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A Temperature Monitoring Method for Sensor
Arrays Based on Temperature Mapping and

Improved Mask R-CNN
Zuoxun Wang , Chuanyu Cui , Jinxue Sui, Yong Zhang, and Changkun Guo

Abstract—Temperature monitoring of sensor arrays is
indispensable for ensuring the stable operation of the entire
sensor system. This article presents a novel method (TISM)
for sensor array temperature monitoring based on temper-
ature mapping and an enhanced Mask region-convolutional
neural network (R-CNN) framework. Initially, the method
establishes a robust mapping correlation between sensor
temperature data and spatial coordinates, thereby facilitat-
ing precise data acquisition and strategic rule formulation
through a temperature qualification protocol. Subsequently,
employing subarray analysis, the temperature data are struc-
tured into a matrix and transformed into a temperature heat
map. The thermal image is further refined using interpolation
techniques to enhance the accuracy and stability of the
monitoring system. Additionally, an improved Mask R-CNN
model is proposed, enabling effective target recognition and
feature extraction from the temperature thermogram, thereby
facilitating the extraction of temperature state information.
Ultimately, sensor temperature states are determined based
on color discrepancy and temperature mapping, thus achieving the objective of sensor array temperature monitoring.
The method was compared with artificial neural network temperature prediction (ANNTM), phase-shifted grating, and
photoelectric oscillation temperature monitoring (MPTM). Comparison indicators include comprehensive temperature
prediction effect, accuracy, stability, and monitoring range. Notably, the proposed method attains a prediction accuracy of
97.13%, showcasing substantial improvements over ANNTM in terms of mean deviation and standard deviation by 25.89%
and 1.91%, respectively. Furthermore, compared to MPTM’s limited monitoring range of 490 ◦C-495 ◦C, the proposed
method offers a significantly broader monitoring scope. Moreover, in terms of integrated temperature prediction for
the sensor array, the proposed approach exhibits superior performance with smaller prediction errors, closely aligning
with actual temperature values. Experimental validation corroborates the effectiveness of the proposed method, thereby
underscoring its promising potential for real-time temperature monitoring of sensor arrays in practical applications.

Index Terms— Color discrepancy, improved Mask region-convolutional neural network (R-CNN), smoothing, subarrays,
temperature heatmap, temperature mapping.

I. INTRODUCTION

SENSOR arrays play a pivotal role in various domains
of modern technological advancements [1], [2], [3], [4],
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[5], encompassing key sectors such as industrial automation,
intelligent robotics, healthcare, environmental monitoring, and
the Internet of Things (IoT). These arrays are structured to fur-
nish comprehensive information support for decision-making
and system optimization by deploying multiple sensors across
diverse locations, thus offering efficient solutions for smart
development. Notably, temperature monitoring within sensor
arrays stands out as a fundamental technology within sensor
applications. It serves as the cornerstone for ensuring the
stable operation of sensor arrays, enhancing system safety,
and advancing equipment intelligence. In recent years, both
domestic and international scholars have proposed numerous
innovative methods and models to advance the field of sensor
array temperature monitoring.
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Wei et al. [6] proposed a temperature monitoring technol-
ogy based on artificial neural networks (ANNs). It utilizes
average sea surface temperature (SST) and anomalous data
SST to train convolutional neural networks and integrates
deep neural networks to reduce temperature-monitoring errors.
However, this method requires a large amount of labeled data
and exhibits poor monitoring robustness in the presence of
temperature perturbations and high temperature bursts, as well
as limited adaptation to dynamically changing temperature
environments. In contrast, the method presented in this arti-
cle establishes a mapping relationship between temperature
data and location information to provide accurate data and
rule strategies, thus circumventing the need for extensive
labeled training data and enhancing monitoring robustness
and sensor fault judgment accuracy. Tu et al. [7] introduced
a temperature monitoring system with phase-shifting grating
and photoelectric oscillation. It has the characteristics of high
sensitivity, noncontact, and real-time performance. However,
it is restricted to high-temperature monitoring, with a lim-
ited range between 490 ◦C and 495 ◦C. In contrast, the
method proposed in this article offers a wider temperature
monitoring range and broader applicability. Verma et al. [8]
and Thiyagarajan et al. [9] introduced feasible methods to
monitor human body temperature through sensors. Although
the flexible, wearable skin temperature-monitoring sensor pro-
posed in the article offers advantages such as single-use and
simple preparation, it suffers from long response times and
risks accuracy degradation in high-temperature environments.
Moreover, its applicability is limited to human body tem-
perature monitoring and cannot be extended to sensor array
temperature monitoring. Lee et al. [10] proposed a wafer tem-
perature monitoring system based on a surface acoustic wave
(SAW) temperature sensor array. However, it fails to consider
sensor position information and target identification. In con-
trast, this article proposes a monitoring method that integrates
location information, achieving higher prediction accuracy
and a wider monitoring range through model improvements.
Peng et al. [11] proposed a technology using fiber optic
sensors for temperature monitoring of lithium-ion batteries.
The technology has high sensitivity and accurate temperature
monitoring. Nevertheless, issues such as restricted installation
locations, poor stability, and high production costs are noted.
In contrast, the method proposed in this article realizes more
accurate monitoring with a wider monitoring range and places
greater emphasis on long-term stability, enhancing practicality.
Chen et al. [12], Atallah et al. [13], Badar et al. [14], and
Caputo et al. [15] also gave different temperature monitoring
methods.

Most of the above methods use sensors or sensor arrays
to implement temperature-monitoring applications and apply
them in a certain field. The temperature monitoring of the
sensor or sensor array itself is not involved, so it is easy to
cause misjudgment. At the same time, their monitoring effects
will also be restricted by the different placement positions
of the sensor arrays. A single location layout cannot balance
the relationship between location and temperature, affecting
monitoring accuracy. Robustness and monitoring range still
need to be improved.

To overcome the above shortcomings, in this work, a sensor
array temperature monitoring method based on temperature
mapping and improved Mask region-convolutional neural net-
work (R-CNN) is proposed. This method starts from the sensor
array itself and focuses on its own temperature monitoring.
Overcome the limitations of a single layout with multipoint
monitoring. Taking the temperature monitoring inside the auto-
matic loading and unloading truck as the application scenario,
the technology upgrade is completed because the temperature
inside the carriage is restricted by the temperature required
by the cargo. If the goods are fresh meat or dairy products,
the temperature of the carriage should generally be controlled
below 0 ◦C. Therefore, real-time monitoring of the temperature
inside the vehicle compartment is crucial. However, due to
the complexity of the vehicle compartment structure, the
monitoring effect of the sensor array is severely restricted by
its location. Therefore, traditional monitoring methods are not
suitable for applications in this field. This method overcomes
the above shortcomings and achieves accurate monitoring of
the temperature of the vehicle compartment through the layout
of the optical fiber temperature sensor array on the inner
wall of the vehicle compartment. It not only solves location
constraints but also improves monitoring effects.

