: new_vel <[]
22: aux < 0
23: while aux < num_part_2 do
24 new_part, new_vel_part <«
get_new_part(particleslaux], vellaux], pBest[aux], gBest, w)
25: new_pop.append(new_part)
26: new_vel.append(new_vel_part)
27: aux < aux + 1
28: end while
29: particles < new_pop
30: part_fitness < get_all_fitness(particles)
31: vel < new_vel
32: end for
33: for i in [0, num_part_2) do
34: if part_fitness[i] > gBest_fit then
35: gBest < particles[i]
36: gBest_fit < part_fitness[i]
37: end if
38: end for
39: return g Best

40: end function

Similar to the GAs, three particle swarm algorithms
have been developed, PSO-mean consumption (PSO-M),

TABLE Ill
PSO ALGORITHMS SPECIFICATIONS

Algorithm Fitness Function
PSO-M Fitnessyr = 54
PSO-LT Fitness; = Lp
PSO-H Fitnessg = A * Fitnesspr + (1 — A) = Fitnesspr

PSO-lifetime (PSO-LT), and PSO-hybrid (PSO-H), whose
differences lie in the way of calculating the fitness of the
particles. All three share the previously defined topology of the
search space and the representation of the particles. Table III
summarizes their fitness functions.

Algorithms PSO-M and PSO-LT are programmed to inves-
tigate whether the space exploration approach of PSO
algorithms offers advantages compared to the evolutionary
process followed by GAs. To this end, it is established that
PSO-M shares the same fitness function as GA-M and GA-H
(Fitnessys) and that PSO-LT shares that of GA-LT (Fitnessy).
That is, in PSO-M, the fitness of a particle coincides with the
average consumption of the network that would result from the
solution proposed by that particle. In the PSO-LT algorithm,
the fitness is the lowest residual battery among the nodes after
executing the task using the strategy contained in the particle.

PSO-H introduces a different way of obtaining the fitness of
particles based on multiobjective optimization. Multiobjective
optimization problems (MOP) involve computing multiple
functions with conflicting objectives. Cui et al. [39] provide a
detailed overview of multiobjective optimization methods and
their application in energy conservation, including trade-off
methods. Trade-off methods involve converting these complex
problems into single-objective problems, which can then be
solved using classical optimization algorithms. To use this
approach, it is necessary to determine the relative importance
of each objective, either by using the weighted sum method
(WSM) beforehand or by using an iterative method during
the search process. After evaluating these methods, the best
strategy for the defined problem is to use a compensation
method based on WSM.

Up to this point, the algorithms have been oriented toward
one of two stated objectives: minimizing the consumption of
the network or maximizing its remaining lifetime. As the simu-
lations will show, the minimization-oriented methodology fails
to achieve a balance in consumption, while the maximization-
oriented methodology achieves a fair distribution, but at the
expense of the average consumption. PSO-H aims to combine
both objectives. The fitness function of PSO-H is based on the
work of Wu et al. [40] and consists of a weighted sum between
the two fitnesses defined by (12), where A is the weighting
factor.

Through empirical experimentation, it has been found that
a lambda value of 0.6 effectively establishes a trade-off
between minimizing battery consumption and controlling stan-
dard deviation. Prioritizing minimization with a lambda value
higher than 0.6 may lead to lower energy use but a higher
standard deviation. Conversely, lower lambda values prioritize
controlling standard deviation, potentially resulting in a more
homogeneous distribution but increased battery consumption.

26692

IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024

While 0.5 might seem like an ideal midpoint between these
objectives, research suggests that a slightly higher value of
0.6 achieves a similar balance. Moreover, it reduces time
complexity by enabling quicker convergence to the optimal
solution. This optimized point ensures efficient energy usage
while maintaining balance, offering a practical compromise
between the two objectives

Fitnessy = A x Fitnessy; + (1 — A) * Fitnessy . (12)

It is important to note that this fitness function was imple-
mented in the GAs. However, the results obtained did not
show any significant improvement concerning the algorithms
defined in this work.

As far as the execution methodology of the PSO algorithms
is concerned, the same procedure is used for the GA algo-
rithms and is detailed in Section V.

V. CONFIGURATION AND PARAMETER SELECTION FOR
EXPERIMENTAL ANALYSIS

Several experiments have been carried out under common
network conditions to test and compare the efficiency of
the implemented algorithms in terms of average battery con-
sumption, standard deviation, and time complexity. Extensive
simulations covering a wide range of network conditions were
performed using a device with a 2.3-GHz Intel Core i5 dual-
core processor and 8 GB of RAM.

The initial phase of establishing the experimental envi-
ronment involved defining the characteristics of the network.
Table IV details the selected parameters for both nodes and the
BS. These parameters are configured based on a Cookie mod-
ular node which comprises a C8051-based processing layer
and a CC2420-based communication layer. Subsequently, it is
necessary to define both the test bench and the parameters
to evaluate the algorithms’ performance. In terms of energy
efficiency, it is decided to measure the average energy con-
sumption of the network. Standard deviation is selected as
a measurement of the homogeneity of the nodes’ batteries.
Standard deviation quantifies the dispersion of values with the
mean, thus providing a solid metric for assessing the fairness
of the energy distribution between nodes.

In addition, measuring the execution time of the algo-
rithms will allow for assessing the feasibility of applying
the algorithms in real-live network environments, where time
complexity is a critical factor. These measures would provide
a comprehensive view of the performance of the algorithms,
generating valuable information for deciding which alternative
to use for a given application.

