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Abstract—In this article, we propose a multistage electro-
cardiogram (ECG) classifier for distributed machine learning
(ML) inferencing across the edge-cloud continuum for wear-
able systems. Traditionally, biomedical data acquired from
wearable systems are processed in one step, using a
single-stage classifier deployed either on a cloud or on an
edge device. Though there are merits, both approaches have
limitations that relate to computational complexity, network
connectivity, and so on. In this work, we propose a multi-
stage, cascaded, ensemble classifier that aims to address
these limitations by decentralizing the processing steps, while achieving good overall performance. We employed
low-complexity, explainable boosting machines (EBMs) and convolutional neural networks (CNNs) to develop a mul-
tistage distributed ECG classifier, which achieves a high-sensitivity binary classification on the edge device and a
more comprehensive multiclass classification on the cloud. In standalone performance evaluation using the MIT-BIH
Arrhythmia database, the Stage-1 EBM classifier and Stage-2 CNN classifier achieved a maximum accuracy, sensitivity
of 96.71%, 96.76%, and 99.49%, 98.19%, respectively. Furthermore, the distributed multistage classifier achieved a
maximum cumulative binary classification accuracy, sensitivity of 99.64%, 99.01%, and multiclass classification accuracy,
sensitivity of 99.56%, 98.79% when DtC equals 40%. Furthermore, we evaluated the use of the EBM classifier threshold
as a control parameter to dynamically vary the system performance and network traffic based on real-time conditions.
We verified the feasibility of the model, calculated the energy consumption, and estimated the latency. When streaming
only 40% of the data to the cloud, it will result in 60% latency saving. With the proposed technique, energy consumption
is reduced by approximately three times.

Index Terms— Arrhythmia, decentralized inferencing, distributed computing, edge-cloud network, electrocardiogram
(ECG) classification, Internet of Health Things (IoHT).

I. INTRODUCTION

CARDIAC arrhythmias are a leading cause of sudden
deaths and have a higher incidence rate than stroke,

cancer, and so on [1]. Examining a subject’s electrocardiogram
(ECG) is the most common way clinicians use to diagnose
arrhythmia. Since many arrhythmias occur only intermittently,
it is challenging for clinicians to manually review long periods
of ECG for diagnosis as it is a laborious and error-prone task.
Wearable Internet of Things (IoT) devices make it possible
to continuously acquire physiological signals like the ECG
for enhancing treatment outcomes for chronic conditions,
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including cardiovascular diseases (CVDs). With the advent
of wearable, low-cost data collection equipment, ECG can
be acquired continuously for a long duration [2], [3]. Several
existing works are reported in the literature for automated ECG
classification using artificial intelligence (AI) methods. These
include traditional machine learning (ML) classifiers and deep
neural networks (DNNs) that can achieve good performance
results using extracted features and/or raw samples.

Traditionally, data acquired by a wearable device is first
transmitted to an intermediate gateway and then sent to a cloud
server for analysis. The automated data processing algorithms
are deployed as cloud-native applications for continuous and
long-term analysis of ECG data. Many DNN algorithms used
for ECG classification are inherently complex, with many
floating-point operations (FLOPs), weight parameters that
necessitate large storage space and need significant compu-
tational resources that may result in large power consumption
[4], [5], [6], [7], [8], [9], [10]. However, since computing in
the cloud is highly scalable, the models deployed are mostly
exempt from the constraints of complexity and resources

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-4312-7752
https://orcid.org/0000-0003-1303-8115
https://orcid.org/0000-0002-6139-1100


XIAOLIN et al.: TWO-STAGE ECG CLASSIFIER FOR DECENTRALIZED INFERENCING 23325

and therefore can attain high performance. Many arrhythmias
occur intermittently and usually are time sensitive [11]. There-
fore, wearable devices must continuously acquire and transmit
ECG to the cloud for processing in a cloud-based processing
approach. Wearable sensors often have modest batteries, and
wireless transmission depletes the battery quickly and limits
the overall utility of the system [12]. In addition, the entire
process from signal collection and transmission to processing
in the cloud can result in high communication latency (or
complete disruption) depending on the network and channel
conditions. In such cases, the system cannot offer a guaranteed
response time for critical events, which limits the utility of the
system.

