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Abstract—We propose a novel deep learning approach to
improve the multipoint performance of fiber Bragg grating
(FBG) interrogation systems with high-speed wavelength-
swept lasers. Because conventional interrogation systems
use wavelength-division multiplexing for multipointing FBGs,
the number of FBGs is limited by the wavelength band-
width of the light source. To overcome this, we attempted to
improve the multipoint performance of wavelength-division
multiplexing by using multiple FBGs of the same wavelength.
However, it is difficult to analyze the peak wavelengths of
individual FBGs using a high-speed wavelength-swept laser because the optical spectra of FBGs at the same wavelength
are observed to occur in a complex overlapping manner on the microsecond order. Here, we present a peak-detection
method based on a convolutional neural network (CNN) in deep learning as a breakthrough in solving this problem.
The experiment combines a high-speed wavelength-swept laser and a CNN to achieve high-speed measurement of three
overlapping FBGs at the same wavelength. The results demonstrate that a measurement rate of 50 kHz and a wavelength
resolution of 4.2 pm can be achieved, improving the limit of wavelength-division multiplexing by a factor of three. Our
approach is to simply incorporate peak detection with CNN into existing wavelength-swept laser-based interrogators,
which can function as if they were interrogators with several times the multipoint performance.

Index Terms— Convolutional neural networks (CNNs), deep learning, fiber Bragg gratings (FBGs), optical fiber sensors,
wavelength-swept lasers.

I. INTRODUCTION

F IBER Bragg gratings (FBGs) in optical fiber sensors
have been the subject of extensive research over the past

several decades owing to their excellent properties, including
low weight, corrosion resistance, and electrical insulation [1],
[2], [3]. Currently, advances in sensing technology have been
expanding their use to a wide range of areas, including energy,
environmental monitoring, and aerospace [4], [5], [6]. An FBG
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is made by forming periodic refractive-index variations in the
core of an optical fiber and reflects light only in a specific
wavelength region called the Bragg wavelength. The Bragg
wavelength is sensitive to various physical quantities such as
strain and temperature, allowing FBGs to be used to measure
various parameters [7], [8], [9], [10]. Through the fabrication
of multiple FBGs within a single optical fiber, a variety of
parameters can be observed simultaneously.

Various measurement approaches have been vigorously
studied to maximize the potential of FBGs as sensors. These
include typical methods such as spectroscopy, interferometry,
and wavelength sweep [2], [11], [12], [13]. Each method has
its advantages and disadvantages; however, the wavelength-
sweep method [13] is characterized by its ability to perform
both high-speed and multipoint measurements. The measure-
ments are performed using a wavelength-swept laser, which
encodes the FBG reflection wavelength information as reflec-
tion time information. The measurement speed is determined
by the sweep rate of the wavelength-swept laser. There-
fore, high-speed wavelength-swept lasers with Fourier-domain
mode locking (FDML) and buffer optics developed for medical
imaging have been converted for FBG measurement, enabling
measurement rates to exceed several tens of kilohertz [14],
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[15], [16], [17], [18], [19]. Multipoint measurements are
made using wavelength-division multiplexing, with each FBG
assigned a unique occupied wavelength range. Therefore,
the number of FBGs installed is limited by the wavelength
range of the light source, making the development of novel
multipoint technologies essential. Although various optical
approaches, such as the use of interferometers [20], [21], [22],
have been proposed, it remains difficult to achieve multipoint
measurements without sacrificing performance in terms of
sensitivity, measurement speed, and cost.

Herein, we propose a novel method that uses deep
learning to improve the multipoint performance of the
wavelength-sweep method several times without changing the
hardware in any way. This method first multiplexes using
FBGs at the same wavelength to improve the performance
of wavelength-division multiplexing. However, in a high-
speed wavelength-swept laser, the optical spectra of FBGs at
the same wavelength overlap in a complex manner and are
observed with a period on the order of microseconds. This
makes it difficult to analyze the peak wavelengths of individ-
ual FBGs using conventional peak-detection techniques such
as maximum value detection and center-of-gravity detection.
Therefore, we have devised a peak-detection method based on
a convolutional neural network (CNN) with deep learning to
be adapted for wavelength-sweep methods as a breakthrough
in solving this problem.

