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Machine Learning for Automated Sand Transport
Monitoring in a Pipeline Using Distributed

Acoustic Sensor Data
Harrison Gietz , Jyotsna Sharma , and Mayank Tyagi

Abstract—Uncontrolled sand production presents a sub-
stantial challenge to wellbore and pipeline integrity and
efficiency of hydrocarbon production operations, often lead-
ing to equipment damage and compromised productivity.
Traditional sand detection methods on the surface alert oper-
ators to sanding issues, but they are often a lagging indicator
of downhole sanding events and do not provide precise
identification of the problematic reservoir zones. Addressing this limitation, this study harnesses a combination of
efficient signal processing and machine learning (ML) to analyze data from optical-fiber-based distributed acoustic
sensors (DASs), thus serving as the first instance (to the authors’ knowledge) of an automated and real-time approach to
monitoring sand migration patterns and velocity estimation along a pipeline. The DAS data acquired from an experimental
flow loop were analyzed using the developed algorithms, and the performance was evaluated for different flow speeds
and sand ingress scenarios. The model training only required roughly 25% of the total data, and the remaining data
were used to demonstrate the generalizability of the proposed ML models, through blind testing. Analysis of eight
distinct experimental datasets provided a credible approximation of sand velocities, corroborating previous studies and
theoretical expectations. Using the best-performing trained models, sand detection accuracies attained an average of
93.4% on blind testing data, along with sand velocity estimates with an average error of 10.1% from analytical results.
The results from this study validate the use of DAS combined with ML for autonomous sand monitoring and flow
characterization, both for boosting well performance and concurrently mitigating environmental hazards.

Index Terms— Distributed acoustic sensing, distributed fiber-optic sensing, machine learning (ML), sand detection.

I. INTRODUCTION

SAND production poses a significant asset integrity chal-
lenge in the realm of oil and gas extraction [1], [2]. These

concerns are far-reaching and large in scale, costing the oil
and gas industry millions of dollars annually in sand-related
expenses such as production choke-backs, infrastructure clean-
ing, and equipment repair [3]. The negative side effects that
arise from sand production are not purely economic, however;
sand production also entails risks of significant potential
environmental harm and contamination that can result from
infrastructure erosion and failure [4], [5], [6]. For instance,
well casing plays a role in well control and safety, as it helps
in containing pressure and fluids within the well, reducing
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the risk of blowouts or uncontrolled releases of oil, gas,
or other substances. However, unchecked sanding can lead
to loss of well casing integrity, and as a result, monitoring
and controlling sand production is of crucial importance for
mitigating environmental harms. In addition, excessive sand
production can prematurely curtail the production life of
a reservoir, necessitating remedial operations, including the
drilling of new wells, and resulting in the underutilization of
irreplaceable oil and gas resources [3].

In addressing these challenges, monitoring the ingress loca-
tion and velocity of sand is crucial. It enables operators to
modulate fluid velocities below the erosional velocity limits
for the pipeline material, thus maintaining safe production
without compromising the integrity of the well and associated
equipment, as well as providing insights on sanding zones for
targeted mitigation. As a result, past work has explored meth-
ods of measuring and understanding the sand flow behavior
and detection of sand inside of pipelines. However, previous
work has used techniques which rely primarily on surface
sensors [7], [8], [9], thus offering delayed and sometimes inad-
equate information of downhole sand ingress and movement
further down the pipe.

The use of distributed acoustic sensors (DASs) allows for
significant advancement in this arena. DAS data can provide
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real-time spatiotemporal information along the entire length of
the installed fiber in the wellbore or pipeline [10], presenting
a rich source of information, ripe for exploration through
machine learning (ML). Previous attempts to monitor sand
velocity or to leverage DAS data for mitigating the harms
of sand production have had some success [1], [11], but fall
short along various aspects. For example, no past work has
jointly leveraged DAS data for measuring sand velocity, and
previous work has required manual analysis of the data [12],
an arduous process which also makes the analysis prone
to human error, especially given the voluminous nature of
distributed fiber-optic sensors due to the high spatial and
temporal data resolutions [13], [14].

The proposed approach innovates in this space using ML
to automate sand monitoring, requiring minimal data input for
training the model to provide reliable sand detection and sand
velocity estimates. The success of this method is demonstrated
using experimental data that represent various flow rates
and sand ingress locations, underscoring the generalizability
of the approach. The strong performance of the proposed
methodology can be attributed in part to the preprocessing
techniques that are leveraged, which involve converting the
signal into frequency band energy (FBE) data [15], [16], [17],
[18]. A significant benefit of data preprocessing using the FBE
approach is the large reduction in DAS data size without losing
useful signal information, which helps with computational
efficiency and data management, as demonstrated by Tabjula
and Sharma [19] and Sharma et al. [18]. FBE processing
and feature extraction reduces data size by two orders of
magnitude, making this method much more applicable to
real-time sand monitoring applications.

The generalizability of the proposed ML models is demon-
strated on flow rates that are not encountered during ML model
training. Analysis on eight experimental datasets provides a
reliable approximation of sand velocities, corroborating pre-
vious studies and theoretical expectations. The average sand
detection accuracies are as high as 96% (average 93.4%)
across the blind testing datasets; the average F1 score on
blind testing (a common metric for ML problems that use
imbalanced data) is 0.87; and the average error in sand
velocity estimates is within 10.1% of theoretical expectations.
The results show higher prediction accuracy when using the
sand’s characteristic frequency fingerprint, which aligns with
the previous manual analysis presented by Shetty et al. [12].
By streamlining this process, this approach of sand detection
and monitoring not only has the capacity to bolster production
efficiency but also significantly mitigates environmental risks
associated with sand production in oil and gas extraction.

This article is arranged as follows. Section I-A summarizes
the novel contributions of this study on automated sand moni-
toring, vis-à-vis the published literature. Section II presents
details about the experimental data collection and process-
ing methods used before implementing the ML algorithm.
In Section III, a formulation of the ML approaches used
for sand detection and velocity estimation is given, followed
by details on hyperparameter tuning and model selection.
Section IV discusses the performance of the proposed ML
algorithms on two blind test datasets, demonstrating the

generalizability of the method. Finally, Section V presents a
summary of the study’s results and outlines potential future
research directions for the work.

A. Literature Review and Novelties of This Study
In the realm of downhole sand management, the evolution

of detection and monitoring technologies and real-time data
analysis methodology is crucial for operational efficiency. This
study enhances the past research in this area by integrating
ML with DAS measurements for real-time, automated sand
monitoring and analysis.