Fiber optic temperature sensors use optical principles to
determine the ambient temperature by measuring changes
in optical signals in optical fibers at different temperatures.
Because it is soft and bendable and the optical signal trans-
mission speed is very fast, it can adapt to the complex structure
inside the car, and the data can be quickly transmitted to the
central processing unit for analysis. Therefore, choosing an
optical fiber temperature sensor is an important guarantee for
providing real-time temperature monitoring. The fiber type
of the sensor is single-core multimode, and the fiber core
is 62.5 µm. The optical fiber coating is 125 µm, and the
bending radius is greater than 60 mm. The pulling force
under dynamic conditions reaches 200 N, and the pulling force
under static conditions is 100 N. The fiber diameter is 3 mm.
The prediction accuracy can reach ±0.5 ◦C of full scale. Its
temperature monitoring range can reach between −400 ◦C
and 1500 ◦C. When the temperature is lower than −400 ◦C,
the optical fiber system will turn on the light-emitting diode
(LED) to make the fluorescent temperature measurement sys-
tem work; therefore, its temperature measurement range is
wider. When multiple optical fiber temperature sensors are
arranged in an array on the inner wall of a truck com-
partment, they can simultaneously monitor the temperature
at different locations in the compartment and transmit the
data to the central processing unit. Through analysis and
integration of these data, the interior of the compartment
can be monitored and controlled in real-time temperature
status.

The actual monitoring application diagram is shown in
Fig. 1.

The main contributions of this work are as follows.
1) A mapping relationship between temperature data and

location information is established. Combine temperature data
with sensor location to provide accurate data information and
rule policies.
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Fig. 1. Actual monitoring application diagram.

2) A monitoring method that comprehensively considers
sensor location information is proposed. Through sensor subar-
ray expansion and temperature heat map analysis, the balance
of position and temperature is completed with multipoint
monitoring.

3) An improved Mask R-CNN model is designed. Tar-
get recognition and feature extraction of specific areas are
achieved to form a differential temperature image. This method
of temperature mapping combined with target recognition
brings new ideas and solutions to the field of sensor array
temperature monitoring.

This article is organized as follows.
Step 1: Establishment of a sensor array, acquisition of

temperature data, and position information of the sensor array.
Subsequently, a mapping relationship between the two and a
temperature-mapping rule are established.

Step 2: Creation of sensor subarrays. The temperature data is
matrixed and transformed into a temperature heat map through
matrix analysis and library function conversion. Smoothing of
the temperature heat map is achieved via interpolation.

Step 3: Expansion of the sensor subarray to cover the entire
sensor array. The same operations as Step 2 are performed to
obtain a smoothed temperature thermogram.

Step 4: Improved Mask R-CNN model (DLM Mask
R-CNN). The smoothed temperature thermogram serves as
the input layer for target recognition and feature extraction in
specific regions, resulting in a differential temperature image.

Step 5: Calculation of the color difference degree of the
differential temperature image using the Euclidean distance in
the Commission Internationale d’Eclairage (CIE) Lab∗ color
space.

Step 6: Filtering of the color difference degree according to
the established temperature mapping rules. Sensor determina-
tion of normal and abnormal temperatures in the sensor array
is accomplished based on the mapping relationship.

Step 7: Validation of the effectiveness of the proposed
method through experimental analysis, comparing it with
traditional temperature monitoring methods.

These steps collectively form a comprehensive approach for
temperature monitoring of sensor arrays, ensuring the stable
operation of the sensor array and the overall system.

II. RELATED WORK

A. Information Settings and Temperature Mapping Rules
A sensor array is an ensemble and system of multi-

ple sensors working together. It overcomes the drawbacks

of data limitations of individual sensors and increases the
dimensions of observation applications. Ultimately, it real-
izes high-precision and high-resolution environmental sensing
and data acquisition. This article takes the scale 10 ×

10 sensor plane array as the research object. In-depth tech-
nological innovation to complete the technological upgrading
to realize the temperature-monitoring task of the sensor
array. Set up the sensor array matrix, which is used to
represent each sensor element. Sensor = [s1,1, . . . , . . . ;
s1,10; . . . s10,1, . . . s 1,10] defines the position information
of each sensor element. The position matrix is denoted as
Psensor = [p1,1, . . . , p1,10; · · · ; p10,1, . . . , p10,10]. Setting the
initial temperature data matrix of the sensor array: Tsensor =

[T1,1, . . . , T1,10; · · · ; T10,1, . . . , T10,10]. Where sensor, Psensor
Tsensor are all of size 10 × 10. If the temperature of the sensor
array changes, then there is T1,1 ⇒ T1,1 ± 1T1,1, T1,2 ⇒

T1,2 ± 1T1,2, . . . . . . , T10,10 ⇒ T10,10 ± 1T10,10. The update
rule is as follows:

Qb
s ⇒


T1,1 = T1,1 ± 1T1,1

T1,2 = T1,2 ± 1T1,2

· · · · · ·

T10,10 = T10,10 ± 1T10,10

(1)

where Qb
s is the temperature data matrix after a temperature

change occurs in the sensor array. T1,1, T1,2, . . . , T10,10 is
the temperature of each sensor element before the temper-
ature change. 1T1,1, 1T1,2, . . . ,1T10,10 is the amount of
change corresponding to each sensor element. From (1), the
updated temperature data are expressed as follows: Qb

s =

[T1,1, . . . , T1,10; · · · ; T10,1, . . . , T10,10], where b represents the
number of changes, and 1T1,1, 1T1,2, . . . ,1T10,10 indicates
the amount of change each time. Therefore, their values are not
fixed. Now, let us establish the mapping relationship between
the sensor array position matrix Psensor and the temperature
matrix Tsensor. This relationship is expressed as a bijection
relationship. According to the correspondence law f , there is
a one-to-one correspondence between sensor array position
and temperature, denoted as f : {Psensor(rand, rand) ⇔

Tsensor(rand, rand)}, where rand is an integer satisfying 1 ≤

rand ≤ 10. Typical sensors operate in the temperature range of
[−40 ◦C, 85 ◦C]. Some high-temperature-resistant sensors can
reach a higher temperature tolerance range, such as improved
fiber Bragg grating temperature sensor (PS-FBG) temperature
sensors constituting the temperature monitoring system, which
achieves a temperature monitoring range between 490 ◦C and
495 ◦C. We establish the temperature setting range of the sen-
sor array, denoted as [k1, k2]. The amount of each temperature
change is Tchange, and the maximum threshold of temperature
change is |Tmax|. Therefore, the normal temperature change of
the sensor array should satisfy the following two conditions.