Concerning the offloading levels, the task has a size of
300 bytes and is divided into two parts in five different
ways corresponding to the five levels in Table I. Each level
contains information about the number of bytes sent to the
BS for processing (bandwidth) and the number of processing
cycles the sensor node needs to process the rest of the task.
As discussed in Section III, for the experiments to represent
conditions close to reality, neither the bandwidth nor the
processing cycles change linearly from one level to the next.
It is worth noting that at level 5, where the node sends the
entire task to the BS, a small amount of local processing of the

TABLE IV
PARAMETERS OF THE NETWORK
Parameter Value
Frequency 8 MHz
Transmission rate (TR) 250 Kbps
Transmission consumption (T¢) 10 mA
Processing consumption (P¢) 4 mA
Battery 12000 mAh

collected data is considered before sending it. This accounts
for the consumption associated with preparing the data for
transmission.

The simulation has a time-based structure defined by a DC,
which symbolizes the maximum time required for the BS to
receive the order to execute a task, determine the appropriate
task-offloading strategy, transmit the instructions to the nodes,
and finally complete the task and send it to the BS. The
simulation program iterates the DC K times, with K being
a configurable parameter.

In developing the algorithms’ execution method,
as described in Section IV, there is a distinction between
iterative and metaheuristic approaches. The distinction comes
from the ability to adapt to the environment inherent to
metaheuristic methods. In contrast, iterative algorithms face
difficulties in considering the state of the nodes’ batteries
in the search for solutions, which could affect the network
lifetime in situations where there is inequality in the nodes’
batteries. As noted above, the operation of the iterative
algorithms only updates the bandwidth allocation when the
available bandwidth changes and then performs the cyclic
switching of this solution to achieve an equal distribution of
consumption, as discussed in Section IV.

The execution strategy followed by the metaheuristic algo-
rithms requests a new bandwidth allocation at each DC,
generated based on the number of nodes and their batteries,
which are updated after each cycle. This way, since the
GAs have variable-length chromosomes and the dimensions
of the search space in the PSO algorithms are an easily
varied parameter, the metaheuristic algorithms can adapt to
any failure in the network’s nodes.

It is important to note that although this dynamic may
affect the ability of metaheuristics to achieve the minimum
standard deviation, it also makes them more attractive in
environments with dynamic networks, where the number of
nodes in the network and their parameters may change during
its lifetime. In addition, when metaheuristic algorithms are
executed with the same method as the iterative algorithms, they
obtain identical average battery consumptions and differ from
the results shown in this work only in the standard deviation
of the batteries, which is zero for all algorithms.

In the light of the above, the following assumptions are
made.

1) The first analysis is done with a 20-node network,
which is extended to 50-100 nodes in the following
experiments.

2) Since the iterative algorithms do not take into account
the state of the network to obtain the offloading strate-
gies, it is decided to start from the most favorable
situation for the iterative algorithms. Therefore, all nodes

GONZALEZ et al.: APPLICATION OF EVOLUTIONARY, SWARM, AND ITERATIVE-BASED TASK-OFFLOADING OPTIMIZATION

26693

have the same initial battery, that of Table IV. Moreover,
in this way, it is possible to see whether the metaheuristic
algorithms can outperform the iterative algorithms when
they compete in the most favorable conditions of the
latter.

3) As previously stated, due to the BS not being exclusively
dedicated to the network, bandwidth is expected to vary
throughout its lifespan. Consequently, a diverse set of
scenarios is considered during the experimental tests,
generating data for 21 different bandwidths. These band-
widths progressively increase from a minimum level,
where only 5% of the nodes can operate at the maximum
sending level (level 5), up to 95.

4) K is set to 100 DCs.

5) The parameters of the genetic and particle swarm algo-
rithms are kept constant throughout the different network
analyses. The purpose of keeping the parameters con-
stant is to assess the scalability of the metaheuristic
algorithms when the network scales. In this way, the
aim is to determine the ability of the algorithms to
maintain the reduction in energy consumption when,
already implemented in a network, the number of nodes
varies.

6) The experimental results are displayed in three different
plots.

a) Mean battery consumption.

b) Standard deviation between the batteries of the
network after the execution for each bandwidth,
to measure the homogeneity of the battery con-
sumption solution.

c) Average execution time of the algorithms.

The calibration of the parameters of the GAs is crucial for
optimal algorithm performance. Gibss et al. [41] propose a
series of methods that attempt to provide insight into how to
set these values. Of those described, the method selected for
this work is trial and error. The assumptions made to establish
the parameters of the GAs are as follows.

1) Population size: The size of the population is a crit-
ical factor in the performance of an algorithm. If the
number of individuals is too small, the algorithm may
prematurely converge to a suboptimal solution. On the
other hand, a large population may lead to unnecessary
computational and resource usage without guaranteeing
improvement in results. After considering this trade-off,
empirical analysis has determined that a population size
of 200 chromosomes is optimal for the problem at hand.

2) Number of generations: The criticality of the number of
generations decreases when a termination condition is
included. The termination condition is set for all GAs
so that the algorithms stop generating new generations
when more than 80% of the chromosomes have the same
fitness or the algorithm has performed 100 generations
to avoid blockages in case the algorithm fails to find the
optimal solution.

3) Mutation rate: The mutation rate on GAs is usually
set to low values, such as 0.01. However, experimen-
tal findings indicate that setting the mutation rate to

0.1 significantly improves the average consumption and
the standard deviation. The value of the mutation rate has
been chosen considering the reduction of the mutated
individuals due to the bandwidth restriction.

As with GAs, the correct choice of parameters is essential
for particle swarm algorithms to achieve their full potential.
The values of the parameters for the PSO algorithms are as
follows.