Fiber-optic sensing technology has widespread use in a
variety of domains, such as telecommunication, healthcare,
aerospace, and environmental monitoring [20], [21], [22], [23].
One such application of fiber optics is that of DASs [24],
which provides acoustic monitoring that can be used for a
variety of ways, including (in the present study) pipeline
monitoring.

Several past studies have demonstrated the successful imple-
mentation of ML on DAS datasets for a variety of unique
monitoring applications [25], [26], [27], [28], [29]. Although
the focus of these previous works was not on solid particulates
such as sand, the success of their ML applications in interpret-
ing distributed sensor data sets a precedent for continued work
along these lines for the application of sand monitoring.

More specifically, some previous works have demonstrated
the application of DAS for downhole sand monitoring,
a concept that was first introduced by the case study of
Mullens et al. [30] in Azerbaijan. Their work used a com-
bination of distributed temperature logs and DAS data to
qualitatively estimate a suspected sand-entry point and produce
(unverifiable) estimates of gas phase slip velocity. Given the
specific nature of their study (experiments conducted on only
three specifically chosen wells in Azerbaijan), the results could
not generalize, nor could they be verified or easily expanded
upon by future researchers, which is something that the current
study addresses. Following Mullens et al. [30], DAS technol-
ogy was then used for sand monitoring and sand production
management by Thiruvenkatanathan et al. [11], who built upon
the previous work using a signal processing technique which
significantly reduced the computational requirements of using
DAS data. Thiruvenkatanathan et al. [11] also introduced the
concept of empirically uncovering a sand “acoustic finger-
print”: a range of frequencies in DAS data that could be used
to distinguish sand from other particulates or fluid signals.
Their study uses this knowledge, accrued from DAS data in an
experimental flow loop, to form logs of downhole sand ingress
location in various wells. A case study by Hasanov et al. [31]
found success with a comparable version of this approach;
both the works used this technology for further production
management, hence highlighting the practical applications of
such research.

Although these works were strong steps forward in the
realm of sand production management using DAS, their
approaches fall short in that they do not extend to calcu-
lating verifiable sand velocity, a variable that is often of
crucial consideration for optimal sand management prac-
tice and operating below the erosional velocity limits [32].
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Moreover, they require manual analysis of data and sand logs,
a time-consuming process susceptible to human error. This
is especially true given the voluminous nature of distributed
sensor data, which are often of the order of terabytes per
hour for long-term wellbore monitoring [13], [14]. The method
presented in this study automates this process, addressing both
sand detection and the measurement of sand velocity, hence
providing an innovative contribution to the problem of oilfield
sand management.

Shetty et al. [12] laid important groundwork for this study
by analyzing DAS data for sand detection and monitoring in
multiphase flow within horizontal pipes in an experimental
flow loop. The present study is in direct conversation with
this study, using the same data, which allows for a robust
comparison of methodologies. Where Shetty et al. [12] con-
centrated on manually determining the acoustic fingerprint and
frequency analysis, this study expands on their approach using
ML to refine and automate sand monitoring and the estimation
of sand flow velocities. This progression underscores the
potential of the method to enhance real-time decision-making
in sand management. In addition, as previously mentioned,
this work takes after Shetty et al. [12] in that it uses state-of-
the-art signal processing: converting the distributed acoustic
signal into FBE data [15], [16], [17] prior to use within the
ML algorithms. This significantly amplifies the signal of sand
while efficiently reducing the data size; despite training on
under 2 min of signal from distributed sensors (a tiny “drop in
the bucket” compared with the terabytes of data that distributed
sensors typically produce for downhole sensing operations),
the proposed ML algorithm attains exceptional performance,
as discussed in the results section.

The use of ML for automating sand detection necessitates
the consideration of certain common shortcomings of ML.
While using this methodology, the present study is careful
to consider potential pitfalls of ML such as overfitting, model
generalization to new data, model sensitivity, and model inter-
pretability [33]. These potential concerns are discussed and
addressed throughout the article; for instance, via careful selec-
tion of interpretable models, and intentional preprocessing and
augmentation of the training and testing data which encourage
generalization and discourage overfitting, as discussed later in
Sections II and III.

Overall, the approach adeptly demonstrates the power of
using limited data streams to address sand monitoring chal-
lenges effectively; it makes efficient, real-time downhole
insights a more actionable reality for sand control.

II. EXPERIMENTAL SETUP AND DATA

A. Experimental Setup and Data Collection
This study leverages DAS data from the earlier study by

Shetty et al. [12], to allow for a fair comparison between the
present automated approach and the past manual approach.
Distributed acoustic sensing involves sending laser pulses
through an optical fiber, using the backscattered light in the
Rayleigh spectrum to measure the vibrations (acoustic signal)
throughout the length of the fiber [24]. As a result, the DAS
data correspond to phase shift of the backscattered light, where
large shifts indicate more significant vibrations at any given

TABLE I
DAS ACQUISITION PARAMETERS [12]

Fig. 1. Visual depiction of the experimental setup used for data
collection.

time and depth. The specifications for the DAS fiber and
acquisition method for the experimental data analyzed are
given in Table I.

As in Shetty et al. [12], the collected data are partitioned
into various experimental trials; each trial consists of water
flow, along with the injection of a sand–water slurry of
concentration 0.001 volumetric sand concentration in water
(0.001 v/v). In oilfield units, this equates to 1000 pounds
of 300-µm sand per thousand barrels of water. The slurry
is injected using valves located at two injection ports (IPs)
at 1.52 m (IP-1) and 3.96 m (IP-2) along the 12.2-m-long
horizontal PVC pipeline, with 5.08-cm outer diameter (OD),
as shown in Fig. 1. To emulate various possible downhole
sanding conditions, each trial has some differing parameters;
these include the location and method of sand injection, as well
as the fluid flow rate. The various fluid (water) flow rates
in the main pipe used in this study included 1.77, 2.02,
and 2.27 L/s. In oilfield units, these flow rates translate to
28, 32, and 36 gal/min, respectively. DAS data are acquired
using a single-mode fiber which was wrapped helically on a
0.95-cm OD steel rod, sometimes referred to as a stinger in
oilfield operations, which was inserted inside the main pipe.
Additional details of the experimental setup can be found in
Shetty et al. [12].