1) The magnitude after each temperature change should
always be within the range of [k1, k2]. In other words, k1 ≤

Trand,rand ≤ k2.
2) The magnitude of each temperature change should be less

than the maximum threshold for temperature change. That is,
Tchange < |Tmax|.
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Fig. 2. 5 × 5 sensor subarrays.

Then the remaining cases that do not satisfy both conditions
1) and 2) are recognized as temperature anomaly states. Based
on the above information, we set up the position informa-
tion and temperature data of the sensor array. The mapping
relationship between the two is established. The temperature
mapping rules are defined.

B. Analysis of Sensor Subarrays
A subset of the original sensor array is selected, consisting

of a 5 × 5 array of sensors. Rapid prototyping and testing
are conducted on this smaller subset before implementing
the model on the entire sensor array. This approach not
only reduces computational burden but also ensures cor-
rect functionality and expected outcomes. Subsequently, the
methodology is scaled up to larger sensor arrays. The design
of the subarray is illustrated in Fig. 2. The initial temperature
of this subarray is set. Since the primary focus of this article is
on the temperature monitoring method rather than temperature
acquisition, the temperature dataset used in this study is
artificially set. Six sets of temperature data are collected from
the subarray.

Now let Q0
s = Tsensor. Q0

s is equivalent to the initial temper-
ature data matrix Tsensor. The remaining five subtemperature
matrices are denoted as Q1

s , Q2
s , Q3

s , Q4
s , Q5

s . Defined

E0
H =

 e1·

...

e5·

 ⇒


∑5

i=1 e1i − min (e1·)
...∑5

i=1 e5i − min (e5·)

 (2)

where E0
H is the primary pressure drop matrix. e1·, . . . , e5·

are all row vectors with one row and five columns. i is a
constant. e1i is the i th element in e1·, and min(e1·) is the
smallest element in e1·. Define the secondary pressure drop
matrix

E1
H =

 e1·

...

e5·

 ⇒


∑5

i=1 e1i · (max (e1·) − min (e1·))
...∑5

i=1 e5i · (max (e5·) − min (e5·))

 (3)

where E1
H is the secondary voltage drop matrix. max(e1·) is

the largest element in e1.

After the primary and secondary buckling process, at this
point the buckling matrices E0

H and E1
H are both of size 5 ×

1. They follow the following rules:

H =

α1
...

α5

 ⇒

 E0
H (1, 1) /E1

H (1, 1)
...

E0
H (5, 1) /E1

H (5, 1)

 (4)

where H has size 5 × 1. α1, . . . , α5 are all row vectors
with one row and five columns. E0

H (1, 1) is the element
in row 1 and column 1 of E0

H , that is, E0
H (1, 1) =

e1·. E0
H (1, 1)/E1

H (1, 1) is the ratio of e1· in E0
H to

the corresponding element of e1· in E1
H . Now define

E0
H = [e1·, . . . , e5·]

T
= [Q0

s (1·), . . . , Q0
s (5·)]T . E1

H =

[e1·, . . . , e5·]
T

= [Q0
s (1·), . . . , Q0

s (5·)]T . They become the
new E0

H and E1
H after the buckling processes of (3) and (4).

The final matrix formed by Q0
s after the buckling process is

denoted as H0

H0 =

α1
...

α5

 =

 E0
H (1, 1) /E1

H (1, 1)
...

E0
H (5, 1) /E1

H (5, 1)

 (5)

where H0 is a matrix of size 5 × 1. Similarly, Q1
s , Q2

s , Q3
s , Q4

s ,
and Q5

s buckled to obtain H1, H2, H3, H4, and H5, respec-

tively. Define C0 = [
H0 · ξc

ξc
], C1 = [

H1 · ξc
ξc

], C2 =

[
H2 · ξc

ξc
], C3 = [

H3 · ξc
ξc

], and C5 = [
H5 · ξc

ξc
]. Modeling

normalized constraints

β0 · C0 + β1 · C1 + · · · + β5 · C5 = 0

Q0
n = diag (ξc, ξc, . . . , ξc) ·

(
β0 · Q0

s + β1 · Q0
s

+ · · · + β5 · Q0
s

)
Q1

n = diag (ξc, ξc, . . . , ξc) ·

(
β0 · Q1

s + β1 · Q1
s

+ · · · + β5 · Q1
s

)
· · · · · ·

Q5
n = diag (ξc, ξc, . . . , ξc) ·

(
β0 · Q5

s + β1 · Q5
s

+ · · · + β5 · Q5
s

)

(6)

where C0, C1, C2, C3, C4, and C5 are the expansion matrix.
β0, β1, β2, β3, β4, and β5 are the constraint factors of the
expansion matrix. Q0

n, Q1
n, Q2

n, Q3
n, Q4

n , and Q5
n are the tem-

perature matrix after constraints. diag is a diagonal matrix.
The ξc is the equilibrium branching parameter

β0 · C0 + β1 · C1 + · · · + β5 · C5

= β0

[
H0 · ξc

ξc

]
+ β1

[
H1 · ξc

ξc

]
+ · · ·+

β5

[
H5 · ξc

ξc

]
=

[
H0 · ξc · β0

ξc · β0

]
+

[
H1 · ξc · β1

ξc · β1

]
+ · · · +

[
H5 · ξc · β5

ξc · β5

]
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where

β0 = [ E0
H · · · E1

H ]
T
[ ∣∣Q0

s − Q1
s
∣∣ 0

0
∣∣Q0

s − Q5
s
∣∣ ]
 E0

H
...

E1
H

 ·

β1 =
[

E0
H · · · E1

H

]T
[ ∣∣Q1

s − Q0
s
∣∣ 0

0
∣∣Q1

s − Q2
s
∣∣ ]
 E0

H
...

E1
H

 .