Peak-detection methods that use deep learning have been
extensively studied for FBG measurements that are based on
the use of spectroscopy [23], [24], [25], [26], [27], [28]. Deep
learning, with its high feature extraction capability, learns the
unique spectral information of FBGs as features and enables
tracking of the peak wavelength of a specific FBG. Many
studies have assigned a unique full width at half maximum
(FWHM) or reflectance to individual FBGs at the same
wavelength to facilitate identification by deep learning. Deep
learning has been reported to achieve a picometer resolution.
Our previous work [27], [28] proposed a method based on
data augmentation called noise-additive learning [29], [30].
This method effectively reinforces the tolerance of machine
learning to variations in experimental signals. The results
demonstrate that complex overlap problems with multiple
FBGs that vary at arbitrary wavelengths can be analyzed
with a picometer resolution. To date, peak detection has
been demonstrated only for spectroscopic methods. The spec-
troscopy method [2], [23], [24], [25], [26], [27], [28] uses
an optical spectrum analyzer, which limits the measurement
rate to a few hundred hertz at most. Although an increase
in the measurement rate is required for vibration detection,
which is the main application of FBGs, to the best of our
knowledge, no breakthroughs have been achieved thus far.
Therefore, we promote research on deep learning that can
be adapted to the wavelength-sweep method to significantly
improve its measurement rate.

In the experiment, an FDML laser [17], [18] with a sweep
rate of 50 kHz was used to acquire the reflected signals
of overlapping FBGs of the same wavelength at a high
speed. A CNN is a powerful method for extracting unique
features using convolutional filters, and its accuracy has been
reported to be high, particularly in medical image analysis and

automatic driving [31], [32]. Experiments were successfully
performed to analyze three FBGs multipointed with the same
wavelength with a wavelength resolution of 4.2 pm. The results
demonstrated a threefold improvement in the multipoint per-
formance of wavelength-division multiplexing. This method
requires only the incorporation of a CNN-based peak-detection
process and is expected to significantly improve multipoint
performance at a low cost without compromising the per-
formance of the wavelength-sweep method. The experiments
successfully achieved a measurement rate of 50 kHz, which
is nearly two orders of magnitude higher than that of the
spectroscopy method. This revealed that FBGs with the same
wavelength can be used for vibration measurements beyond
a few kilohertz. To the best of our knowledge, these results
represent the fastest measurement rates among those reported
in studies on FBG measurements at the same wavelength based
on the use of deep learning.

II. EXPERIMENTAL SETUP

A. FBG Interrogation System With FDML
Laser and CNN

Fig. 1 shows the proposed FBG interrogation system, which
combines an FDML laser and a CNN. The FDML laser is
controlled by a sinusoidal sweep signal, VS , output by an
oscillator. FDML is a well-known method for the high-speed
operation of fiber ring lasers [14]. This method synchronizes
the light’s orbit time in the fiber ring resonator with the
wavelength filter drive’s period. The FDML laser operates
with a center wavelength of 1552.4 nm, sweep bandwidth
of 1542.7–1562.2 nm, sweep rate fm of 50 kHz, and sweep
period Tm (= 1/ fm) of 20 µs [17], [18]. The output light
from the FDML laser is amplified by an optical amplifier
(SOA1013, Thorlabs) and then injected into a fiber switch.
The fiber switch (NSSW, Agiltron) has a repetition rate of
dc to 500 kHz and an on–off ratio of ∼39 dB. The fiber
switch is controlled by the pulse signal, VP , with the oscillator
with a pulsewidth tPW ∼9 µs (∼1/2 fm) to extract the light
swept in the long-wavelength direction of the FDML laser.
The extracted light then enters the multipoint FBG sensor via
a circulator.