In total, about 40 GB of DAS data were used for the
training, validation, and testing processes, with roughly 10 GB
of this used for training and the remaining left for validation
and testing. Table II describes the experimental conditions and
specifies the data used for training, validation, and testing. All
the three flow rates analyzed in this study represent flow above
critical settling conditions where sand remains suspended in
the carrier fluid (water), thus representing similar governing
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TABLE II
EXPERIMENTAL CONDITIONS AND DATA USED FOR TRAINING,

TESTING, AND VALIDATION

physics. Even though the flow rates are close in magnitude,
given the relatively small dimensions of the experimental flow
loop, they represent distinct sand flow behavior (in terms of
sand distribution across the pipe and the relative magnitudes
of the governing viscous, drag, lift, and gravitational forces).
Thus, they provide distinct datasets for ML model training and
testing.

The unique features of the training and testing datasets
(varying between two sand injection points and three unique
fluid flow rates) make them conducive to testing the robustness
of the ML models across a variety of conditions. This train–test
splitting schema was used as an alternative approach to taking
25% of the data from each experimental setting for training.
Splitting the training and testing data by “experimental setting”
more adequately mimics the reality of varying operating
conditions; each of the varying conditions corresponds to
different potential operational settings common in real well-
bore operations. Hence, by training on one set of conditions
while validating and testing on others, the ML methods used
are less sensitive to environmental variations, and the strong
performance of the models is more significant, since overfitting
to the full dataset is less likely.

B. Data and Preprocessing
The ML algorithms used take advantage of processing the

raw DAS vibration data in the frequency domain using FBE.
This preprocessing takes after the same methodology used
by Shetty et al. [12]. The DAS signal is first processed into
FBE data for various frequency ranges. This study sets out
to empirically validate (by comparing ML model accuracies)
the conclusions of Shetty et al. [12]: that certain frequency
bands (e.g., 200–800 Hz) are particularly associated with the
presence of sand in the experimental setup used. FBE data
were generated for a variety of frequency ranges, including
data for 0–200, 200–400, 400–600, 600–800, 800–1000, 1000–
2000, 200–800, and 0–5000 Hz. Here, 0–5000 Hz represents
the DAS data in the entire acquisition frequency range (up to
the Nyquist frequency), implying no specific signal extraction
from the acquired data; the other frequency bands demonstrate
signal extraction corresponding to their frequency ranges.

An example of the normalized acoustic data for the
200–800-Hz FBE plot is shown in Fig. 2. As the valve is
opened to introduce the sand slurry into the pipeline, a high
acoustic signal is sensed at all depths, as shown in Fig. 2.

Fig. 2. Example of annotated spatiotemporal FBE data (200–800 Hz)
for trial B (validation).

Fig. 3. Example of spatiotemporal FBE data for various frequency
bands (after normalization).

The movement of the injected sand slurry, which travels as a
sand–water plug along the pipeline, is subsequently observed.
It is noted that the sand signal is not continuously observed
across the depths which is due to the bending of the stinger
rod, resulting in a nonuniform coupling of the fiber with the
fluid flow (as described in detail by Shetty et al. [12]). The
acoustic sand signal is the data used for the velocity estimation
of the sand slurry. The valve opening signal is an example
of the signal that is filtered out prior to ML, as is discussed
later in this section.

In Fig. 3, it can be visually verified that the FBE signal
in the range of 200–800 Hz is among the most effective for
isolating the presence of sand in the work of Shetty et al. [12];
when compared with other ranges of frequencies, the afore-
mentioned FBE data allow for the clear visualization of the
sand slug over time, whereas some of the alternatives present
more noisy or hard-to-interpret sand signature.
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For instance, in Fig. 3 the data for trial B with the 1.77-L/s
flow rate present notably more background noise in the FBE
ranges of 400–600, 600–800, 800–1000, and 1000–2000 Hz
compared with the 0–5000- or 200–800-Hz data; this makes
the sand signal harder to distinguish in the former datasets.
In addition, the data generated from 0 to 200 Hz have far less
visual sand signal in the latter half of the depicted trial (B).

In the experimental setup used, a strong, noisy acoustic
signal occurs at the time of the valve opening to allow the
injection of sand slurry at IP-1 and IP-2 (shown in Fig. 1).
This interferes with the analysis of the sand signature and
mandates a data filtration process to clean the signal before
passing it to the ML algorithm. The valve acoustic signal
has a specific appearance following FBE processing, whereby
the vibrational intensity along the whole length of the pipe
is significantly increased. Hence, it is possible to isolate this
signal with a simple filtration algorithm. As such, the data
processing pipeline consists of the following ordered steps.

1) Converting the raw DAS strain rate data into FBE.
2) Normalizing the FBE data to values between 0 and 1.
3) Removing the manual valve-opening signature; this

means removing data at times when a brief, strong
acoustic signal is present throughout most of the pipeline
(see Fig. 2 for an example of this valve signal).

4) Input into ML model (described in Section III).

This preprocessing workflow is depicted for trial B of the
1.77-L/s flow rate in Fig. 4. As can be seen in the figure, the
initial raw DAS strain rate data are largely uninterpretable,
further demonstrating the need for the signal processing and
normalization steps.

In this study, the initial training data exhibited a significant
imbalance, with the ratio of sand to nonsand signal classes
being approximately 1:7. To rectify this disparity and enhance
the model’s learning capability, the present study adopted
an oversampling strategy for the sand class, achieving a
balanced 1:1 ratio [34]. This was accomplished by replicating
the existing sand samples and introducing a subtle variance.
Specifically, each duplicated entry was modified with a 2%
Gaussian noise, characterized by a mean of 0 and a variance
of 0.02. This method effectively prevented the exact replication
of data, while maintaining the integrity of the original samples
in the new, balanced dataset. Extensive experimentation was
conducted on the validation dataset to determine the impact of
varying noise levels on the validation accuracy when oversam-
pling. The study explored noise variations ranging from 1%
to 15% yet observed that the validation accuracy remained
consistent across these different levels. Consequently, the 2%
noise level was selected, though not due to any specific
advantageous outcome.

Concerns about the model’s generalizability, particularly
regarding the consistent location of sand in most training and
validation datasets, led to the implementation of data flipping
techniques, a common practice in ML settings [35], [36],
[37], [38]. This approach involved spatially distorting a certain
fraction (ranging from 20% to 50%) of the oversampled data,
which included both sand and nonsand entries to alter the sand
signal location. This method aligns with the physical dynamics

Fig. 4. Example of the processing pipeline performed on the DAS data,
starting with the raw strain-rate data to FBE estimation, valve signal
removal, and data normalization.

of the system, as the flipped data vectors represent plausible
variations in sand location that could occur under different
experimental conditions. Three distinct flipping methods were
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used: reversing the entire data vector, rolling the vector upward
(where the top 25% of the data vector shifts to the bottom and
the remaining data move up), and rolling downward (where
the bottom 25% of the data vector shifts to the top, with the
rest moving down accordingly). The choice of flipping method
for each data point was randomized from these three options,
providing a diverse range of data alterations to enhance the
robustness and adaptability of the model. For each of the
models obtained after hyperparameter tuning, the amount of
flipped data varied based on the performance of the model
along the F1 and F2 metrics (see Section III-B for details).