1) Particle number: The correct choice of the number
of particles is crucial for optimal performance. There
is no universal range for the number of particles,
as this value varies with the type and complexity of
the algorithm. However, many works follow the sug-
gestion on [35]. They recommend using a population
size between 20 and 50 particles. Piotrowski et al. [42]
explore the impact of swarm size on the performance
of several variants of the PSO algorithms. This work
concludes that the range of 20-50 particles is relatively
small for new variants of PSO, which typically require
larger populations of 70-500 particles. After carrying out
the corresponding tests with the presented algorithms
and considering their greater similarity to the classical
PSO, it is concluded that a population of 20 particles
adequately satisfies the stated objectives.

2) Number of generations: As with GAs, the importance
of the number of generations is reduced significantly
by incorporating a termination condition. The same
condition has been chosen for the PSO, stopping the
execution when more than 80% of the particles are in
positions with the same fitness or when the algorithm
has completed 100 generations.

3) Inertia weight, w: As discussed in Section IV-C, the
inertia weight can either take a constant value or be
varied as a function of an LDW as shown in 11. The
second approach has been shown experimentally to be
more efficient. Therefore, w is determined to gradually
decrease in value from 1.2 to 0.6 over the iterations of
the PSO.

4) Cognitive parameter (Cl) and social parameter (C2):
The acceleration constants, C1 and C2, are set to 1.9
and 0.3, respectively. Empirical experimentation reveals
that lowering exploration (C1) can trap the algorithm in
local optima in the considered rugged search space while
increasing exploitation (C2) does not enhance algorithm
performance.

VI. ANALYSIS AND INTERPRETATION OF EXPERIMENTAL
OUTCOMES

A. Mean Consumption Results

The average consumption results of the eight algorithms,
simulated across various bandwidths on networks with 20, 50,
and 100 nodes, are presented in Fig. 7. Notably, distinguishing
between GA-M and GA-H in all plots is challenging due to
their nearly identical average consumption, attributed to both
algorithms sharing the same fitness function.

In contrast, comparing the maximum and minimum average
consumption values shown in Fig. 7(b), with the consumption

26694

IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024

Mean Battery Consumption

Mean Battery Consumption

Mean Battery Consumption

[I |
70 B ‘ ~&- PSO-M 70 x\‘ ~&- PSO-M 70 B —8— PSO-M
R —+ PSO-T \ —+— PSO-LT N —+ PSO-T
'\ —#— PSO-H N —#— PSO-H '\I —#— PSO-H
] GA-M GA-M N GA-M
— 60 — 60 — 60
32 i GA-LT 2 '\I GA-LT 32 GALT
E | - GAH £ \ —m- GAH E \ —#- GAH
550 '\ i ‘ — DA 5 50 & ! — DA 5 s0 \\ — DA
8 1A 3 ! A g A
E £ § 1 £
2 N | 2 - 2 "
£ 40 - i ‘ £ 40 iy i S 40
S 8 * S
> A §§ ‘ S A, §§\ S '\‘\N"EE
g %ﬁ\ g g =
£ 30 Q.;\ £ 30 - £ 30 T
2 NN a 2
D
2 NN i N " N
'\}*\y ™ AR
¢ > i]
PAOO OO OO P PP OO DD0N PN O O PRAODL A PRAD AP AL DAL O DA PORLELESESEN LIRSS RPL PP
NP A AR GGV AT A S AV R A A O VA AN 107NV o8 V0 VS 67 4 A7 V60 AV oS N Ao D& A D A AT S A O A AD (0 SRS
OO QTN DA AR AN A DT 70 S Y VDA DR P @AY P R DI SR G ISR SO AR IS A e o
Bandwidth (Bytes) Bandwidth (Bytes) Bandwidth (Bytes)
(a) (b) (©

Fig. 7. Average consumption results for networks with varying available bandwidth. (a) 20 Nodes. (b) 50 Nodes. (c) 100 Nodes.

that would be obtained without offloading (all nodes at level 1),
we obtain a relative percentage difference ranging from 4.24%
to 134.5%, respectively. These results confirm that computa-
tional offloading has the potential to be a strategic method to
decrease battery consumption in WSNs.

The IDA algorithm outperforms the rest when the bandwidth
is lower than 8175 bytes in the case of networks with 50 nodes.
This value represents a bandwidth in which 55% of the nodes
could be in level 5. The same result is obtained for 20- and
100-node networks, indicating that IDA’s bandwidth allocation
method works best when bandwidth is limited but becomes
less effective as bandwidth increases.

The cause of the lower performance of IIA for lower
bandwidths relies on its bandwidth allocation method. In the
solutions proposed by this algorithm, there is a higher prob-
ability of having nodes at level 1, which is the one with the
highest consumption. For example, focusing on the results
for a 50-node network with a bandwidth of 4800 bytes, IIA
proposes a solution where two nodes occupy 200 bytes and
the rest 90 bytes at each DC, giving an average consumption
of 37.62 mAs not using the total available bandwidth. On the
other hand, ITA proposes that 16 nodes occupy the maximum
bandwidth, 300 bytes, and the rest compute the whole task
locally leading to an average consumption of 58.872 mAs.
This means that IDA’s consumption is 37% lower than IIA’s
even though the latter uses the entire available bandwidth.
Therefore, achieving a fair bandwidth distribution is more
important than prioritizing the usage of the whole bandwidth.
The fact that the consumption of IIA improves with increasing
bandwidth, thereby making the distribution performed by this
algorithm more homogeneous, corroborates this observation.

In the case of the metaheuristic algorithms, it is noticeable
that, except for GA-LT and PSO-LT, they follow a decreasing
trend very close to linearity and tend to improve the IDA
algorithm as the bandwidth increases.