The interrogation system is equipped with six FBGs of the
same and different wavelengths in three bifurcated optical
paths. FBG1 j ( j = 1, 2, 3) has a Bragg wavelength λB_1 j
of 1550 nm; FWHM 1λ B_1 j of 0.2, 0.4, and 0.7 nm,
respectively; and a reflectivity of approximately 3%. FBG2 j
( j = 1, 2, 3) has a Bragg wavelength λB_2 j of 1555 nm;
FWHM 1λ B_2 j of 0.2, 0.4, and 0.7 nm, respectively; and a
reflectivity of approximately 3%. Each FBG at the same wave-
length is assigned a unique FWHM characteristic to facilitate
its identification by the CNN. The light reflected from each
FBG is combined with a coupler and received by a detector
(P6713, Tektronix) via a circulator. The detector signal, VD ,
is collected by an analog-to-digital converter (NI PXIe-5170R,
National Instruments) with a sampling frequency of 250 MHz
and 14-bit resolution. The collected signal comprises those
from the FBGs of the same wavelength and of different wave-
lengths, which are observed to occur in a complex overlapping
manner. To detect the peak signals of the individual FBGs
at a high temporal resolution, a peak-detection process based
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Fig. 1. FBG Interrogation system combining FDML laser and CNN. VS—sweep signal; VP—pulse signal; VD—detector signal; VT—trigger signal;
and VR—reference clock signal.

Fig. 2. Concept of peak wavelength detection with CNN. (a) Module setup for measuring FBGs. (b) Layer design of peak-detection module D11
with CNN for FBG11.

on the use of a CNN is implemented. In the wavelength-
sweep method, information on the peak wavelength of each
FBG is observed as the peak time information. Therefore,
a time–wavelength conversion formula was derived based on
the sweep characteristics of the laser, which have been outlined
in Section III-A. In the experiment, the peak time of each FBG
was detected using the CNN at a measurement rate of 50 kHz
(= 1/ fm) and converted to its corresponding wavelength.

B. Peak-Detection Processing With CNN
Fig. 2 shows the proposed peak-detection process based

on the use of a CNN. As shown in Fig. 2(a), when FBG1 j
and FBG2 j are multipointed using a wavelength-swept laser,
the FBG signals can be observed to overlap in the time
domain, making it difficult to analyze the peak times of indi-
vidual FBGs using conventional peak-detection techniques.
To solve this problem, first, FBG1 j and FBG2 j with different
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wavelengths are divided into time areas A1 and A2 to divide
them in the time domain. Each area after segmentation con-
tains the peak signals of three overlapping FBGs of the same
wavelength, which can then be detected using the proposed
CNN-based method. The proposed peak-detection method
consists of six modules D1 j and D2 j , corresponding to FBG1 j
and FBG2 j , respectively. The six modules D1 j and D2 j are
optimized to detect the peak times t1 j and t2 j , respectively,
of each FBG using the learning method described later. The
detected peak times t1 j and t2 j are converted to wavelengths
λ1 j and λ2 j , respectively, using the wavelength conversion
formula fλ (t) based on the sweep characteristics of the laser.

Fig. 2(b) shows the inside of the peak-detection module
D11 of FBG11 composed of a CNN. The internal network
is composed of multiple layers with different roles. The input
signal is the time area A1 where FBG1 j is observed. A1 has
a time range of t = 3.6–5.2 µs and 401 data points (see
Section III-B). The input signal is passed to the input layer
of D11. The input signal is then input into the convolution
layer. The convolution layer performs convolution operations
using a convolution filter to extract the feature data from the
input signal. The size of the filters is 5 × 1, the activation
function is a nonlinear ReLU, the number of filters is 64, and
padding is applied. The extracted feature data are input into the
pooling layer, which compresses and aggregates large amounts
of feature data. The pooling method used is averaging, and
the pooling size is 2 × 1. A pooling layer is placed after the
convolution layer to aggregate the extracted features. These
two layers are multilayered to efficiently collect the important
features of FBG11. The network consists of eight convolutional
layers and three pooling layers. The eighth convolution layer
outputs the aggregated 2-D feature data (50 × 64), which
are input into the flatten layer. The flatten layer serves as
a preprocessing step to input the feature data into the final
stage, which is the dense layer. The flatten layer converts the
data into 1-D data (3200 × 1). The converted 1-D feature
data are combined into a single point in the dense layer. The
flatten and dense layers are combined using optimized weights,
and the feature data are converted to the peak time t11. The
other FBG modules also constitute a network similar to the
module D11 of FBG11. The CNN was developed in MATLAB
(Mathworks) using a computer with a Core i7-9800X CPU,
NVIDIA GeForce3070TI, and 32 GB of RAM.