III. ML METHODOLOGY

A. Algorithm for Sand Detection
Past work which analyzes DAS data for detecting sand

ingress and velocity has required human interpretation of
data [12], which is prone to potential issues. The automation
approach in the present study, described in the section below,
has multiple advantages compared with this previous standard,
which are detailed below. In real-time monitoring applications,
using the method by Shetty et al. [12] would require manual
interpretation and calculation of velocity, which is costly given
the vast quantities of pipeline DAS data that are recorded on
a day-to-day basis. The automated classification approach is
superior in that it requires less costly labor, it can be scaled
to large quantities of data with much greater ease, and it can
avoid human bias in manual estimations.

In addition, the velocity estimation and sand detection
method used by Shetty et al. [12] requires preexisting knowl-
edge of the acoustic sand fingerprint, which they obtain from
manual spectrogram analysis using several frequency ranges.
The present proposed ML method avoids this human-intensive
and time-consuming step, instead verifying the frequency
fingerprint of the sand through comparison of different ML
models’ performances. Some details of this comparison are
provided in Section III-D, as well as in supplementary
documentation.

To perform supervised ML on the normalized FBE data,
data labels (chosen from two classes: positive, or “sand,” and
negative, or “no sand”) are manually interpreted by a human
labeler. This is based on the visual presence of strong FBE
signal at pipe depths and times where the presence of sand is
already known.

The goal of the initial model is to predict the presence of
sand at a given timestep across a column of data representing
the full fiber length on the experimental pipe. Initially, FBE
data from the test trials with flow rates of 1.77 L/s (28 gal/min)
are used to train the models. As in Shetty et al. [12], these
data consisted of three trials (A, B, and C). Two of the three
1.77-L/s trials, trial A with sand injection at IP-1 (at 1.52 m
along the pipe) and trial C with sand injection at IP-2 (at
3.96 m along the pipe), were used for model training. The data
from trial B, an experiment where the sand injection was also
at IP-1 but injected into already-flowing water, were labeled
and saved for validation of the model. This is also summarized
in Table II presented earlier.

Let X = {x̄1, x̄2, . . . , x̄n} represent a sequence of normal-
ized FBE data from a selected frequency band, with values

Fig. 5. Depiction of the approach used for sand classification.

in each vector x̄ i ranging from 0 to 1. Here, the length of
any one vector x̄ i is based on the length of the pipeline, and
the length of the sequence X is based on the amount of time
that the data span (up to time n). Based on the strength and
location of the signal for any one x̄ i , the data are labeled as
either containing sand or not containing sand at time i .

Using the data and labels from the two trials mentioned
above, a probabilistic linear model (logistic regression [39])
is trained to assign a probability of sand at each timestep.
The approach was chosen as a natural and simple approach to
binary classification (sand versus nonsand), and the rationale
for the choice is elaborated on in Section III-B. At time
i , the vector of acoustic signal throughout the pipe can be
represented as x̄ i = ⟨xi1, xi2, . . . , xim⟩, where each index
(1 through m) represents a different depth along the flow
loop. The logistic regression model finds an optimal coefficient
vector ᾱ = ⟨α0, α1, . . . , αm⟩ based on the data and labels of the
training data, which allows for calculations of sand probability
using the following equation:

P
(
Sandi | x̄ i

)
= σ(α0 + α1xi1 + α2xi2 + · · · + αm xim). (1)

Here, σ is the sigmoid function defined by

σ(z) =
1

1 + e−z
(2)

and is used to convert a value to a probability of sand between
0 and 1.

This sand detection workflow is depicted schematically in
Fig. 5 using example DAS FBE data from trial A for 2.02 L/s
for the 200–800-Hz frequency band.

B. Choice of ML Algorithm
For the ML-assisted sand classification, the selection of

logistic regression as the model-of-choice was based on a
variety of important considerations.

Empirically, four different common ML classification meth-
ods were used on the training and validation data to find
a classification method, taking into account the model per-
formance, complexity, and computational time. The methods
tested were support vector machines, decision trees, random
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forests, and logistic regression models [40]. The results of
these tests are included in the supplementary document (see
Section II) which show that the logistic regression performed
strongest among the four tested classifiers.

In addition, theoretical considerations contributed to the
choice of logistic regression for sand classification, including
the below.

1) Ease of Training and Deployment: Logistic regression
models are computationally inexpensive, making them better
suited for real-time analysis and decision-making. Of note,
the required time for ML processing of certain testing data
(including velocity estimation, described later) was recorded:
for an examined segment of 130 s of DAS data, the total
required processing time was (on average) under 10 s when
performed on a single CPU. Hence, since only a fraction of
the data’s total time is required to perform sand monitoring,
the proposed method is well-suited for real-time settings.

2) Limited Data Requirements: Logistic regression requires
less data to train than other potential classification methods,
such as Naïve Bayes classifiers or deep neural networks [41].

3) Probabilistic Modeling: Logistic regression allows for an
output probability, rather than a binary yes or no output. This
allows for tracking and quantification of uncertainty, which
is helpful in scenarios with large economic stakes such as
hydrocarbon production. For instance, it may be economical
to only make operating decisions based on predictions of sand
that are (for example) 90% certain; if this is the case, the
decision boundary of the logistic regression can be adjusted
to account for the risk tolerance of the operator.

4) Interpretability: Due to their simplicity, logistic regression
models are more interpretable than larger, multilayered models
such as deep neural networks.

5) Sensitivity: Logistic regression has lower outlier sensitiv-
ity than other potential classification methods such as support
vector machines and decision trees [40].

C. Hyperparameter Selection
Model selection was based on a hyperparameter search

conducted on the validation dataset, where the top performing
models were selected based on weighted harmonic means of
the precision and recall (F-scores) [42], specifically the F1 and
F2 scores. These values can be calculated using the number
of true positive (TP), false positive (FP), true negative (TN),
and false negative (FN), as shown in the following equations:

Precision(Prec) =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 = 2 ·
Precision × Recall
Precision + Recall

=
2TP

2TP + FP + FN
(5)

Fβ =
(
1 + β2)

·
Precision × Recall(

β2 · Precision
)
+ Recall

(6)

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
. (7)

Note that F2 score is equivalent to Fβ score where β = 2.