The rest are analogous. The normalized constraint model
ensures that the temperature matrix is branch limited in
compression. Establish a normalized compression system and
construct an auxiliary matrix

K 0
γ =


Q0

n(1,1)

max(Q0
n)

· · ·
Q0

n(1,5)

max(Q0
n)

· · · · · · · · ·

Q0
n(5,1)

max(Q0
n)

· · ·
Q0

n(5,5)

max(Q0
n)

 , K 1
γ =


Q0

n(1,1)

max(Q1
n)

· · ·
Q1

n(1,5)

max(Q1
n)

· · · · · · · · ·

Q1
n(5,1)

max(Q1
n)

· · ·
Q1

n(5,5)

max(Q1
n)



K 2
γ =


Q2

n(1,1)

max(Q2
n)

· · ·
Q2

n(1,5)

max(Q2
n)

· · · · · · · · ·

Q2
n(5,1)

max(Q2
n)

· · ·
Q2

n(5,5)

max(Q2
n)

 , K 3
γ =


Q3

n(1,1)

max(Q3
n)

· · ·
Q3

n(1,5)

max(Q3
n)

· · · · · · · · ·

Q3
n(5,1)

max(Q3
n)

· · ·
Q3

n(5,5)

max(Q3
n)



K 4
γ =


Q4

n(1,1)

max(Q4
n)

· · ·
Q4

n(1,5)

max(Q4
n)

· · · · · · · · ·

Q4
n(5,1)

max(Q4
n)

· · ·
Q4

n(5,5)

max(Q4
n)

 , K 5
γ =


Q5

n(1,1)

max(Q5
n)

· · ·
Q5

n(1,5)

max(Q5
n)

· · · · · · · · ·

Q5
n(5,1)

max(Q5
n)

· · ·
Q5

n(5,5)

max(Q5
n)


where K 0

γ , K 1
γ , K 2

γ , K 3
γ , K 4

γ , and K 5
γ are an auxiliary matrix.

Q0
n(1, 1) is the element in row 1 and column 1 of Q0

n .

max(Q0
n) represents the largest element in Q0

n

Hl1 =

5∑
m=1

5∑
n=1

K l1
γ (m, n) (7)

where Hl1 is a constant. l1 is an integer in [0, 5]. K l1
γ (m, n)

is the element of the mth row and nth column in K l1
γ . Both m

and n are constants. Then the normalized temperature matrices
are denoted as Q0

p, Q1
p, Q2

p, Q3
p, Q4

p, and Q5
p. They satisfy

Ql1
p (m, n) =

K l1
γ (m, n)

Hl1
(0 ≤ l1 ≤ 5, 1 ≤ m ≤ 5, 1 ≤ n ≤ 5)

(8)

where Ql1
p (m, n) is the element of the mth row and nth

column in Ql1
p . Then Q0

p, Q1
p, Q2

p, Q3
p, Q4

p, and Q5
p at this

point are the temperature matrix compressed to between
0 and 1. Normalization of the temperature matrix ensures
comparability between temperature readings from different
sensors and eliminates errors caused by numerical differences.
Second, normalized temperature values in the range 0–1 facil-
itate visual interpretation and integration with other metrics.
This is the basis for accomplishing digital temperature image
conversion through library functions. It improves the overall
effectiveness and usability of the monitoring system.

Based on the above information, the temperature data matrix
is converted into a temperature heat map. The temperature heat
map is shown in Fig. 3. The converted temperature thermo-
gram also needs to be smoothed. There are many commonly

used interpolation methods, such as bilinear interpolation,
cubic spline interpolation, and Kriging interpolation. In this
method, we use Kriging interpolation.

This is due to the remarkable smoothness of Kriging
interpolation when dealing with temperature matrices. It is
an interpolation model based on statistical principles. The
interpolation method takes into account the properties of
spatial temperature variability. It effectively balances the effect
of neighboring points by semivariance function and weight
calculation. It makes the interpolation results present a contin-
uous and smooth character in the whole matrix region. This
smoothness helps to estimate the temperature of the target
point more accurately. Especially when spatial variability
exists, it provides a more reliable depiction of the temperature
field. It is known that Q0

p, Q1
p, Q2

p, Q3
p, Q4

p, and Q5
p. Set the

temperature traversal function, which is used to characterize
the surrounding sensor locations of the target sensor

Z (pD, pτ ) = (po − pD) (po − pτ ) · p+
o + pD · (po − pτ )

· p−
o + pτ · (po − pD) · p↑

o + pD · p↓
o · pτ (9)

where Z(pD, pτ ) is the temperature traversal function. pD and
pτ are the positions of any two sensors other than the target
sensor. po is the target sensor position. p+

o , p−
o , p↑

o , and p↓
o are

the immediate neighboring sensors above and below the left
and right of the target sensor, respectively. If the immediate
neighboring sensors do not exist, make them zero. Create the
exponential semi-variance function in Kriging interpolation

C (Z (pD, pτ )) = σ 2
· exp

(
−

(
Z (pD, pτ )

ϖ

)φ
)

(10)

where C(Z(pD, pτ )) is the semivariance function, which is
used for spatial variability between sensor arrays. σ 2 denotes
the variance. ϖ is the interpolation range parameter. φ is the
shape parameter. The adjustment of these parameters increases
the smoothness of the temperature thermogram and makes it
easier for feature extraction. In the interpolation smoothing
process, a new coordinate grid is generated in order to generate
a set of uniformly distributed coordinate points in the target
region for interpolation. This ensures that the interpolation
results have reasonable estimates throughout the region.

The position matrix of the sensor array is known: Psensor =

[p1,1, . . . , p1,10; · · · ; p10,1, . . . , p10,10]. The position matrix
of the selected sensor subarray can be expressed as Psensor =

[p1,1, . . . , p1,5; · · · ; p5,1, . . . , p5,5]. Define the coordinate
network of the interpolated region to form a network region
of size R × C . The specific generation method is as follows:

xnew,i = xmin + i ·
xmax − xmin

R − 1
(11)

ynew, j = ymin + j ·
ymax − ymin

C − 1
(12)

where xmax, xmin, ymax, and ymin are the maximum and min-
imum coordinates of the original position, respectively. i and
j are constants, respectively. xnew,i and ynew, j denote the
coordinates of the newly generated position. R is the length
of the network area and C is the width of the network area.

xmax, xmin, ymax, and ymin are determined by spatial variabil-
ity in temperature. This is done as follows. The variability in
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Fig. 3. Temperature heat map. (a)–(f) Six different temperature heat maps.

temperature space is analyzed with the help of C(Z(pD, pτ )).
Any two points in the network region are selected and the
quantization process is as follows:

C (Z (pD, pτ ))

= σ 2
·

(
1 − exp

(
−

(
Z (pD, pτ ) · T kd

ϖ

)φ
))

(13)

where T kd is the temperature difference between any two
points in the network area. The corresponding C(Z(pD, pτ ))

is obtained from the temperature difference between different
points. C(Z(pD, pτ )) trend is analyzed and the appropriate
difference range parameter (ϖ) is determined to ensure that
the interpolation results have accuracy and continuity through-
out the monitoring region. Set the area threshold to γthreshold.
If the semivariance function of two points is greater than this
threshold, then the temperature difference between the two
points is considered to be a neighboring point. Determine other
neighboring points in the same way.

1) Select a neighboring point and calculate the temperature
difference between it and the other points. The points
with the maximum and minimum temperature difference
are noted as datum points (psd1 and psd2).