III. EXPERIMENTAL RESULTS

A. Characteristics of FDML Laser and Multipoint FBGs
Fig. 3 shows the optical spectrum of the FDML laser

obtained using an optical spectrum analyzer. An optical
spectrum analyzer (AQ6317B, Ando) was set to an average
frequency of 10. The FDML laser operated at a sweep rate
of fm = 50 kHz and emits light in the 1.55-µm wavelength
band. The FDML laser had a center wavelength of 1552.4 nm
and a sweep bandwidth of 1542.7–1562.2 nm.

The sweep characteristics of the FDML laser were then
evaluated. A tunable filter (FFM-C, Axsun Technologies)
was used to extract light only in a specific wavelength
region of the FDML laser. The extracted light was analyzed
using a detector and wavelength monitor (FB200, Ando) to

Fig. 3. Output spectrum of FDML laser.

Fig. 4. Sweep characteristics of FDML laser.

evaluate the relationship between time and wavelength. The
wavelength monitor has a wavelength resolution of 1 pm,
measurement accuracy of ±50 pm, and wavelength range of
1527–1567 nm. The number of measurement points was set
to 250. Fig. 4 shows the sweep characteristics of the FDML
laser. The FDML laser swept the oscillation wavelength sinu-
soidally in the wavelength range 1542.7–1562.2 nm. The
time–wavelength conversion formula fλ (t) was derived by
applying a polynomial approximation to the obtained sweep
characteristics of the FDML laser.

The FDML laser was used to measure the signals reflected
from the FBGs. A portion of the output light of the FDML
laser was extracted by a fiber switch operating at a pulsewidth
of tPW ∼9 µs. FBG1 j were subjected to strain 1ε1 j =

500 µε, respectively. FBG21 was kept strain-free, whereas
FBG22 and FBG23 were subjected to strain 1ε22 = 500 µε

and 1ε23 = 500 µε, respectively. Fig. 5 shows the detected
reflected signals from the FBGs. Fig. 5(a) shows the extracted
light of the FDML laser. The extracted light had a pulsewidth
tPW ∼9 µs and was repeatedly output with a sweep period
Tm = 20 µs. Fig. 5(b) shows the signals reflected from the
FBGs using the laser. The signals of FBG1 j (1550 nm) and
FBG2 j (1555 nm) at the same wavelength were detected to
be overlapping each other at approximately 4.4 and 6.0 µs,
respectively.

B. Creation of FBG Numerical Model
CNNs can improve peak-detection performance by using

more than tens of thousands of points of training data.
The training data should include overlapping FBG signals
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Fig. 5. Detector signal of FBGs with laser sweep. (a) Laser output.
(b) FBGs.

under various conditions. However, it is impractical to collect
large amounts of training data during an experiment. This
section describes a numerical model of an FBG using a
Gaussian approximation for the efficient generation of training
data.

Fig. 6(I) shows the experimentally observed reflection sig-
nal at FBG2 j (1555 nm). FBG21 was set to be strain-free,
FBG22 was subjected to 1ε22 = 500 µε, and FBG23 was
subjected to 1ε23 = 500 µε. Fig. 6(I-a)–(I-c) shows the
results of independent observations on FBG21 (1λ B_21 =

0.2 nm), FBG22 (1λ B_22 = 0.4 nm), and FBG23 (1λ B_23 =

0.7 nm), respectively. The signals reflected from each FBG
with different FWHMs were observed. Fig. 6(I-d) shows the
results of the simultaneous observation of all FBGs, where the
signals reflected from the FBGs were observed to overlap each
other. The following Gaussian approximation [25], [27], [28]
was applied to Fig. 6(I-a)–6(I-c) to create a numerical model
of the FBG

Ri j
(
t, tB_i j

)
= Ipeak_i j exp

[
−4 ln 2

(
t − tB_i j

1tB_i j

)2
]

(1)

where i = 1, 2; j = 1, 2, 3; Ipeak_i j is the intensity of the FBG;
tB_i j is the peak time with the Bragg wavelength of the FBG;
1tB_i j is the FWHM of the FBG in the time domain; i is the
address in the wavelength-multiplexing direction of the FBG,
and j is the address in the FWHM-multiplexing direction of
the FBG.