An observation was made regarding the use of flipped
training data, previously described in Section II: despite its
potential to improve generalization, it appeared to adversely
affect the validation results, possibly due to similarities
between the validation and training datasets. Nevertheless,
the decision was made to incorporate a certain percentage
of flipped data in the training set, with the foresight that
the model must generalize effectively to diverse data scenar-
ios during blind testing (representing different sand ingress
locations), which might not be perfectly represented in the
training set. To determine the optimal extent of data flipping,
the fraction of total training data subjected to flipping was
varied (this was performed following oversampling, which was
done to allow for a balanced data size for the two classes,
as discussed in Section II) and rigorously evaluated for its
impact on model performance on the validation dataset.

Concurrently, the study investigated multiple probabilistic
linear models, each differing in their loss functions [43], [44],
[45]. A critical adjustment was made in the loss ratio attributed
to positive (sand) versus negative (no sand) classes during
training. This ratio was experimented with, ranging from a
balanced 1:1 to a more skewed 10:1, the combination of loss
weights summing to 1. Empirically, this adjustment proved to
be significantly beneficial in enhancing model accuracy, along
with F1 and F2 scores. The prioritization of recall in model
selection, as evidenced by the use of F2 score, was strategically
chosen to improve the model’s capability to accurately identify
sand presence. This approach acknowledges that the negative
impact of FPs is considerably less severe than the potential
consequences of failing to detect sand, which could lead
to hazardous and expensive outcomes. Hence, the model’s
design inherently favors a higher tolerance for FPs to ensure
maximum reliability in sand detection.

A comprehensive grid search was conducted on the vali-
dation set to identify the most effective combination of data
flipping fraction and loss ratio. The flip fraction was tested
within a range of 20%–50% of the total oversampled data,
while the loss ratio was varied from 1:1 to 10:1 (representing
the ratio of loss for sand versus loss on nonsand data points).
For each set of training data corresponding to different FBE
frequency ranges, certain top-performing models were selected
to be used in testing (see Section IV). In summary, the hyper-
parameter grid search was conducted over two dimensions:
fraction of flipped data in the training set, “flip,” with search
values including {0.2, 0.3, 0.4, 0.5}, along with sand-loss ratio,
“weight,” where the values were taken from {1:1, 2:1, 3:1, 4:1,
5:1, 6:1, 7:1, 8:1, 9:1, 10:1}.

In Tables II–VI, the “Top F1” model refers to the model
trained with the loss and flipping fraction that obtained the
strongest F1 score on the validation data; the “Top F2” model
refers to the model trained with the loss and flipping fraction
that obtained the strongest F2 score on the validation data; and
the Base Case model uses a fixed loss ratio of 1:1 and flipping
fraction of 20% (denoted with 0.2 in Table III), for comparison
of model performance without hyperparameter tuning.

In practical applications of this workflow, the combination
of hyperparameters, including the decision on how the loss
function penalizes the different class predictions, will be a
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TABLE III
PERFORMANCE ON THE CLASSIFICATION TASK USING THE VALIDATION

DATA, FOR THE THREE SELECTED MODELS CHOSEN AFTER

HYPERPARAMETER SEARCH. USES THE FREQUENCY

BAND OF 200–800 Hz

TABLE IV
PERFORMANCE OF DIFFERENT ML MODELS, AFTER

HYPERPARAMETER SEARCH, ON THEIR

RESPECTIVE VALIDATION SETS

techno-economic decision to be made by the oilfield operators
depending on their sand-handling capability and production
objectives. The goal of selecting three different models during
the validation stage (as opposed to one) was to demonstrate
the different performances achieved and the sensitivity of the
hyperparameter selection criteria.

D. Evaluating Sand Acoustic Fingerprint
Based on the findings of the past work [12], this study

sought to confirm which frequency bands (e.g., 200–800 Hz)
correspond strongly to sand acoustic fingerprint in the experi-
mental flow loop setup. To do so, multiple different frequency
bands were used when processing the raw DAS data, and
independent ML models were trained on each version of the
data.

Table IV shows the results of the performance of the top
three models selected on the validation data for DAS FBE

in different frequency ranges. It can be observed that the
frequency band 200–800 Hz and the bands contained within
that range (200–400, 400–600, and 600–800 Hz) perform
notably better than the alternative bands, indicating the relative
“ease” with which the models can distinguish sand once
DAS data is intelligently processed using the acoustic sand
fingerprint.

In practical settings involving different flow loop conditions,
this process of training and validating models on different
frequency band ranges can be used to verify the acoustic
fingerprint of the flow loop in question. In other words,
by obtaining accuracy and F-scores of ML models from
different frequency bands, the operator can compare the scores
to make informed inferences about which acoustic fingerprint
enables the best sand detection.

Based on the results and performance on the models in
Table IV, two main frequency bands of data were used for
creating the tested models (see Section IV): 200–800 Hz (the
acoustic sand fingerprint), which has the strongest overall
classification and F1 performance in Table IV, and 0–5000 Hz,
which represents the DAS data in the entire acquisition
frequency, implying no specific signal extraction. In a sup-
plementary document, further analysis results are presented
for the performance of models trained on data from other
frequency bands.

E. Estimating Sand Velocity
Following sand detection and classification, the second

component of ML automation involves using information
about detected sand to estimate sand velocity. To do this,
the algorithm first records all the timesteps where the DAS
data were classified as containing sand, based on the logistic
regression discussed previously. Since the injected sand slurry
is traveling in the pipeline as a sand–water plug (as shown
in Fig. 1), a “center of mass” calculation is performed to
determine an approximate spatial location (si ) of the sand
acoustic signal along the pipeline at any one given time, i .
This is done by taking a weighted average of the normalized
acoustic strength values along the length of the flow loop,
at each time (using the same vector that was used for sand
classification). For instance, if a vector of acoustic values, x̄ i ,
is classified as sand, then the approximate spatial “center of
mass” of the sand is calculated by finding the weighted average
of the values of x̄ i . Then, the point (i, si ) is one of many that
represents the approximate spatiotemporal location of sand.