2) For each neighboring point, determine the set of semi-
variable functions (kvary) for the neighboring points
around it. These sets contain all functions less than
γthreshold. Semivariable functions that are common
between sets and sets and are smaller than γthreshold are
defined as new sets (knew

vary).
3) xmax = xrand, where xrad is the average horizontal

coordinate of the point corresponding to the largest value
after psd1 is added to knew

vary to form a new set.
4) xmin = xran, where xran is the average level coordinate

of the point corresponding to the smallest value after
psd2 is added to knew

vary to form the new set.
5) ymax = yrad, where yrad is the average vertical coordinate

of the point corresponding to the largest value after psd1
is added to knew

vary to form a new set.
6) ymin = yran, where yran is the average vertical coordinate

of the point corresponding to the smallest value after
psd2 is added to knew

vary to form a new set. Based on the
above information, the exact values of xmax, xmin, ymax,
and ymin are determined.

The newly generated position is added to the coordinate
network of the interpolated region and is continuously updated
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in this way. The method provides uniformly distributed target
points for the interpolation region. This allows the interpola-
tion function to be estimated accurately at these points. The
calculation of the interpolation is satisfied

Z inter (0 ≤ l1 ≤ 5) = Ql1
p · C (Z (pD, pτ ))

R∑
i=1

C∑
j=1

(
xnew,i

−Hl1
) (

ynew, j − Hl1
)

(14)

where Z inter is the interpolation calculation function. During
the interpolation smoothing process, we focus on adjust-
ing the key parameters of the Kriging interpolation model.
These parameters include the variance parameter σ 2, the
interpolation range parameter ϖ , and the shape parameter
φ. The variance parameter influences the overall smoothness
of the interpolation, while the interpolation range parameter
controls the extent to which neighboring points affect the
target point. The shape parameter affects the sensitivity of
the interpolation function to neighboring points. Adjusting
these parameters enables the model to more accurately adapt
to the global and local characteristics of the actual data,
resulting in optimized interpolation of the temperature matrix.
This leads to a more precise and smoother estimation of
the temperature distribution. After completing the temperature
matrix smoothing, the subarray temperature thermogram is
depicted in Fig. 4 as P1−P6. Subsequently, the sensor subarray
of size 5 × 5 is extended to the entire sensor array, as shown
in Fig. 5. The smoothed temperature thermogram is obtained
using the same procedure. In the sensor array of size 10 × 10,
24 different temperature thermograms are generated, denoted
as P1 − P24. These thermograms illustrate the temperature
variations, as shown in Fig. 6.

C. Construction of DLM Mask R-CNN Model
Mask R-CNN is an instance segmentation model that

builds upon the Faster R-CNN architecture. It enhances target
recognition and achieves accurate pixel segmentation for each
instance by incorporating additional branching networks. The
improved Mask R-CNN model (referred to as DLM Mask
R-CNN) proposed in this article extends the original Mask
R-CNN model with an adaptation layer, a data enhancement
module, and a color difference degree loss function (referred
to as C-Loss). The architecture of the DLM Mask R-CNN
model is illustrated in Fig. 7. The working principle of DLM
Mask R-CNN is as follows.

The smoothed and processed temperature thermogram of the
sensor array is used as the feature input to the system. First
is the adaptation layer. The functions of the adaptation layer
include preprocessing, normalizing, and resizing the input
images to match the input requirements of the model. Thus,
it mainly ensures that the model can effectively learn and pro-
cess the temperature information in subsequent layers for more
accurate target detection and segmentation tasks. The final
output is the adaptation result. The inputs Resnet101 backbone
network and feature pyramid network (FPN) are used for
primary feature map extraction immediately afterward. The
extracted primary feature map F1 completes the secondary
feature map extraction through the data enhancement module,

the attention mechanism module, and the open pose module,
respectively. Among them, the data enhancement module
improves the robustness of the model by introducing diverse
temperature scene transformations. It enables the model to
learn and extract temperature features more efficiently to cope
with the noise in temperature variations. The open pose mod-
ule generates the temperature key point heat map convolutional
block attention module (CBAM) attention mechanism for
maximum pooling CBAM consists of two parts. They are tem-
perature channel attention module (T-CAM) and temperature
spatial attention module (T-SAM). The above part performs the
convolution of the feature map with maximum pooling and
average pooling. The important features of the temperature
heat map are extracted. Subsequently, these feature maps
are fed into the region of interest (ROI) of the DLM Mask
R-CNN network model. Finally, classification and regression
processes are performed using multilayer convolution, class
box, and mask branching. Significant temperature difference
image is generated. CLoss is the color difference degree loss
function. It consists of CLoss1, CLoss2, and CLoss3. These
are the stage loss functions of color variability loss function
in processing. The color difference degree loss function is used
to measure the difference between the output features of the
model and the input features. The DLM Mask R-CNN is now
analyzed in detail.

1) Basic Mask R-CNN Network: The basic Mask R-CNN
network comprises four components: feature extraction, candi-
date region network, ROI alignment layer, and task branching.
Feature extraction typically employs a pretrained backbone
network to extract rich semantic features from the input image.
The candidate region network is responsible for generating
potential target candidate frames. The ROI alignment layer
performs precise ROI pooling operations to map candidate
frames of different sizes onto a fixed-size feature map. Finally,
the task branch encompasses the target detection branch and
the segmentation branch, responsible for predicting the bound-
ing box of the target and generating an accurate mask of the
target, respectively. This structure enables Mask R-CNN to
conduct target detection and instance segmentation simultane-
ously, providing comprehensive semantic and precise spatial
information for each detected target. The loss function of Mask
R-CNN mainly consists of three parts: Losscls, Lossbox, and
Lossmask.

2) Adaptation Layer: After inputting the features, the first
thing that comes in is the adaptation layer. Let X in be a number
of temperature thermograms for the input. In this article,
24 sheets are used as an example. The feature is separated.
X in = P1 + · · · + P24. Xout is the output of adaptation and
the adaptation result is output. The output adaptation result
is denoted as X in1, X in2, . . . , X in24. Ada is the adaptation
function. Then the adaptation process can be expressed as

Xout = Ada (X in) (15)

where Xout is the adapted output. Ada is the adapta-
tion function. X in is the input of several temperature
heat maps. The output adaptation results are expressed as
X in1, X in2, . . . , X in24. X in = P1 + · · · + P24.

The purpose of the adaptation layer in the DLM Mask
R-CNN is to standardize temperature thermograms of varying
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Fig. 4. Thermogram of temperature after smoothing treatment. (a)–(f) Six different temperature heat maps after smoothing.