To appreciate the differences more precisely, the graph in
Fig. 8 is generated. It represents the division of the average
consumption of IDA by PSO-H (the best metaheuristic) of
the 50-network results. A value lower than one indicates that
the consumption generated by IDA is greater than that of
PSO-H, and when it is greater than one, the opposite is true.
Focusing on the values, the minimum point of this graph
(0.797) indicates that IDA reduces the consumption generated
by IDA by 22.6% compared to PSO-H for this bandwidth,
while the maximum shows that PSO-H achieves consumption

Mean Battery Consumption of IDA divided by PSO-H's
28

S
/

15

1.4

13

12

11

%

1.0

™~

0.9

L~

A

»
$
W

0.8

o $» o o S o)
@ o o) \J AN el o
A Y o & A ' NQ,L

Bandwidth (Bytes)
Fig. 8. 50-Node network: mean battery consumption of IDA divided by
PSO-H.

Mean Battery Consumption of PSO-H divided by PSO-M's

15

14

13

12

11

1.0

0.9

0.8

0.7

0.6

L O PO
o N o
PR

PN A

SN o

O 5

ISP S
AT A

PO PO P OP O PND L O O
S DS F A S Q7 6”49
7D V7 @G O A AL Q7 PN
WA T P P @ P

Bandwidth (Bytes)

Fig. 9. 50-Node network: mean battery consumption of PSO-H divided
by PSO-M.

39% lower than IDA when the bandwidth is greater, which
is a considerable improvement. The same process has been
followed for the networks with 20 and 100 nodes and the
results are practically identical.

GA-LT and PSO-LT, the algorithms whose fitness is the
network lifetime, lose linearity as the number of nodes and
bandwidth increases and stagnates above a certain bandwidth.
Raising the number of nodes adds complexity to the solutions,
and higher bandwidths expand the search space, making the
exploration of the solution more complex and causing the
algorithms to lose efficiency. Consequently, they get stuck in a
local-optimal solution and begin to plateau. The primary factor
contributing to the stagnation of local optima in evolution-
ary algorithms is parameterization. Since the parameters are
constant for all the algorithms, it can be inferred that the GA-
LT and PSO-LT algorithms demonstrate diminished scalability
compared to others. Furthermore, these findings can serve as
a reference for determining when to modify the algorithm
parameters. For instance, in a network consisting of 50 nodes,

GONZALEZ et al.: APPLICATION OF EVOLUTIONARY, SWARM, AND ITERATIVE-BASED TASK-OFFLOADING OPTIMIZATION 26695
Standard Deviation Standard Deviation Standard Deviation
2.0 4.0 4.0
—e— PSO-M —e— PSO-M —e— PSO-M
3s —+— PSO-LT 35 —+— PSO-LT 35 —+— PSO-LT
—#— PSO-H ~#— PSO-H i ~#- PSO-H
GAM GAM GAM
3.0 GALT 3.0 GALT 3.0 GALT
< / - GAH < = GAH < = GAH
525 —< DA 525 —< IDA :,-32-5 —< IDA
g nA g l\I A g, 1A
2.0 T 2.0 —4 2.0
T T T '
5] - I~] = = F"<‘
%15 \(Z : §15 ’"4:’\' Mo 21.57’}
8 - S 8 T~< = '\\-] —e
1.0 \“ﬁ/l\' 1.0 — | VA \ 10— "/\«l\qu
= L
| R\ | TN L et
05 N 05 =g - 1 05 - |
et L]] t HTW A A {
PR O A AR A A S e e e = = B 0.0 4s s s NS 0.0 4 e s
PO O OO OO OO PO POODDO0P LD P S OO RAORLORADELAD PADD AP AL PO PPN LIRS PSRN PO
0 0 PSSP P 3 S S P S S é& x@“ 5;" 0’9&“ Q"?\;f’ L PP x“& &“ i”dﬁ N«,“i«?f’ \«@@&’,ﬁ."?&‘i@i&pﬁ’ﬁ@?ﬁ‘”@
Bandwidth (Bytes) Bandwidth (Bytes) Bandwidth (Bytes)
(@) (c)

Fig. 10. Standard deviation results for networks with varying available bandwidth. (a) 20 Nodes. (b) 50 Nodes. (c) 100 Nodes.

adjusting the parameters would not be necessary if it is not
expected that the BS could share more than 10 875 bytes.

The primary objective of metaheuristic algorithms incor-
porating fitness lifetime is not explicitly geared toward
reducing the average consumption. Consequently, the mean
consumption outcomes for these algorithms are relatively
inferior compared to alternative metaheuristics. Nonetheless,
within this subset, PSO-LT exhibits superior performance than
GA-LT.

Similarly, metaheuristic algorithms incorporating fitness
mean consumption exhibit analogous trends. Within this sub-
set, it is noticeable that PSO-M achieves a lower consumption
profile compared to GA-M and GA-H. This observation sug-
gests that PSO algorithms have a greater resilience against
becoming entrapped in local suboptimal solutions.

Finally, the results obtained for the PSO-H are worth
highlighting. The graph shows that the PSO-H line is very
close to the GA-M, GA-H, and PSO-M lines. The graphs in
Fig. 9 are obtained using the same comparison procedure as
IDA and PSO-H. The results indicate that PSO-H, which has
a weighted fitness function in which the average consumption
weights 60%, obtains values that do not exceed 5.6% of those
algorithms whose fitness is represented exclusively by the
average consumption of the network. The graphs for 20- and
50-node networks are very similar with even lower maximum
values.

B. Standard Deviation Results

Fig. 10 illustrates the standard deviation results. Across
the three networks, each graph exhibits three distinguishable
ranges: iterative algorithms in the lower range, metaheuristics
with medium consumption fitness in the upper range, and
metaheuristics employing the network’s lifetime as fitness,
along with PSO-H, in the middle range.