Due to the limitations of fully cloud-based model deploy-
ments for wearable applications, several works are aimed at
deploying the models fully on the wearable sensor, that is,
natively on the edge device. This addresses concerns about:
1) power consumption due to the continuous wireless trans-
mission; 2) concerns of response times due to poor network
connectivity or outages; and 3) data privacy. However, this
introduces fresh concerns regarding: 1) limited computational
and memory resources [13] and 2) high power consumption
due to the model complexity [14]. Several model compression
and optimization techniques have been proposed to address
the model complexity issue [15], [16], [17], [18]. However,
such optimizations invariably limit the model performance,
due to quantization or other losses involved. Some works
also report the development of lightweight models for edge
devices [19], [20], which reduces power consumption, lowers
latency, and enables immediate alerts of abnormal signals
without syncing data to the cloud. However, constrained by
limited resources, only simpler models can be implemented on
edge devices, limiting overall accuracy. To prolong the battery
life, Keskes et al. [21] evaluated ten resampling techniques
for signal quality assessment to decrease the amount of data
to be transferred. Satija et al. [22] introduced an automated,
low-complexity technique for signal quality assessment, which
prolongs battery life by excluding unusable beats during
transmission.

In this work, we validated the feasibility of a two-stage,
distributed ML inferencing model that addresses the challenges
in edge-native and cloud-native deployments of biomedical
signal classification tasks, and subsequently in future work,
we aim to conduct validation for models involving multiple
stages. We propose to distribute the processing over multiple
nodes (edge, gateway, cloud) in the system such that each
individual processing stage can be deployed on an individual
node, generating results that are useful by themselves and
can be incrementally aggregated with the results from previ-
ous nodes for achieving more comprehensive processing and
outcomes. We propose a generalized, multistage, cascaded,
ensemble classification model for this. This generalized model
can be applied to a multitude of biomedical use cases based
on the data type, volume, classification criteria, number of
nodes/stages available, and so on.

The proposed model is applied to ECG arrhythmia clas-
sification to develop a multistage, edge-cloud distributed ML
inferencing model. For the Stage-1 classifier to be deployed on

the edge device, we propose using a relatively simple binary
classifier such as an explainable boosting machine (EBM) [16]
tuned for high detection sensitivity. The sensor wireless trans-
mission is to be gated using the classifier output such that only
abnormal data is transmitted to the cloud, thus enabling power
reduction [19]. Also, Stage-1 model response times will be
unaffected by network conditions or latency. For the Stage-2
classifier which is to be deployed on the cloud, we use a
multiclass convolutional neural networks (CNNs) classifier for
a more comprehensive analysis of data [4]. We prioritize the
sensitivity of the first stage as a crucial performance metric,
aiming for high sensitivity to minimize false negatives at the
first stage to ensure almost all abnormal beats are sent to
the next stage. Any incorrectly classified (false-positives) data
from Stage-1, will be correctly reclassified in Stage-2 ensuring
high system accuracy. In standalone operation, our Stage-1
and Stage-2 classifiers achieved an accuracy, and sensitivity
of 96.71%, 96.76%, and 99.49%, 98.19%, respectively, when
tested using the MIT-BIH Arrhythmia database [23]. The
cumulative performance of both stages for binary classifi-
cation and multiclass classification is evaluated and found
to be 99.64%, 99.01%, and 99.56%, 98.79%, respectively,
using the same database. Further, we evaluated the use of
EBM-threshold as a control parameter to dynamically alter
the system performance and network traffic based on real-time
conditions.

The main contributions of this work are listed below.
1) A generalized, multistage classification approach is pro-

posed for distributed and decentralized inferencing of
biomedical signals over multiple nodes in the edge-
cloud continuum. The proposed approach addresses the
limitations of edge-native and cloud-native approaches.

2) A distributed, multistage classifier for ECG arrhythmia
detection, with a cumulative sensitivity and accuracy
of 99.64% and 99.01%, is presented. The proposed
approach has been verified to reduce the amount of data
to be transmitted to 30% enabling power savings while
not compromising on response times.

3) For the distributed classifier, we evaluated the
EBM-threshold as a control parameter to vary the system
performance dynamically.

4) If there is a network failure, a traditional cloud-deployed
classifier may not work and could lead to a complete
disruption of monitoring. For the proposed method, the
classifier at the edge can provide initial assessments and
quick responses, which enables the user to seek proactive
help, and keeps the functionality of the system.

Section II illustrates some background work related to
ECG classification. We introduce the distributed multistage
cascaded ensemble processing architecture for decentralized
inferencing in Section III. Section IV shows the simpli-
fied multistage edge-cloud classifier for ECG classification
and Section V introduces the dataset and the methods
applied for data preprocessing; the experimental results
obtained and the comparison with state-of-the-art works
are in Section VI. Section VII concludes our work on
the proposed distributed decentralized multistage computing
architecture.
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II. RELATED WORK