Fig. 5. 10 × 10 sensor array. (a) Planar distribution of the sensor array. (b) Expansion of six temperature changes to 24 temperature changes.

sizes, resolutions, or feature dimensions into the format
required by the model. This ensures that the network can accu-
rately process different types of data, essentially preprocessing
the initial image.

3) Data Augmentation Module: In DLM Mask R-CNN, the
data augmentation module plays a crucial role by randomly
transforming and expanding the primary feature map, thereby
increasing data diversity. This augmentation enhances the
model’s generalization capability and mitigates overfitting,
ultimately improving the performance of temperature mod-
eling across various scenarios. The module operates through
three phases, namely, the affine phase, the nonlinear distortion
phase, and the complex noise injection phase. The exploded
view of the data enhancement module is shown in Fig. 8. The
three stages are expressed as

Xaug1 = AT (X ina−24, M1)

Xaug2 = N D (X ina−24, αN , βN )

Xaug3 = ICN (X ina−24, αI , βI )

(16)

where AT, ND, and ICN represent the affine function, nonlin-
ear distortion function, and complex noise injection function,
respectively. Xaug1, Xaug2, and Xaug3 represent the image data
after processing in their respective stages. X ina1−24 refers to
any one of the image features output by F1. M1 represents the
affine transformation matrix. αN and βN are parameters of the
nonlinear aberration. αI and βI represent the standard devia-
tion and intensity of the noise measure, respectively, enabling
simulation of various noise sources in temperature images.
After the stage transformation, classification and training of
the features are completed, and the results are output.

4) Color Variability Loss Function (CLoss): The color differ-
ence degree loss function is introduced in DLM Mask R-CNN
with three components: CLoss1, CLoss2, and CLoss3. The
principle is to guide the model to capture the color information
of the target more accurately by comparing the color features
of the mask generated by the model with the actual target.
CLoss1 focuses on the average value of the colors. CLoss2
focuses on the contrast of the colors. CLoss3 focuses on
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Fig. 6. (a)–(x) Thermogram of 24 different temperatures of the sensor array.

Fig. 7. DLM Mask R-CNN model architecture diagram.

the uniformity of the color. This combination of overall
characteristics of color, contrast, and uniformity improves the
model’s ability to perceive the color of the target. The model
is depicted as follows:

CLoss = λc1 · CLoss1 + λc2 · CLoss2 + λc3 · CLoss3 (17)

where CLoss is the color difference loss function. λc1, λc2,
and λc3 are all weighting factors. They control how much each
component contributes to the overall loss. CLoss1, CLoss2, and
CLoss3 are the color difference loss functions of each part.

5) Improved CBAM Module: The CBAM introduced in DLM
Mask R-CNN is improved to incorporate the features of
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Fig. 8. Data enhancement module.

temperature monitoring. It includes T-CAM and T-SAM. T-
CAM and T-SAM are described specifically in the following.

T-CAM uses temperature information to weight different
channels of the feature map to highlight temperature-related
features. It works by calculating the average temperature
weights for each channel and then applying these weights to
the feature maps of the corresponding channels. This helps
the network to focus more on features related to tempera-
ture changes. The process can be modeled by the following
equation:

TCAM =
(
Tpict (x, y) , αCAM

)
=

∫
∞

−∞

∫
∞

−∞

Ftemp · Fchannel
(
Tpict (x, y) , αCAM

)
dtds

(18)

where TCAM = (Tpict(x, y), αCAM) denotes the weighted
result of the αCAMth channel at image Tpict(x, y). The binary
integration represents the binary integration of the entire
temperature distribution. It covers both spatial and temporal
scales. Ftemp represents a function of the temperature distri-
bution. It describes the distribution of temperature weights
at different points in time. Fchannel(Tpict(x, y), αCAM) rep-
resents the response value of the feature map at position
Tpict(x, y), the αcamth channel. The procedure is to compute
the weighted result TCAM(Tpict(x, y), αCAM) for the αcamth
channel at position Tpict(x, y) by double integrating the
temperature distribution Ftemp and the feature map channel
response Fchannel(Tpict(x, y), αCAM).

T-SAM by considering temperature information at different
locations. The feature maps are spatially weighted to highlight
areas associated with the temperature distribution. It works by
calculating the temperature weights for each spatial location
and then applying these weights to the feature maps at the
corresponding locations. The process can be modeled by the
following equation:

TSAM =
(
Tpict (x, y) , αCAM

)
=

∫
∞

−∞

∫
∞

−∞

Ftemp · Fspatial
(
Tpict (x, y)

)
dtds (19)

where TSAM(Tpict(x, y), αCAM) denotes the weighting result
for the αcamth channel at image Tpict(x, y). Fspatial denotes
the spatial distribution function of the feature map at position
Tpict(x, y). The procedure is performed by double integration
of the temperature distribution Ftemp and the spatial distribu-
tion of the feature map Fspatial. The weighted result at position
Fspatial is calculated for the αcamth channel.

These modules leverage both average and maximum pooling
operations effectively, enhancing CBAM’s ability to distin-
guish between temperature feature channels. This refinement
enables CBAM to prioritize important features, leading to
overall performance improvement.

Based on the above enhancements, we construct the DLM
Mask R-CNN. This model can recognize targets and extract
features from the smoothed processed temperature thermo-
gram to generate a significant temperature difference image.
DLM Mask R-CNN offers notable advantages over traditional
Mask R-CNN for temperature monitoring tasks. It facilitates
target detection and segmentation sensitive to temperature
changes. This temperature-aware design enhances the model’s
robustness in complex environments and elevates the accuracy
and stability of temperature monitoring.

D. Color Discrepancy and Mapping Determination
Obtaining the degree of color difference of images with

significant temperature differences is based on the Euclidean
distance in the CIE Lab∗ color space 1E . In the CIE Lab∗

color space, each color consists of three channels. L∗ (lumi-
nance), a∗ (green to red color range), and b∗ (blue to yellow
color range), respectively. Thus, a color can be represented by
three values. When calculating the degree of color difference,
the difference between two colors is usually compared, so two
sets of Lab∗ values are involved. The RGB to CIE XYZ
color conversion matrix is mainly used to process the color
information of images with significant temperature differences.
The processing is as follows: X

Y
Z

 =

 0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

 R
G
B


(20)

where X, Y , and Z are the color attribute locations of
the significant temperature difference image. R, G, and
B are the colors of the three channels of red, green,
and blue.