The iterative algorithms have zero standard deviation, which
is an expected result since the execution method of these
algorithms forces this zero deviation.

The metaheuristics with the fitness set as average consump-
tion have the highest standard deviation. GA-M and PSO-M
do not include an explicit selection logic to maximize the
network’s lifetime. However, GA-H does when selecting the
elite individual, so a lower standard deviation is expected when
compared to GA-M, which is to some extent true for most
bandwidths, although the difference is relatively small. On the
other hand, the PSO-M has the lowest deviations in this range.

They follow a trend where the standard deviation increases
in the first few bandwidths and then decreases relatively
steadily. The fact that level 1 occupies O bytes of bandwidth
explains why at first, with low bandwidth, many nodes are
limited to that level, generating a low standard deviation.
As bandwidth increases, some nodes may move up to higher
levels, but still many remain at level 1, increasing variability
and standard deviation.

The transition in the slope around bandwidth 4500 in
networks of 50 and 9000 in networks of 100 coincides with
the point where all nodes can occupy level 2, which requires
90 bytes of bandwidth. This explains the change in the trend,
as there is now sufficient capacity for all nodes to access
level 2, increasing the homogeneity of the solutions.

As bandwidth continues to increase, nodes have more space
to spread out over higher levels, which decreases dispersion
and contributes to more homogeneous solutions in terms of
average consumption.

Finally, metaheuristic algorithms that calculate their fitness
as the network’s lifetime occupy an intermediate range close
to that of the iterative ones. This indicates that the algorithms
meet their objective satisfactorily. The most outstanding result
is that of PSO-H, which weights the average lifetime of the
network by 0.4 and achieves values very close to PSO-LT and
GA-LT.

While examining the results across different simulated
networks, a noticeable trend emerges: as the number of
nodes increases, there is a corresponding rise in the obtained
values. This apparent escalation could be attributed to the
surge in complexity during the search for solutions. The
substantial increase in the number of nodes, coupled with the
unchanged algorithm parameters, heightens this complexity.
It is essential to highlight that this decision to maintain fixed
parameters aims to emulate a realistic scenario where nodes
are incrementally added to an existing network. Consequently,
these findings underline a critical consideration: to ensure
sustained efficiency, there should be an adaptation of algorithm
parameters when undergoing a substantial expansion in the
number of nodes.

C. Time Complexity Results

Time complexity is a crucial variable when considering
the feasibility of implementing an algorithm. This factor
defines the working cycle along with the maximum number of
tasks the network would be capable of executing. The results

26696

IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024

Average Time Complexity per Simulation Iteration Average Time Complexity per Simulation Iteration

Average Time Comp\exlty per Simulation Iteration
‘ | ‘ ‘ ‘] —e— PSO-M
—#— PSO-LT 1.0 —#—= PSO-LT
~#— PSO-H ~#— PSO-H
020 GAM GA-M
GALT 0.8 GA-LT
~#- GA-H
—<— IDA
0.6 A

0.25 1 —— PSO-M ‘

Time (s)

]
—e— PSO-M

- PSO-LT
—#— PSO-H

Time (s)
H

N

b

HHHH

M M e J e

E

I
9 S0 0 O IR S oS $ 0
@Q’\b‘\‘b‘)’}%k”‘)ﬁ) IS o ’LQ
S0 ST D PN A7 WP S h
Bandwldth (bytes)

(2)
Fig. 11.

presented in Fig. 11 illustrate the average time the proposed
algorithms have required to reach the optimal solution at each
DC. The results will be discussed comparatively since runtime
is closely related to the characteristics of the BS’s processor.
Additionally, in the case of metaheuristics, the convergence
to optimal solutions presents some randomness. This inherent
variability in metaheuristics can influence runtime, as the
search process does not follow a deterministic path.

In light of the lower complexity of iterative algorithms
compared to metaheuristics, the results indicate a higher tem-
poral efficiency of the former. In the domain of metaheuristic
algorithms, their complexity increases with the bandwidth
across all three networks, this increment varies considerably
from one algorithm to another. For instance, in simulations
conducted on 50-node networks, the time complexity of GA-M
increases by 318% when the bandwidth escalates from 750 to
14250 bytes. In contrast, the PSO-H algorithm maintains a
stable value throughout the bandwidths and experiences an
increase of 14%.

To analyze the effect of increasing the number of nodes
in the algorithms, if we compare the extreme case within a
network, that is, the algorithms working with the maximum
bandwidth tested, we observe that the execution time increases
by a factor of 9.4 when increasing the number of nodes
from 20 to 100, with the GA-LT algorithm experiencing the
greatest increase among all the algorithms. On the contrary,
in the case of PSO-M, it has the smallest increase with
a value of 4.6. In general terms, it is observed that GA
algorithms increase their time complexity to a greater extent
than PSO algorithms. This may be related to the fact that
there are fewer fluctuations in the values of these algorithms
compared to the GAs.

The constancy in the average runtime of the PSO algorithms
suggests the possibility that they do not reach the termination
condition, resulting in all experiments completing the same
number of generations. This phenomenon is closely related to
the adaptations made in the search space to ensure compli-
ance with the bandwidth restriction. However, as detailed in
Section VI-A, it has been found that, despite these adaptations,
PSO algorithms manage to obtain solutions that generate lower
consumption compared to GAs.

D. Selection Guidelines

The selection of the most suitable algorithm for a given
application depends on the characteristics of the network and
the main objective to be achieved with the application of task

AT HHHHHL MPzantll

Bandwidth (bytes)

o Ny S o
S LR P L PSP PSS
S «f’ &P PP F LSS
Bandwidth (bytes)

(©

Time complexity results for networks with varying available bandwidth. (a) 20 Nodes. (b) 50 Nodes. (c) 100 Nodes.

offloading. Among the proposed algorithms, some outperform
others in certain aspects at the cost of lower performance
in others. To visualize the strengths and weaknesses of each
of the algorithms and thus facilitate their selection for each
application, a comparative evaluation based on a scoring
system is carried out.