Several reported studies used traditional ML algorithms
and deep-learning (DL) techniques for automated arrhythmia
detection and classification from ECG. Paper [9], [20] and [24]
used ML classifiers in their work. Bhattacharyya et al. [24]
introduced an ensemble model combining random forest (RF)
and support vector machines (SVMs), for classifying ECG into
five classes (N, S, V, F, and Q). Although this can achieve
98.21% overall accuracy, the sensitivity of some abnormal cat-
egories is very low, S: 74.20%, F: 73.21%, and Q: 0%, which
limits the feasibility of this model to be used in actual clinical
settings. Pal et al. [25] proposed a two-step classifier aimed
at achieving higher accuracy and lower latency in detecting
15 classes of cardiac rhythms using 13 features. Initially, the
signals are categorized into three groups, followed by further
classification using an RF-based classifier into the 15 specified
classes. Paper [6], [8], [26], [27], [28] and [29] employed
CNN models in their respective studies. In [28], notable
success was achieved through a new approach for hyperpa-
rameter optimization, leading to commendable performance.
Evren et al. [28] employed a metaheuristic algorithm known
as the memory-enhanced artificial hummingbird algorithm and
presented a novel fitness function that accounts for both the
accuracy rate and the total number of parameters in each
candidate network. Experimental evaluations were performed
on raw ECG samples from the MIT-BIH arrhythmia database.
The proposed method demonstrates a classification accuracy
of 98.87%.

Meanwhile, [30] introduced an automated diagnostic system
that combines CNN and long short-term memory (LSTM)
for diagnosing cardiac arrhythmias. The system utilizes
variable-length ECG segments sourced from the MIT-BIT
arrhythmia database. The proposed model exhibits strong
classification performance, achieving an accuracy of 98.10%,
and sensitivity of 97.50% through a tenfold cross-validation
strategy.

Based on the long duration 10-s ECG segment, YECG
seg et al. [26] classified cardiac arrhythmia into 17 classes,
reaching an overall classification accuracy of 91.33% and sen-
sitivity of 83.91%. Although the article claims that the model
may be utilized in edge devices and cloud computing, there
are still layout issues in edge devices because the 16-layer
deep network has a significant number of parameters based
on the network’s volume. Also, this work is not based on the
widely accepted Association for the Advancement of Medical
Instrumentation (AAMI) standards, and because the model is
not sensitive enough, positive patients may not be identified
in time, which could have catastrophic repercussions.

Hannun et al. developed a CNN model to classify ECG
into 12 classes. They achieved an F1 score of 83.7%, which
exceeded that of average cardiologists [6]. This model uses
33 convolutional layers, and therefore requires a large number
of computations and memory, making it difficult to use in edge
devices.

Acharya et al. proposed a CNN model to classify ECG
single beat into five classes, achieving an accuracy of 93.47%
and sensitivity of 96.01% using synthetic de-skewed data [27].
The model contains nine convolutional layers resulting in a

large number of model parameters, needing to be deployed on
the cloud for execution.

Niu et al. [29] presented a method using symbolic represen-
tations and multiperspective CNN (MCNNs). The model can
achieve an overall accuracy of 96.4% classifying ECG into
three classes, N, S, and V. However, the sensitivity of abnormal
classes is quite low, S: 76.5% and V: 86.7%. In addition, this
system must perform a significant preprocessing for feature
extraction. Thus, due to MCNN and feature extraction steps,
the overall model complexity remains high and therefore is
better suited for cloud-native implementations.

However, none of these models proved suitable for dis-
tributed processing. These existing models often face obstacles
during the classification process, making them less than ideal
for distributed environments. As the demand for distributed
computing continues to grow, there is a pressing need for such
distributed processing.

III. DISTRIBUTED MULTISTAGE COMPUTING

Deploying the ML inferencing process exclusively on any
single node (e.g., edge, fog, and cloud) introduces chal-
lenges regarding ML model performance, communication
bandwidth, sensor power consumption, computational/storage
resources, and so on. While cloud-native model deployments
are optimal for high model performance with limited com-
putational/storage resource restrictions, they increase sensor
power consumption and response times and consume signif-
icant channel bandwidth. On the contrary, edge-native model
deployments result in lower model performance and face sen-
sor computational/storage resource limitations while resolving
latency and sensor power consumption issues. To address these
issues and get the best of both worlds, we propose a multistage
model that distributes inferencing over multiple nodes on
the Edge-Fog-Cloud continuum. To formulate such a model,
we propose using a cascaded ensemble approach, originally
proposed in [31] and [32]. This is illustrated in Fig. 1. Here,
each processing stage will generate partial results and will
be deployed on any single node, such that the results are
useful in themselves and can be incrementally aggregated with
previous results for improved cumulative performance. Such
a design ensures the robustness and resilience of the overall
system. In the event of cellular network disruptions, data from
wearable devices can still be transmitted to smartphones via
BLE. In the three-stage model, models in edge and fog stages
work collaboratively to produce more accurate results without
waiting for network restoration compared to the two-stage
model. Furthermore, there is a reduced risk of data loss due
to the absence of a cellular network, as smartphones have
greater storage capacity compared to wearable devices. This
system can also function as an anomaly detector (Stage-1 on-
edge device) even if the smartphone (or BLE) is not available,
enabling the user to seek medical help themselves. Therefore,
there is a need to generalize to a multistage model to ensure
the robustness of the system.