Transformation from XYZ color space to CIE Lab color
space, where Lab denotes a transformation that takes into
account luminance nonlinearity. This process is performed
using the following equation:

L∗
= 116

(
(Y/Yn)1/3

)
− 16

a∗
= 500

(
(X/Xn)1/3

− (Y/Yn)1/3
)

b∗
= 200

(
(Y/Yn)1/3

− (Z/Zn)1/3
) (21)

where Xn, Yn , and Zn are all standard values in XYZ space
for a D65 light source. L∗is brightness. a∗ is the color range
from green to red. b∗ is the color range from blue to yellow.
Since the planar sensor array is considered in this article;
therefore, Z can be set to 0. Then the Euclidean distance
formula between two color attribute points in Lab ∗ color
space is

Dcolour (X, Y, Z = 0)
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=

√
(L (X) − L (Y ))2

+ (a (X) − a (Y ))2
+ (b (X) − b (Y ))2

(22)

where Dcolor is the Euclidean distance of the color attribute
point. L(X), L(Y ), a(X), a(Y ), b(X), and b(Y ) are the chan-
nel parameters regarding the position of the color attributes.

Based on the above information, we obtain the color
dissimilarity of significant temperature difference images
with the help of Euclidean distance in CIE Lab∗ color
space. 1E is the color dissimilarity set. It is denoted as
1E = {1E1, 1E1, · · · · · · , 1Eu}. u is the number of color
distinctiveness. The content of this set is determined by
Dcolor(X, Y, Z = 0)., and the actual data of the changed
temperature corresponding to 1E is denoted as Tcs =

{tm1, tm2, · · · · · · , tmu}. that is, 1E ⇔ Tcs = {1E1 ⇔

tm1, 1E2 ⇔ tm2, · · · · · · , 1Eu ⇔ tmu}. The above set is
filtered according to the temperature mapping rule established
earlier. The rules are as follows.

1) The size after each temperature change should always be
within the range of [k1, k2]. That is, k1 ≤ Trand,rand ≤ k2.

2) The size of each temperature change should be less
than the maximum threshold for temperature change, that is,
Tchange < |Tmax|.

Tchange < |Tmax|. 1Eran f and tmran f are any elements in
the sets 1E and Tcs , respectively. The principle of determina-
tion is as follows: 1) determine whether 1Eran f satisfies rule
2). If 1Eran f ≥ |Tmax|, then directly determine 1Eran f at
this time as a temperature anomaly state. If 1Eran f < |Tmax|,

then continue to determine tmran f . If k1 ≤ tmran f ≤ k2, then
determine 1Eran f as temperature normal state. If tmran f > k2
or tmran f < k1, then judge 1Eran f as temperature abnormal
state. If tmran f is judged first, then operate in the same way.
The temperature state judgment rule is shown in Fig. 9. Two
datasets are obtained after the judgment, that is, normal tem-
perature collection and abnormal temperature collection. They
are denoted as Tnormal = {nor1, nor2, · · · · · · , normid} and
Tabnormal = {abn1, abn2, · · · · · · , abnu−mid} respectively. The
update rule of sensor array temperature is known according
to (1). It is known that the mapping relationship between
sensor array position information and temperature information
is denoted as f : {Psensor(rand,rand) ⇔ Tsensor(rand, rand)}.

Then we can judge the position of the sensors by the mapping
relationship with the help of the normal temperature set and the
abnormal temperature set. The state information of the sensor
array is finally obtained. The size of the planar sensor array
discussed in this article is 10 × 10. The total number of sensors
is 100, but here u ̸= 100. The reason is that the temperature
difference image covers the entire sensor array. The coverage
area is not only limited to the sensors themselves but also
includes a lot of interstitial space; therefore, it is crucial to
obtain the sensing range of each sensor. This is the reason
why the sensor sensing range is designed in Fig. 1. If the
temperature information is not in the sensing range of any
sensor, then the proximity principle is used to determine the
sensor location.

The method proposed in this article primarily aims to offer
a novel solution for temperature monitoring of sensor arrays.
It effectively establishes the correlation between temperature

Fig. 9. Temperature status determination rules.

status and sensor location, ultimately facilitating the classifi-
cation and identification of normal and abnormal temperatures
within the sensor array. As for the impact of this method on
temperature prediction, we provide detailed insights through
Section II-E.

E. Experimental Analysis
1) Integrated Temperature Projections: The principle gov-

erning the combined temperature of the sensor array is as
follows: initially, there is a 10 × 10 sensor array with only one
sensor, which records 24 different temperatures corresponding
to various moments of t1, t2, · · · · · · , t24. Subsequently, sen-
sors are incrementally added to the array, with each new sensor
also recording 24 different temperatures corresponding to
different moments of t1, t2, · · · · · · , t24. This process continues
until the number of sensors reaches 100.

1) Sensor array with one sensor, the combined temperature
of this sensor array is syn1, and the corresponding time is tn1.

2) Sensor array with two sensors, the combined temperature
of this sensor array is syn2, corresponding time is tn2.

3) The sensor array has 100 sensors, the combined tempera-
ture of this sensor array is syn100, and the corresponding time
is tn100.

The above process is satisfied

syni =
1
r

·

r∑
i=1

T sensori (23)

where syni is the comprehensive temperature of the sensor
array where the i th sensor is located. Tsensori represents the
average temperature of 24 different temperatures of the i th
sensor. Through the above process, we obtained 100 differ-
ent integrated temperature data of the sensor array. These
temperature data are saved as raw data and are predicted by
different methods. These methods include the traditional ANN
temperature prediction (ANNTM), phase shifted grating, and
photoelectric oscillation temperature monitoring (MPTM), and
the method of this article (TISM). The prediction results are
tested as shown in Fig. 10.

Fig. 10 displays the raw, predicted, and smoothed predicted
temperatures for the integrated temperature of the sensor array,
along with the prediction error of each method. By com-
paring simulations, it becomes evident that the temperature
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Fig. 10. Effectiveness of different methods for temperature prediction. (a) Temperature prediction effect and prediction error of ANNTM.
(b) Temperature prediction effect and prediction error of MPTM. (c) Temperature prediction effect and prediction error of TISM.

prediction effect presented in this article exhibits a superior
fitting degree and smaller prediction error. Consequently,
it effectively fulfills the temperature-monitoring task of the
sensor array.

2) Prediction of Accuracy and Stability: ANNTM involves
decomposing raw temperature data into distinct datasets and
constructing two neural network models. Temperature pre-
diction is achieved by fusing the output of these models.
In testing, ANNTM achieved a temperature prediction accu-
racy of 71.24% for mean deviation and 95.22% for standard
deviation. Similarly, MPTM also exhibits high prediction accu-
racy. Now, based on 24 different temperatures of the sensor
array, these two methods are compared with the approach pre-
sented in this article for prediction accuracy. The comparison
results are illustrated in Fig. 11.