Because this estimated location of sand signal can be
produced for every timestep where sand was detected, a col-
lection of these values can be used to garner an estimate
of the movement of the sand–water plug over time. Hence,
the collected points (i, si ) can be used to inform a linear
regression model, of which the slope corresponds to the sand
velocity within the flow loop. This is depicted in Fig. 6, where
the white points represent the “center of mass” of the sand
signal at the corresponding timesteps. Though it is not used
for prediction of additional data in this application, the use
of linear regression to form a velocity estimation slope was
largely inspired by Shetty et al. [12]. To estimate sand velocity,
those authors manually annotated FBE images with lines that
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Fig. 6. Example of linear regression for automated sand velocity
calculation. Data are from trial A of 2.02 L/s, using the FBE for
200–800 Hz.

followed the trend of the sand plug; in the same way, the
use of the linear regression slope in this study allows this
to happen automatically. Collectively, they show the trend of
sand movement along the flow loop, as captured by the linear
regression line (indicated in white). On the left is the valve
signal, which is filtered out as a preprocessing step. Since
the fiber is helically wrapped, a measured length correction is
also applied to estimate the velocity in the horizontal frame
of reference. As such, the initial velocity estimates from the
regression are divided by 1.13, which is the helical correction
reported in the previous work by Shetty et al. [12].

To corroborate the results of this ML approach, and follow-
ing the methodology of Shetty et al. [12], an analytical model
of fluid flow is used to calculate the theoretical fluid velocity
and sand slip velocity [46], [47]. Given that this is only the
second work (to the authors’ knowledge) of experimentally
calculating sand velocity with DAS data, the use of the same
analytical models as Shetty et al. [12] allows for consistent
comparison across the literature.

The equation for sand slip velocity can be expressed as

vsl

V
=

v2
t

4gdp

[
1 −

C
q

]2.5[ Vc

V

]4

(8)

where Vc is the critical settling velocity (0.728 m/s), C is
the delivered solids (sand) concentration (2850 kg/m3), q is
the spatial solids concentration (3343, 3300, and 3269 kg/m3,
for fluid flow rates of 1.77, 2.02, and 2.27 L/s, respectively),
g is the gravitational acceleration, vt is the terminal settling
velocity of a sand particle (0.033 m/s), dp is the sand particle
size (300 µm), and V is the mean fluid flow velocity (which
varies depending on the trial). The above numeric values are
based on those presented by Shetty et al. [12].

For the flow rates of 1.77, 2.02, and 2.27 L/s, the analytical
slip velocities are thus derived as 0.059, 0.067, and 0.074 m/s,
respectively, using (8) adopted from Shetty et al. [12]. Using
these values, and the known carrier fluid (water) flow rate in
the main pipe, the analytical sand velocities can be calculated
and compared with the velocities found in this study (by
subtracting the slip velocity from the fluid velocity). This gives
the sand velocities corresponding to 1.77, 2.02, and 2.27 L/s,
as 0.87, 0.99, and 1.12 m/s, respectively. The percentage errors

TABLE V
PERFORMANCE OF THE CLASSIFICATION AND REGRESSION MODELS

ALONG VARIOUS METRICS, FOR 1.77-L/s FLOW RATE

(TRAINING AND VALIDATION DATA)

between the ML-estimated velocity and the analytical velocity
are summarized and discussed in Section IV.

IV. RESULTS AND DISCUSSION
In the tables below, the results for both classification accu-

racy (denoted as “Acc”) and estimated velocity (denoted as
“Vel”) are shown, using FBE data from 200 to 800 and 0 to
5000 Hz (the full available frequency range for the acquired
DAS). These two FBE bands were specifically selected to
investigate the performance of the frequency range correspond-
ing to the sand signal (200–800 Hz) when compared with
the full frequency range without any sand signal extraction
(0–5000 Hz). For completeness, aggregate results for the
other examined FBE frequency ranges are included in the
supplementary file that further demonstrates 200–800 Hz to
be the best performing band. The velocity error reported in
Table V (as “Vel Err”) is with reference to the analytical
velocity for the respective cases, which is considered as the
ground-truth value. As shown in Table V, a variety of metrics
are evaluated to measure the model performance, including
Precision (Prec), Recall, F1, and F2 of the sand classifier
models and the R2 value representing the “goodness of fit”
of the regression models used for the velocity estimate.

Along with the tables, bar plots (see Figs. 7–9) are provided
to visualize the average values of metrics across the three
trials. In the bar plots, sand velocity errors are provided in a
normalized form (rather than percentage) to allow them to be
plotted side-by-side the other metrics. Hence, in the bar plots,
a velocity error value of 1 corresponds to a percentage error
of 100%, meaning the error between the estimated velocity
and true sand velocity is 100%. Accordingly, a value of
0.5 corresponds to 50% error, 0.1 corresponds to 10% error,
and so on. Note that a frequency band is considered to perform
more strongly if the model has higher F1, F2, Acc, and R2

scores while also giving a lower velocity error.
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Fig. 7. Bar plot comparing the average performance across trials A–C
(using the flow rate of 1.77 L/s) of the Top F1 models, which were,
respectively, trained on the data from the 200–800- and 0–5000-Hz
frequency bands.

Fig. 8. Bar plot comparing the average performance across trials A–C
(using the flow rate of 2.02 L/s) of the Top F1 models, which were,
respectively, trained on the data from the 200–800- and 0–5000-Hz
frequency bands.

Examples of the regression analyses are depicted for trials
A–C in Figs. 10–12, along with the slope, y-intercept, and
R2 values in the corresponding captions. Note that the y-
intercepts, expressed in meters, do not have a conceptual
meaning in this analysis. This is because the time values on the
x-axis which correspond to the intercept merely mark when
data were truncated in preparation for the classification and
regression analysis; in practice, this was often a few seconds
before the sand ingress time. Consequently, the intercepts lack
a direct link to the actual ingress depth, and they are only
included as a technical artifact of the linear regression analysis.
Given this and the emphasis of this study on sand velocity
estimation, the slope values (also recorded in the figures’
captions) are the focus of attention from the linear regression.

A. Training and Validation Results (1.77-L/s Flow Rate)
Using the 1.77-L/s data, the sand-detection algorithm was

trained on trials A and C, while being validated on data
from trial B. Sand velocity results were calculated after the
completion of training the detection models, to further verify
the velocity estimation method.

Overall, with a few exceptions, the models using
200–800-Hz FBE data tend to outperform those using the full

Fig. 9. Bar plot comparing the average performance across trials B and
C (using the flow rate of 2.27 L/s) of the “Top F1” models, which were,
respectively, trained on the data from the 200–800- and 0–5000-Hz
frequency bands.