Fig. 6(II-a)–(II-c) shows the results of the numerical models
for FBG21, FBG22, and FBG23, respectively. The numeri-
cal models for each FBG were in good agreement with
the experimental reflection signals shown in Fig. 6(I-a)–(I-c).
Fig. 6(II-d) shows the results of adding the numerical models
for each FBG. The numerical model results in Fig. 6(II-d)
well reproduced the experimentally observed FBG signal in
Fig. 6(I-d). The numerical model for FBG1 j (1550 nm) was
created in a similar manner.

Fig. 6. Numerical modeling using Gaussian approximation. (I) Experi-
mental results. (II) Numerical models. (a) FBG21. (b) FBG22. (c) FBG23.
(d) Multiplexed FBGs.

C. CNN Training for Peak Detection
Numerical models were used to generate training data and

to train the CNN for peak detection. The analysis time ranges
A1 and A2 for FBG1 j and FBG2 j were t = 3.6–5.2 µs
and t = 5.2–6.8 µs, respectively. The number of data points
in A1 and A2 was 401. A total of 226 981 training data
points were generated under various overlapping conditions by
adjusting tB_i j in the numerical model of (1) for each FBG.
Our CNN was developed using a deep learning toolbox for
training and a parallel computing toolbox for GPU processing
in the MATLAB environment. Training does not require the
extensive collection of experimental data because only the
dataset generated by the numerical model was used. Nev-
ertheless, our CNN revealed that peak wavelength detection
could be achieved with picometer resolution. The optimization
algorithm used for learning was the Adam algorithm. The
initial learning ratio was set at 0.001. In the case of training
the peak-detection module D11 of FBG11 shown in Fig. 2, the
overlapping signals of FBG1 j with the analysis time range A1
were selected as explanatory variables, and the peak time tB_11
of FBG11 was selected as the objective variable. Conventional
CNNs trained only with numerical models have a problem with
reduced tolerance to experimental signal variations, resulting
in a decrease in the accuracy of peak detection. This is
caused by the gap between the smooth numerical model and
noisy experimental signal, as shown in Fig. 6. The experiment
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Fig. 7. Variation of RMSE with number of epochs.

introduced noise-additive learning for data augmentation [27],
[28]. Noise-additive learning adds normalized noise to the
training data. The noise was set to 5% of the FBG signal
amplitude.

First, the root-mean-square error (RMSE) [25], [27] was
calculated using the following equation to evaluate the
peak-detection performance of the developed CNN:

RMSE =

√∑n
i=1

∑m
j=1

(
tB_i j − ti j

)2

n × m
(2)

where n = 2; m = 3; and ti j is the peak time at Bragg
wavelength predicted by the CNN.

Fig. 7 shows the training results of the CNN. The CNN had
eight convolutional layers. The horizontal axis represents the
number of epochs, indicating the number of learning iterations,
and the vertical axis represents the RMSE. A numerical model
was used to generate the training and validation data, resulting
in a total of 226 981 data points. The number of epochs indi-
cates the degree to which learning has progressed. One epoch
refers to the degree of training progress using the dataset once.
The CNN exhibited decreasing RMSE as learning progressed.
At 30 epochs, the RMSE of the verification data was 0.74 ns,
which is well below the sampling time of 4 ns of the analog-
to-digital converter. This indicates that the CNN is effective at
detecting peaks with a high temporal resolution. The FDML
laser had a sweep period of 20 µs and a sweep bandwidth of
approximately 20 nm. Therefore, the RMSE of the wavelength
based on the peak time detection by the CNN was estimated
to be ∼2.3 pm.

The CNN-based peak-detection process was then adapted
to the experimentally observed FBG reflection signal. The
peak time ti j of the detected FBGi j was converted to the
peak wavelength λi j using the wavelength conversion formula
fλ (t). For each FBG, the strain was kept constant, the number
of measurement points was 100, and the standard deviation of
the peak wavelength was calculated. In addition, to improve
the peak-detection performance of the CNN, the number
of convolutional layers and the presence of noise-additive
learning were examined. Fig. 8 shows the standard deviations
of the peak-wavelength measurements using the CNN. Without
noise-additive learning, the standard deviations were 41.5 pm
for two layers and 7.6 pm for eight layers, with the standard
deviation improving with the number of convolutional layers.
Increasing the number of convolutional layers in CNNs is
effective for representing more complex models. However,

Fig. 8. Standard deviation for peak-wavelength measurement with
respect to number of convolution layers.