Fig. 11(a)–(c) provides a visual representation of tempera-
ture prediction accuracy using different methods, illustrating
the error in predicted temperatures. The length of the error
bars reflects the average temperature error for each sensor,
with shorter bars indicating more accurate predictions and less
uncertainty. Conversely, longer bars signify greater uncertainty
and variability in the estimated temperature values. Fig. 11(c)
demonstrates superior predictive stability and higher accuracy.
The numbers above the error bars denote the center value
of each error bar, representing the error center for each
temperature change in the sensor array. The overall mean error
of the method proposed in this article is −0.0285, with a total

TABLE I
MEAN AND VARIANCE OF ERROR CENTERS

error standard deviation of 0.9657 and calculated using the
accuracy formula, the prediction accuracy reaches 97.13%.
Compared to ANNTM, the temperature prediction accuracy
for mean deviation and standard deviation is improved by
25.89% and 1.91%, respectively. Moreover, it exhibits higher
prediction accuracy compared to MPTM

Accuracy =

(
1 −

|PME|

TESD

)
× 100% (24)

where Accuracy is the prediction accuracy, PME is the overall
mean error, and TESD is the total error standard deviation.
Fig. 11(d)–(f) shows the trend of the change in the center
values of the error bars of the three methods. By observing
the changes in the center values of the error bars of the three
methods, their mean and variance can be calculated with the
help of MATLAB. As shown in Table I.

Table I reveals that the mean value of the method proposed
in this article is higher compared to ANNTM and MPTM.
This suggests that the article’s method generally yields higher
mean predictive values. Additionally, the variance of this
article’s method is lower compared to the other two. Variance,
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Fig. 11. Temperature prediction accuracy comparison. (a)–(c) Error effects of ANNTM, MPTM, and TISM in predicting temperature, respectively.
(d)–(f) Changing trends of the error center values of these three methods.

Fig. 12. Temperature-monitoring range of different methods. (a)–(f) Comparison of monitoring range between ANNTM, MPTM, and TISM.

as a measure of data dispersion, indicates how spread out
the data points are. Therefore, lower variance suggests that

the temperature prediction results of this article’s method are
more consistent, and the sensor array temperature monitoring
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data exhibit less fluctuation. On the contrary, the temperature
prediction results of the other two methods are more dispersed
and exhibit greater fluctuations.

3) Temperature Monitoring Range: The comparison of
temperature-monitoring ranges among the three methods is
conducted. While MPTM excels at accurately monitoring
temperature changes from 490 ◦C to 495 ◦C in real time, its
monitoring range is limited. To better visualize the monitoring
ranges and mitigate the significant differences among them,
a temperature compression technique is employed in the sim-
ulation. The results of the simulation comparison experiment
are depicted in Fig. 12.

In Fig. 12, each box corresponds to a temperature moni-
toring method: ANNTM, MPTM, and the method proposed
in this article. The upper and lower boundaries of the boxes
denote the first quartile (Q1) and the third quartile (Q3),
respectively. The median (Median) is represented by the mid-
dle line within the box. The length of the box indicates the
range of temperature data distribution, with a longer length
suggesting a wider distribution of temperature values. The
fill color of the box illustrates the distribution of temperature
values for each method. Red dots indicate outliers, which
are temperature data points that deviate significantly from
the rest of the data. Analyzing the boxplot, we observe that
the method proposed in this article exhibits relatively longer
box lengths, indicating a broader distribution of temperature
values. The longer box length also reflects a wider interquartile
range of the data. In contrast, ANNTM and MPTM display
relatively shorter boxes, suggesting that their temperature
values are more concentrated within a narrower range. For
instance, MPTM’s temperature monitoring range is limited to
490 ◦C–495 ◦C. All three methods exhibit outliers, but the
method proposed in this article shows a broader distribution of
outlier points compared to the box boundaries. Since outliers
represent extreme cases in the data, this suggest a wider
range of temperature monitoring capabilities for the method
proposed in this article.

III. CONCLUSION

In this work, a sensor array temperature monitoring method
based on temperature mapping and improved Mask R-CNN is
proposed. The method combines technologies such as sensor
data processing, digital image conversion, image recognition,
and color space analysis. It provides a new solution for tem-
perature monitoring of car compartments and other complex
environments through an array of optical fiber temperature
sensors. The specific content is summarized in the following
aspects.

A. Accurate Data Information and Rule Strategies
Establishing a mapping relationship between sensor temper-

ature data, position information, and temperature limit rules
ensures accurate data information and rule strategy for sensor
array temperature monitoring.

B. Sensor Subarray Construction
Matrixing temperature data and utilizing matrix analysis and

library function conversion to generate temperature heat maps.

Interpolation technology enables smooth processing of temper-
ature and heat maps, while expanding the subarray enhances
overall monitoring system accuracy and stability. Through
multipoint monitoring, it effectively overcomes the influence
of sensor location deployment on temperature monitoring in
complex environments.

C. Improved Mask R-CNN Model
Enhancements including an adaptive layer, data enhance-

ment module, and color difference loss function are integrated
into the model. The model combines channel and temper-
ature information in CBAM, enabling target recognition,
feature extraction, and differential temperature image gen-
eration. Utilizing the Euclidean distance in the CIE Lab∗

color space effectively extracts temperature state information.
Finally, sensor temperature determination is conducted accord-
ing to temperature mapping rules, completing the sensor array
temperature-monitoring task.

Furthermore, the proposed method is compared with two
traditional methods based on sensor array integrated tempera-
ture prediction, accuracy, stability, and temperature-monitoring
range.

The method achieves a prediction accuracy of 97.13%,
outperforming ANNTM and MPTM in terms of average devi-
ation, standard deviation, and monitoring range. The smaller
prediction error and wider monitoring range demonstrate the
method’s potential for real-time accurate temperature moni-
toring of sensor arrays, making it a promising solution for
practical applications.

Although the sensor array temperature-monitoring method
proposed in this article has enhanced monitoring accuracy,
stability, and monitoring range, it still faces certain limitations.
One major limitation is its high dependence on sensor array
data, which restrict monitoring results based on the quality
and quantity of sensor data available. Additionally, the incor-
poration of various modules in the DLM Mask R-CNN model
increases the complexity of the model, impacting its practical
applicability.

Our future research directions aim to address these limi-
tations by optimizing data quality, increasing data diversity,
and simplifying algorithms. Furthermore, we plan to optimize
and upgrade the DLM Mask R-CNN model by completing
the compression and quantization processes. These efforts are
aimed at further improving the performance and applicability
of the sensor array temperature-monitoring method.

Finally, the research method of this article focuses on
the monitoring of the internal temperature of the vehicle
compartment in the loading system. Especially for semispace
type vans. In the future, we will also further expand application
scenarios and apply it to temperature monitoring of full-space
vans and other complex environments.
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