The assessment of the algorithms involves the evaluation of
five key aspects: their suitability in dynamic network contexts,
average consumption, standard deviation, execution time, and
adaptability to an increase in the number of network nodes.
Each of these aspects is assigned a score on a scale from one
to eight. Table V presents the results of this assessment, where
the following criteria are applied.

1) The scoring process for algorithms in terms of aver-
age consumption, standard deviation, and execution
time follows a systematic ranking system. First, the
results of the algorithms for each bandwidth of a
given network are arranged from best to worst. Initial
scores are then assigned in descending order, ranging
from 8 to 1 points. In instances of tied performance
among algorithms—where multiple algorithms exhibit
very similar results—the tied group collectively receives
the highest score within that group. The subsequent
algorithm in the original ranking retains its initially
assigned score. This scoring procedure is iterated for
each considered bandwidth, and the final score for each
algorithm across a specific network is determined by
calculating the average.

2) Algorithms that consider the state of the batteries to
generate solutions were given a score of 8, indicating
their suitability for use in dynamic network contexts.
Conversely, those that do not take this aspect into
account received a score of 1 for this criterion.

3) Scalability has been scored so that the algorithms that
maintain their tendencies throughout the different net-
works obtain eight points, PSO-LT and GA-LT are given
four points since they begin to stagnate on 50-node
networks and GA-M and GA-H received seven points
because they stagnate on the final bandwidths on the
100-node network.

The results shown in Table V depict the average scores derived
from three networks. The total count of the points obtained
by each algorithm is carried out in a way that ensures
equal weight is given to each of the evaluated aspects. The
algorithms that have obtained the highest scores within each
category are highlighted in the table. These results underline

GONZALEZ et al.: APPLICATION OF EVOLUTIONARY, SWARM, AND ITERATIVE-BASED TASK-OFFLOADING OPTIMIZATION

26697

TABLE V
ALGORITHMS SCORE
IDA' TIA GA-M GA-LT GA-H PSO-M PSO-LT PSO-H

Dynamic network 1 1 8 8 8 8 8 8
Mean Consumption 57 23 6.6 23 6.6 7.6 3 6.3
Standard deviation 8 8 1.8 52 2 2.5 59 52
Execution time 8 8 1 39 2.6 5.1 59 4.7
Scalability 8 8 7 4 7 8 4 8
Total 307 273 244 234 26.2 31.2 26.8 322
PSO-M
PSO-LT

Mean Consumption —e— PSO-H

== GA-M

memm GA-LT

GA-H
mem IDA
== IIA

Standard deviation

8‘ Dynamic network

Execution time

Scalability

Fig. 12. Selection guidance chart of the task-offloading algorithms.

the overall outperformance of the multiobjective implementa-
tion of the PSO-H algorithms.

Furthermore, in addition to being used to evaluate the algo-
rithms, observations of algorithm performance under different
bandwidth conditions provide valuable insight into the pre-
deployment sizing of the network and BS. An understanding
of the behavior of the algorithms with different bandwidths
can help determine the optimal number of nodes based on
the bandwidth range of the selected edge device to ensure the
network’s longevity. Similarly, knowing the range in which
the network’s node count will fluctuate can establish the band-
width range needed to ensure the durability of the network.
In turn, this would guide the selection of an appropriate edge
device capable of providing these characteristics.

VIlI. CONCLUSION AND FURTHER RESEARCH

This work examines the benefits of task offloading in
resource-constrained WSNs. The primary goal is to reduce
node battery consumption by partially or completely transfer-
ring computation tasks to a BS. Empirical results indicate that
even the least efficient offloading strategy demonstrates a sig-
nificant reduction in energy consumption, affirming the overall
efficacy of task offloading. Evaluation of the different algo-
rithms emphasizes the role of selecting strategies tailored to
specific application objectives. However, when considering all
the evaluated aspects, the multiobjective approach of the PSO-
H algorithm is particularly noteworthy. This study provides
a valuable roadmap for implementing offloading in WSNs,
with future research poised to refine and adapt these strate-
gies in response to the dynamic landscape of technological
demands.

The study’s contributions extend beyond demonstrating the
efficacy of task offloading on WSN and underscore the impor-
tance of strategic selection aligned with specific application
goals. The multiobjective approach of the PSO-H algorithm
emerges as a notable contribution, providing a promising
direction for implementing offloading strategies in WSNs.

As discussed in [43], artificial intelligence (AI) and machine
learning (ML) methods have the potential to play an essential
role in decision-making in environments where task offloading
is applied. In particular, reinforcement learning, a branch of
Al, could be a powerful tool in this area. These methods could
be very useful to consolidate and analyze the results obtained
in our current research. Moreover, they could pave the way for
the development of an intelligent tool capable of selecting the
most suitable computational offloading strategy according to
the provided network parameters. This perspective opens up
new possibilities to automate and optimize decision-making in
the context of task offloading in WSNs, thus improving their
efficiency and performance.

REFERENCES

[1] J. Wang, M. K. Lim, C. Wang, and M.-L. Tseng, “The evolution of the
Internet of Things (IoT) over the past 20 years,” Comput. Ind. Eng.,
vol. 155, May 2021, Art. no. 107174.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”
Future Generat. Comput. Syst., vol. 29, no. 7, pp. 1645-1660, 2013.