Fig. 10. Examples of the linear regression for automated sand velocity
calculation for the 1.77-L/s flow rate, using the 200–800-Hz frequency
fingerprint. The depicted trial A regression line, from the Base Case
model, has a slope of 0.91 m/s, an intercept of −3.87 m, and an R2 value
of 0.84. The depicted trial B regression line, from the Top F1 model, has
a slope of 1.07 m/s, an intercept of −1.45 m, and an R2 value of 0.78.
The depicted trial C regression line, also from the Top F1 model, has a
slope of 0.84 m/s, an intercept of 1.49 m, and an R2 value of 0.88.

frequency range of 0–5000 Hz, which further demonstrates
the applicability of the acoustic sand fingerprint. This result is
aligned with the conclusion from Shetty et al. [12]. Notably,
the Top F1 and Top F2 models produce high detection accuracy
and reasonable estimates of velocity that correspond with the
analytical values. For trial A, the lower accuracy of the Top F1
and Top F2 models here is thought to be due to the increased
sensitivity to sand (which is itself due to the higher loss weight
for the sand class), leading to many FPs. This is evidenced
by the low precision and high recall of the two models on
trial A. Despite this, the two tuned models (Top F1 and Top
F2) perform exceptionally well compared with o the Base Case
on the blind testing data (i.e., the 2.02- and 2.27-L/s flow
rates), as shown in Sections IV-B and IV-C. This highlights
that the models generalize well because of this specific form
of hyperparameter tuning.

It should also be noted that for the velocity estimation linear
regression models, the relatively low R2 value is somewhat
expected due to the nature of the sand traveling as a plug
(see Figs. 1 and 10–12), which results in spatially distributed
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Fig. 11. Examples of the linear regression for automated sand velocity
calculation for the 2.02-L/s flow rate, using the 200–800-Hz frequency
fingerprint. All depicted regression lines are generated based on the
points classified as sand by the Top F1 model. The trial A regression
line has a slope of 1.07 m/s, an intercept of −11.90 m, and an R2 value
of 0.82. The trial B regression line has a slope of 1.20 m/s, an intercept
of −0.05 m, and an R2 value of 0.79. The trial C regression line has a
slope of 0.82 m/s, an intercept 1.69 m, and an R2 value of 0.74.

Fig. 12. Examples of the linear regression for automated sand velocity
calculation for the 2.27-L/s flow rate, using the 200–800-Hz frequency
fingerprint. Both the depicted regression lines are generated based on
the points classified as sand by the Top F1 model. The trial B regression
line has a slope of 1.07 m/s, an intercept −9.26 m, and an R2 value of
0.83. The trial C regression line has a slope of 1.12 m/s, an intercept of
−11.52 m, and an R2 value of 0.75.

sand detection across multiple locations at any given time. The
spatial resolution of the DAS data also contributed to this.

The results for the linear regression models are pictorially
illustrated for trials A–C of the 1.77-L/s flow rate data in
Fig. 10. Recall that the slope of the regression line in the
figure represents the estimated sand velocity. For each of the
three trials, these values closely corroborate the theoretical
expectations, as demonstrated in Table V.

For the 1.77-L/s flow rate, Fig. 7 provided a visual aggre-
gation of the performance for the Top F1 models across
trials A–C. Notably, all four of the averages for accuracy,
F1-score, F2-score, and R2 are higher for the 200–800 =

Hz data compared with the 0–5000-Hz data; at the same
time, the error in estimated sand velocity is lower when using
the 200–800-Hz frequency band. These outcomes demonstrate
the power of using the acoustic sand fingerprint for sand
classification and velocity estimation, specifically for the case
of the 1.77-L/s flow rate.

TABLE VI
PERFORMANCE OF THE CLASSIFICATION AND REGRESSION MODELS

ALONG VARIOUS METRICS, FOR 2.02-L/s FLOW RATE

B. Testing Results (2.02-L/s Flow Rate)
For the flow rate of 2.02 L/s, the analytical sand velocity

is 0.99 m/s. Using this value as the ground truth, the percent-
age error between the estimated velocity and the analytical
velocity is depicted in Table VI, along with all the other
performance indicators (Precision, Recall, F1, and F2) for the
three trained models. Notably, the 200–800-Hz Top F1 model
has the strongest consistent performance across the three trials
along the F1 and F2 metrics, further corroborating the utility
of the acoustic sand fingerprint for velocity and detection
applications. For all the three trials, the Top F1 model for both
the 200–800-Hz FBE and 0–5000-Hz FBE data consistently
identified the labeled sand with over 89% accuracy. Across
all the models, the average sand detection accuracy for the
2.02-L/s trials is also 89%, with an average F1 score of
0.71 and average F2 score of 0.72. This a promising sign
for sand detection using the proposed ML method, especially
considering that the differing velocity of the 2.02 L-s flow rate
compared with the training data implies the type of model can
perform well out-of-distribution.

In addition, the sand signal extracted from the 200–800-Hz
FBE data at this flow rate produces reasonable estimates of the
velocity (with an average percentage error of 23.5% across all
the three 200–800-Hz models). The failure of the 0–5000-Hz
models to obtain an estimate of the velocity for trial C (see
Table VI) is expected because of the higher environmen-
tal noise observed during this trial. Without any frequency
filtering and by considering all the frequency content, the
signal-to-noise ratio of sand was observed to be weak. For
real field applications, this further demonstrates the need for
preliminary characterization of characteristic sand frequency
using data from some known sanding events, as was done
with the validation data in this study.
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TABLE VII
PERFORMANCE OF THE CLASSIFICATION AND REGRESSION MODELS

ALONG VARIOUS METRICS, FOR 2.27-L/s FLOW RATE

This difficulty to obtain an estimate of the velocity can be
noted in the section of Fig. 11 which corresponds to trial C; in
trial C of the 2.02-L/s data, only a small number of points in
time following the initial injection were classified as sand by
the 200–800-Hz Top F1 model. Despite this, as depicted for
all the trials in Fig. 11, the estimated linear regression slopes
follow the visual path of the sand signal quite closely. The
strong performance of these velocities is further illustrated by
the estimated values presented in Fig. 8 and Table VI.