CNNs trained only with numerical models had lower mea-
surement accuracies owing to the effect of experimental signal
variation. By contrast, with 5% noise-additive learning, the
results improved to 22.4 pm for two layers and 4.2 pm for eight
layers. After eight layers, the standard deviation remained
constant at ∼4 pm. Based on the aforementioned results,
the subsequent experiment applied noise-additive learning and
employed a CNN with eight convolutional layers to analyze
the peak wavelengths of the FBGs.

D. Measurement in Static-Strain Conditions
In this experiment, the simultaneous measurement of FBG1 j

(1550 nm) and FBG2 j (1555 nm) was verified by combin-
ing same-wavelength multiplexing and wavelength-division
multiplexing. Fig. 9(I-a) and (II-a) shows the experimental
conditions in terms of strain applied to each FBG. The
applied range of strain was 0–1000 µε and the number of
measurement points was 43. FBG21 was assumed to be strain-
free. Fig. 9(I-b) and (II-b) shows the reflected signals of
FBG1 j and FBG2 j . Each FBG reflection signal was observed
to have a shifted peak time according to the respective
strain conditions. However, it is not easy to analyze the
peak times of individual FBGs, because the reflected signals
of multiple FBGs overlap. Fig. 9(I-c) and (II-c) shows the
results of the peak-wavelength measurement of FBG1 j and
FBG2 j based on the use of a CNN without noise-additive
learning. Changes in the individual peak wavelengths of
FBG1 j and FBG2 j in different wavelength regions could be
detected. However, the linearity of the peak detection with
respect to the strain was reduced owing to variations in
the experimental signal caused by the experimental system.
Fig. 9(I-d) and (II-d) shows the results of peak detection
using a CNN with 5% noise-additive learning. The linearity
improved at each FBG peak wavelength. The peak-wavelength
changes 1λ 11, 1λ 12, and 1λ 13 of FBG1 j for 1000 µε of
strain were approximately 1.17, 1.17, and 1.16 nm, respec-
tively, and the peak-wavelength changes 1λ 22 and 1λ 23
of FBG2 j were approximately 1.15 and 1.20 nm, respec-
tively. The measurement of three same-wavelength FBGs in
wavelength-division multiplexing was achieved, demonstrating
that the limits of wavelength-division multiplexing could be
improved by a factor of three.

To verify in detail the effectiveness of CNN peak detec-
tion with noise-additive learning, the linearity of peak
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Fig. 9. Strain measurements of multiplexed FBGs combining same and different wavelengths. (I) FBG11, FBG12, and FBG13. (II) FBG21, FBG22,
and FBG23. (a) Strain condition. (b) Spectra of three FBGs. (c) Peak wavelengths obtained using CNN without noise-additive learning. (d) Peak
wavelengths obtained using CNN with noise-additive learning.

detection for FBG13 was evaluated. In the evaluation, a CNN
with noise-additive learning with a noise-ratio range of
0%–20% was used and adapted for the results shown in
Fig. 9(I-b). Fig. 10(a) shows the results for the slope of
FBG13 with respect to the noise ratio for noise-additive
learning. The slopes were approximately 1.09 pm/µε for 0%
noise, i.e., without noise-additive learning, and approximately

1.19 pm/µε for 5% noise. The strain characteristics of FBG13
alone were evaluated using a wavelength monitor (FB200,
Ando), resulting in a slope of approximately 1.19 pm/µε. This
was in good agreement with the results of noise-additive learn-
ing with 5% noise. The slope was approximately constant for
noise above 5%. Fig. 10(b) shows the results for the coefficient
of determination of FBG13 with respect to the noise ratio for
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Fig. 10. Evaluation of linearity of FBG13 for CNN trained with noise
addition. (a) Slope. (b) Coefficient of determination.

noise-additive learning. The coefficients of determination were
0.9829 for 0% noise and 0.9991 for 5% noise. The values
were approximately constant for noise ratios above 5%. The
experiments revealed that noise-additive learning improves the
linearity of peak detection. In subsequent experiments, a CNN
with 5% noise-additive learning was used.