[3] J. Portilla, G. Mujica, J.-S. Lee, and T. Riesgo, “The extreme edge at the
bottom of the Internet of Things: A review,” IEEE Sensors J., vol. 19,
no. 9, pp. 3179-3190, May 2019.

[4] C. M. Fernindez, M. D. Rodriguez, and B. R. Mu noz, “An edge
computing architecture in the Internet of Things,” in Proc. IEEE 21st
Int. Symp. Real-Time Distrib. Comput. (ISORC), May 2018, pp. 99-102.

[5] J.Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Comput. Netw., vol. 52, no. 12, pp. 2292-2330, Aug. 2008.

[6] L. Wang, H. Shao, J. Li, X. Wen, and Z. Lu, “Optimal multi-user
computation offloading strategy for wireless powered sensor networks,”
IEEE Access, vol. 8, pp. 35150-35160, 2020.

[7]1 A. Arora et al., “A line in the sand: A wireless sensor network for target
detection, classification, and tracking,” Comput. Netw., vol. 46, no. 5,
pp. 605-634, Dec. 2004.

[8] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Netw. Appl., vol. 18, no. 1,
pp- 129-140, Feb. 2013.

[9]1 P. Merino, G. Mujica, J. Sefior, and J. Portilla, “A modular IoT
hardware platform for distributed and secured extreme edge computing,”
Electronics, vol. 9, no. 3, p. 538, 2020.

[10] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450465,
Feb. 2017.

[11] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” [EEE
Commun. Surveys Tuts, vol. 19, no. 4, pp. 2322-2358, Aug. 2017.

[12] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795-2808, Oct. 2016.

[13] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. Signal Inf. Process. Netw., vol. 1, no. 2, pp. 89-103,
Jun. 2015.

[14] D. Xu et al., “A survey of opportunistic offloading,” IEEE Commun.
Surveys Tuts., vol. 20, no. 3, pp. 2198-2236, 3rd Quart., 2018.

[15] M. A. Khan, “A survey of computation offloading strategies for perfor-
mance improvement of applications running on mobile devices,” J. Netw.
Comput. Appl., vol. 56, pp. 28-40, Oct. 2015.

[16] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
Enabling remote computing among intermittently connected mobile
devices,” in Proc. 13th ACM Int. Symp. Mobile Ad Hoc Netw. Comput.,
2012, pp. 145-154.

26698

IEEE SENSORS JOURNAL, VOL. 24, NO. 16, 15 AUGUST 2024

[17] M. H. U. Rehman, S. L. Chee, T. Y. Wah, A. Igbal, and P. P. Jayaraman,
“Opportunistic computation offloading in mobile edge cloud computing
environments,” in Proc. 17th IEEE Int. Conf. Mobile Data Manage.
(MDM), vol. 1, Jun. 2016, pp. 208-213.
F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,
“Computation offloading and resource allocation for low-power IoT edge
devices,” in Proc. IEEE 3rd World Forum Internet Things (WF-IoT),
Dec. 2016, pp. 7-12.
F. Xu, H. Ye, F. Yang, and C. Zhao, “Software defined mission-critical
wireless sensor network: Architecture and edge offloading strategy,”
IEEE Access, vol. 7, pp. 10383-10391, 2019.
P. Rong and M. Pedram, “Extending the lifetime of a network of battery-
powered mobile devices by remote processing: A Markovian decision-
based approach,” in Proc. 40th Design Autom. Conf., 2003, pp. 906-911.
[21] Z. Li and Q. Zhu, “Genetic algorithm-based optimization of offloading
and resource allocation in mobile-edge computing,” Information, vol. 11,
no. 2, p. 83, 2020.
S. Fu, C. Ding, and P. Jiang, “Computational offloading of service
workflow in mobile edge computing,” Information, vol. 13, no. 7, p. 348,
Jul. 2022.
H. R. Lourenco and D. Serra, “Adaptive search heuristics for the gener-
alized assignment problem,” Mathware Soft Comput., vol. 9, nos. 2-3,
pp. 1-3, 2002.
T. Zheng, J. Wan, J. Zhang, C. Jiang, and G. Jia, “A survey of
computation offloading in edge computing,” in Proc. Int. Conf. Comput.,
Inf. Telecommun. Syst. (CITS), Oct. 2020, pp. 1-6.
A. Islam, A. Debnath, M. Ghose, and S. Chakraborty, “A survey on task
offloading in multi-access edge computing,” J. Syst. Archit., vol. 118,
Sep. 2021, Art. no. 102225.
Q. Shi, X. Wang, W. Chen, and K. Hu, “Optimal sensor placement
method considering the importance of structural performance degrada-
tion for the allowable loadings for damage identification,” Appl. Math.
Model., vol. 86, pp. 384—403, Oct. 2020.
Q. Shi, K. Hu, L. Wang, and X. Wang, “Uncertain identification method
of structural damage for beam-like structures based on strain modes with
noises,” Appl. Math. Comput., vol. 390, Feb. 2021, Art. no. 125682.
C. Yang and H. Ouyang, “A novel load-dependent sensor placement
method for model updating based on time-dependent reliability opti-
mization considering multi-source uncertainties,” Mech. Syst. Signal
Process., vol. 165, Feb. 2022, Art. no. 108386.
M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, “Metaheuristic
algorithms: A comprehensive review,” in Computational Intelligence for
Multimedia Big Data on the Cloud With Engineering Applications. New
York, NY, USA: Academic, 2018, pp. 185-231.
H. Jh, Adaptation in Natural and Artificial Systems. Ann Arbor, MI,
USA: MIT Press, 1975.
A. A. Al-habob, O. A. Dobre, and A. Garcia Armada, “Sequential task
scheduling for mobile edge computing using genetic algorithm,” in Proc.
IEEE Globecom Workshops (GC Wkshps), Dec. 2019, pp. 1-6.
F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis,” Artif. Intell.
Rev., vol. 12, no. 4, pp. 265-319, 1998.
K. Jebari and M. Madiafi, “Selection methods for genetic algorithms,”
Int. J. Emerg. Sci., vol. 3, no. 4, pp. 333-344, 2013.
C. W. Ahn and R. S. Ramakrishna, “Elitism-based compact genetic
algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 4, pp. 367-385,
Aug. 2003.
[35] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. Int.
Conf. Neural Netw. (ICNN’), vol. 4, 1995, pp. 1942-1948.
[36] J. Blondin. (2009). Particle Swarm Optimization: A Tutorial. [Online].
Available: http://cs.armstrong.edu/saad/csci8100/psotutorial.pdf
W. Chuanjun, W. Ling, and R. Xuejing, “General particle swarm
optimization algorithm,” in Proc. IEEE 2nd Int. Conf. Electr. Eng., Big
Data Algorithms (EEBDA), Feb. 2023, pp. 1204-1208.
Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez,
and R. G. Harley, “Particle swarm optimization: Basic concepts, variants
and applications in power systems,” IEEE Trans. Evol. Comput., vol. 12,
no. 2, pp. 171-195, Apr. 2008.
Y. Cui, Z. Geng, Q. Zhu, and Y. Han, “Multi-objective optimiza-
tion methods and application in energy saving,” Energy, vol. 125,
pp. 681-704, Apr. 2017.
F. Wu, X. Fu, P. Lang, J. Dong, Z. Cui, and X. Gao, “Cognitive
radar waveform design based on multi-objective optimization criteria,”
in Proc. 7th Int. Conf. Signal Image Process. (ICSIP), Jul. 2022,
pp. 172-176.