For the 2.02-L/s flow rate, Fig. 8 provides a visual display
of the performance for the Top F1 models across trials
A–C. For the 200–800-Hz models, three of the averages
(F1-score, F2-score, and R2) are higher than the 0–5000-Hz
data. Besides, the error in estimated sand velocity is signifi-
cantly lower on average for the 200–800-Hz frequency band,
when compared with using the 0–5000-Hz band (15.4% versus
43.9%). While the average classification accuracy across trials
is slightly higher for the 0–5000-Hz data, it should be noted
that accuracy is the least-valuable metric to report on in the
case of imbalanced data; when attention is brought to the more
critical metrics of F1-score and F2-score, the 200–800-Hz data
consistently outcompete the 0–5000-Hz data. Hence, these
average results further demonstrate the power of using the
acoustic sand fingerprint for sand classification and velocity
estimation, specifically for the case of the 2.02-L/s flow rate.

C. Testing Results (2.27-L/s Flow Rate)
For the flow rate of 2.27 L/s, the analytical sand velocity is

1.12 m/s. Using this value, the percentage errors between the
estimated velocity and the analytical velocity, in addition to all
other performance metrics for the three models, are depicted
in Table VII.

Similar to the testing on 2.02 L/s, the Top F1 model using
the 200–800-Hz data performs the strongest, with F1 and F2
scores consistently above 0.92, and overall accuracy at or
above 93%. Across all the 200–800-Hz models, the average
error in velocity was only 3.3%. The models trained with the
0–5000-Hz data do not perform as strongly on classification,
though they still do give promising overall results (with

an average accuracy of 82%, an average F1 score of 0.80,
an average F2 score of 0.82, and an average velocity error
of 3.2%).

The linear regression lines produced by the classified data
from these models are depicted in Fig. 12. Here, the sand
signal is seen to move across the pipeline across time for both
trials B and C; the velocity estimates produced by these models
for the 2.27-L/s data were some of the strongest found in this
study, as demonstrated by the aforementioned average error
(across all three of the 200–800-Hz models) of only 3.3%.

For the 2.27-L/s flow rate, Fig. 9 provided a visual aggre-
gation of the performance for the Top F1 models across
trials B and C. Notably, all four of the averages for accuracy,
F1-score, F2-score, and R2 are higher for the 200–800-Hz
data compared with the 0–5000-Hz data; at the same time,
the error in estimated sand velocity is lower when using
the 200–800-Hz frequency band. Hence, the averaged results
further demonstrate the power of using the acoustic sand
fingerprint for sand classification and velocity estimation in
the case of the 2.27-L/s flow rate. Further comparison of the
performance across a variety of frequency bands is provided
in a supplementary document.

D. Discussion of Results
Ultimately, the used models perform well at both the clas-

sification and velocity estimation tasks, with the 200–800-Hz
Top F1 models having the best performance overall. The ML
results using the selected 200–800-Hz frequency band and Top
F1 model show an average sand detection accuracy of 93.4%,
an average F1 score of 0.87, an average F2 score of 0.85,
along with an average velocity error of 10.1% across several
gigabytes of blind testing data. Given the very limited training
data and the use of out-of-distribution data for testing (the
different flow rates and injection settings discussed in Table II
of Section II), the performance of the models is noteworthy.
These results demonstrate that the model provides reasonably
accurate corroboration of sand detection and velocity estima-
tion in the experimental flow loop.

V. FUTURE WORK
While this study marks a substantial step forward in the use

of ML for sand monitoring, it also opens avenues for further
refinement and exploration in this field.

For one, the current ML algorithms used have the potential
for improvement and verification. Steps were taken throughout
the training and tuning process to ensure the robustness of the
ML models used. However, more investigation of model sensi-
tivity could be conducted to uncover weaknesses and potential
avenues of improvement. For instance, input perturbation and
analysis of threshold sensitivity could be conducted to further
explore the behaviors of the logistic regression models; on the
other hand, analysis of the models’ sensitivity to outlier points
for linear regression, as introduced by Cook [48], could help
improve the velocity estimation.

In addition, verification of the data labels and improve-
ments of model performance, certainty, and robustness could
be attained using various alternative sensors in addition to
DAS. This could include distributed temperature logs as in
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Mullens et al. [30], pressure sensors, or surface sensors to cor-
roborate data labels as done by Thiruvenkatanathan et al. [11].

Besides, potential improvement can be made to the scalabil-
ity and efficiency of the model. While logistic regression is an
inherently computationally inexpensive classification method
(see Section III-B), the proposed use of the algorithm is limited
in that it can only process small inputs corresponding to any
one timestep at once. As such, future work could involve
modifying the ML model to detect sand over broader time
horizons at once, which could improve overall processing
speed. This could mandate small changes to the existing
logistic regression architecture or could involve exploration
of entirely new methods of ML for sand monitoring, such as
convolutional networks used on DAS data [49]. The use of
CNNs in future work may also hold promise for different
reasons: if the input of a convolutional neural network is
spatiotemporal in nature, there is possibility for the model to
be trained to detect sand presence and velocity concurrently,
using a single model. This could once again improve the
efficiency of the real-time monitoring approach.

Finally, though it was outside of the scope of this initial
investigation, future exploration could include implementing
the proposed methodology using well-scale oilfield datasets,
to test the method’s performance and robustness in real-world
operational situations.

VI. CONCLUSION
This study demonstrates the successful application of ML,

combined with advanced signal processing, for automating
the detection of sand, as well as estimation of sand veloc-
ities using DAS data. By offering a more streamlined and
automated approach to sand monitoring, the study contributes
to enhancing operational efficiency and reducing the risks
associated with sand production in oil and gas operations, such
as equipment damage and environmental hazards.

The ML approach was implemented on experimental
datasets from eight distinct sand transport tests, representing
different flow rates, sand ingress scenarios, and injection
locations. A key novelty of the approach was to use only
about 25% of the data for training and most of the data for
blind testing and validation. The proposed method also stands
out for its ability to process and analyze vast quantities of
DAS data in real-time addressing a key challenge in using
high-resolution distributed sensor information for real-time
decision-making. This was enabled using FBE preprocessing
for intelligent data compression and enhancement of the sand
signature from background signals.

The results also corroborate key conclusions from previous
studies and empirically show high performance for character-
istic frequencies corresponding to the sand fingerprint. The
ML results using the selected 200–800-Hz frequency band
and Top F1 model show an average sand detection accuracy
of 93.4%, an average F1 score of 0.87, and average F2
score of 0.85 across several gigabytes of blind testing data,
along with an average error in the sand velocity estimates
of 10.1%, as compared to theoretical expectations. Different
combinations of hyperparameters are considered for the ML
models, to demonstrate their sensitivity and offer flexibility

to end users to customize them based on techno-economic
criteria.
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