E. High-Speed Vibration Measurement
The interrogation system, which combined an FDML laser

and a CNN, was used to verify high-speed vibration mea-
surements using FBG1 j at the same wavelength. The FDML
laser was set to a sweep rate of 50 kHz, sweep number
of 100, and measurement time of 2000 µs. Piezoelectric
transducers were installed in FBG11 and FBG12, and the
vibration frequencies fv1 and fv2 were set to 4 and 2.12 kHz,
respectively. Fig. 11(a) shows the reflected signal of FBG1 j .
Although it could be confirmed that the signals of overlapping
FBGs were periodically shifted, it was not easy to identify and
analyze which FBGs were subjected to vibration. Fig. 11(b)
shows the results of the peak-wavelength measurement based
on the use of a CNN. The CNN clearly tracked the periodic
peak wavelength changes at each vibration frequency applied
to FBG11 and FBG12. The peak-to-peak wavelength values due
to vibration in FBG11 and FBG12 were approximately 0.15 and
0.10 nm, respectively. Despite the complex overlapping of the
FBG signals in the experiment, the peak wavelength of FBG13
was barely affected by the vibrations of the other FBGs.
This suggests that the powerful feature extraction function of
the CNN is effective at identifying the signal of each FBG
and is able to detect the peak wavelength of each FBG. The
interrogation system used an FDML laser with a sweep rate
of 50 kHz and was able to measure the peak wavelength of

Fig. 11. Simultaneous vibration measurements of different vibrating
elements attached to FBG11 and FBG12. (a) Spectra of three FBGs.
(b) Peak wavelengths of each FBG. (c) Frequency analysis.

each FBG with a temporal resolution of 20 µs. Fig. 11(c)
presents the results of frequency analysis on the results shown
in Fig. 11(b). To increase the analytical resolution of the
frequency analysis, 3996 zero paddings were applied to the
100 experimental data points obtained, thus expanding them
to 4096 data points. In the frequency analysis, steep frequency
spectra were observed for FBG11 and FBG12 at the applied
vibrational frequency. The frequencies of maximum amplitude
were 3.99 and 2.11 kHz, respectively, and each FBG was
able to measure the vibration frequency. Frequency analysis
results showed that vibration frequencies applied to certain
FBGs were not detected by other FBGs. This indicates that
the CNN models for each FBG operate independently of each
other and clearly detect the peak wavelength of a particular
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FBG. The results demonstrated that the proposed interrogation
system, which combined an FDML laser and a CNN, could
achieve high-speed vibration measurements using multiplexed
FBGs at the same wavelength.

IV. CONCLUSION

In this study, we developed an interrogation system that
combined an FDML laser and a CNN. The system was
capable of measuring, simultaneously and at high speed, three
FBGs multiplexed at the same wavelength. The results showed
that the limit of wavelength-division multiplexing could be
improved by a factor of three at a measurement rate of 50 kHz
and a wavelength resolution of 4.2 pm. Consequently, the
wavelength-sweep method with the proposed approach suc-
ceeded in accelerating the measurement rate by approximately
two orders of magnitude higher than those of spectroscopy
methods developed in past studies. The higher measurement
rate revealed that FBGs of the same wavelength can be adapted
for vibration measurements. These findings allow existing
wavelength-swept laser-based systems to simply incorporate
CNNs and function as if they can produce a several times
better multipoint performance without any hardware changes.

Future research studies are expected to combine faster
wavelength-swept lasers with CNNs to improve measurement
time resolution. It is clear that CNNs can analyze FBGs at
the same wavelength using wavelength-swept lasers; however,
further work is required to improve and develop the network
to achieve further multiplexing of FBGs. Our CNN assigns
unique FWHMs to FBGs of the same wavelength to facilitate
the identification of FBGs. To multipoint more FBGs, the
FBGs must be arranged with the FWHMs shifted as slightly
as possible. In addition, a key challenge is developing a
high-performance machine learning model that can identify
this slight FWHM difference in FBGs. Further multipointing
of FBGs will require machine learning models that can tolerate
more complex spectral overlaps because of the increased
number of sensors. A simple approach would be to signifi-
cantly improve the number of datasets; however, this could
inflate the computational cost. Therefore, machine learning
models that can learn effectively with smaller datasets must
be developed. By increasing the speed of the sweep rate of the
wavelength-swept laser, broadband vibration measurements
become possible. Therefore, this method is anticipated to
be applicable to a range of scenarios requiring rapid and
multipoint measurements, such as assessing damage to objects
[33], [34].
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