(18]

[19]

[20]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[37]

[38]

[39]

[40]

[41] M. S. Gibbs, H. R. Maier, G. C. Dandy, and J. B. Nixon, “Minimum
number of generations required for convergence of genetic algorithms,”
in Proc. IEEE Int. Conf. Evol. Comput., Jul. 2006, pp. 565-572.

A. P. Piotrowski, J. J. Napiorkowski, and A. E. Piotrowska, “Population
size in particle swarm optimization,” Swarm Evol. Comput., vol. 58,
Nov. 2020, Art. no. 100718.

S. Iftikhar et al., “Al-based fog and edge computing: A systematic
review, taxonomy and future directions,” Internet Things, vol. 21,
Apr. 2023, Art. no. 100674.

[42]

[43]

Paula Gonzalez received the B.Sc. degree in
industrial technologies engineering from the Uni-
versidad Politécnica de Madrid (UPM), Madrid,
Spain, in 2023, where she is currently pursu-
ing the M.Sc. degree in industrial electronics
engineering.

She has been collaborating for one year with
the Center of Industrial Electronics Research-
ing Energy-Saving Strategies in the Internet of
Things (loT). Her research interests focus on
studying novel optimization methods for task
offloading in wireless sensor networks and loT.

Gabriel Mujica (Member, IEEE) received the
Ph.D. degree in industrial electronics engineer-
ing from the Universidad Politécnica de Madrid
(UPM), Madrid, Spain, in 2017.

He is an Associate Professor and a Research
Member at the Center of Industrial Electronics,
Universidad Politécnica de Madrid (CEI-UPM),
where he is mainly involved in the area of
Internet of Things (loT), networked embedded
systems, and wireless sensor networks (WSNs).
He has participated in different national and
European research projects (including Horizon 2020 Projects), related
to the development and optimization of WSN, as well as the integration
of heterogeneous loT edge hardware, software, and communication
technologies for wireless distributed systems, with a particular focus on
the performance evaluation and optimization of sensor platforms under
real deployment contexts. He has collaborated in the organization of
research tutorials and seminars and as a reviewer and guest editor in
international conferences and indexed journals. Moreover, his visiting
research stay at the Trinity College Dublin, Dublin, Ireland, strengthened
the vision and applicability of loT technologies for smart and sustain-
able cities, leveraging collaborations in the area of distributed systems
within such contexts. He has authored several contributions in high-
impact conferences and journals. Currently, his main research interests
are related to multihop distributed networks for the extreme edge of
10T, hardware-software co-design and communication protocols for loT
embedded systems in smart urban and industrial application scenarios.

Dr. Mujica received the International Distinction and Outstanding Doc-
torate Award for his Ph.D. degree.

Jorge Portilla (Senior Member, IEEE) received
the M.Sc. degree in physics from the Univer-
sidad Complutense de Madrid, Madrid, Spain,
in 2003, and the Ph.D. degree in electronic
engineering from the Universidad Politécnica de
Madrid (UPM), Madrid, in 2010.

He was a Visiting Researcher with the Indus-
trial Technology Research Institute, Hsinchu,
Taiwan, in 2008, and also with the National
Taipei University of Technology (Taipei Tech),
Taipei, Taiwan, in 2018, working on wireless
sensor networks hardware platforms and network clustering techniques.
He is currently an Associate Professor with the Universidad Politécnica
de Madrid. He has participated in more than 30 funded research
projects, including European Union FP7 and H2020 projects, and Spain
Government funded projects, as well as private industry funded projects,
mainly related to wireless sensor networks and the Internet of Things.
He has numerous publications in prestigious international conferences
as well as in journals with impact factor. He carried out his research
activity within the Centro de Electrénica Industrial, belonging to the
UPM. His research interests are focused on wireless sensor networks,
the Internet of Things, digital embedded systems, and reconfigurable
FPGA-based embedded systems.