A. Architecture
Model size and limited performance are major constraints

in the edge-native deployment of biomedical signal processing
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Fig. 1. Distributed, multistage, and cascaded ensemble processing architecture for decentralized inferencing.

tasks. On the other hand, communication bandwidth and
latency, power consumption in the edge sensor, and sys-
tem robustness are major challenges in cloud-native model
deployments. We propose a cascaded, ensemble-based pro-
cessing approach to address these issues. Here, the overall
data processing is split into multiple stages, where each stage
is capable of processing the data independently, obtaining
intermediate or final results, and is deployed as a standalone
node in the edge-cloud continuum as illustrated in Fig. 1.

Each stage is a relatively simple model capable of making
a high-quality decision on: 1) all input samples for a more
simplified classification problem and 2) on a subset of the input
samples for the original classification problem. In both cases,
inferencing is deemed complete at each stage for a subset
of the input samples, and further processing is terminated.
The multiple inferencing stages are cascaded in such a way
that the remaining smaller subset of input samples from each
stage is fed into a more capable succeeding stage for further
(re)classification and thus results in an ensemble processing.
This approach reduces the communication bandwidth and
transmission overheads between different stages (or nodes).
In addition, the processing latency and response times can be
improved as inferencing can be terminated at earlier nodes
(edge) for most input samples. By minimizing the amount of
data sent to succeeding stages, edge devices can reduce energy
consumption and achieve a longer lifespan [19]. The proposed
approach also increases the robustness and fault tolerance of
the system as incorrect results from earlier stages will be
re-looked by the more capable succeeding stages.

The cumulative results (in terms of model performance)
at any stage have to be better than that of individual prior
stages. In addition, the cumulative result at the final stage
should achieve high processing accuracy, sensitivity, and so
on, that is, the overall decentralized model should achieve
high performance like that of a large model deployed entirely
in the cloud without any complexity constraints. The initial
stages should achieve high detection sensitivity (in the case of

a simplified classifier) while maintaining low computational
complexity. The high detection sensitivity ensures that no
critical events are missed, and the low complexity ensures
the initial stages can be deployed on resource-limited edge
sensors. Any incorrectly classified samples from the initial
stages will be passed on to a succeeding stage (or node) with
more computational resources to re-process and reclassify the
input more accurately.

The decentralized multistage inferencing architecture can be
applied to various complex scenarios with multiple positive
classes and can be leveraged to classify broad categories in
the initial few stages, followed by sending the results to a
cloud-based server for further refinements. Thus, the selection
of the number of stages used in constructing a system can be
determined by the quantity of data available, the performance
of the models, and classification requirements. Elaboration on
the advantages of the proposed system is provided below.

B. Advantages
1) Low System Latency: The time consumed for the acqui-

sition, transmission, and inferencing of the data is referred
to as system latency. For time-sensitive processes, like ECG
arrhythmia detection, a high system latency may result in seri-
ous and irreversible consequences [33], [34]. In the proposed
multistage distributed processing, signals can be classified as
abnormal (or normal) in the early stages implemented on edge
devices. This reduces latency in transmission and cloud-based
processing and thus reduces the overall system latency.

2) High Robustness: The proposed architecture offers high
robustness due to its distributed nature. Different stages in the
model can detect anomalous signals with high sensitivity and
increasingly high accuracy. As abnormal signals are likely to
be picked up at various stages, the possibility of missing such
signals is low, resulting in high reliability. Since there is no
requirement for a large cloud-based model to react to abnormal
signals, a simple Stage-1 algorithm on the edge device can
generate alerts for abnormal data, enhancing robustness in
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TABLE I
COMPLEXITY COMPUTATION OF STAGE-1 STANDALONE

TREE-BASED CLASSIFIERS

emergencies. The proposed framework can continue to operate
effectively even in the temporary absence of network connec-
tivity without compromising the core functionality.

3) Low Cost: The proposed approach reduces data storage
and communication bandwidth requirements for IoT wearable
sensing. A significant portion of biomedical data acquired
using wearables is normal signals. Therefore, wireless trans-
mission and storage of such data do not contribute to
improving the metrics in biosensing and increase the cost of
transmission and storage. Preprocessing data on the IoT edge
using a low-complexity Stage-1 classifier reduces the quantity
of data to be transmitted and stored in the cloud.

4) Low Power Consumption on the Edge: The power con-
sumption on edge devices comprises two main components:
signal acquisition and data transmission. Efforts aimed at
decreasing power consumption on edge devices are predomi-
nantly focused on mitigating the energy-intensive process of
data transmission, which constitutes a substantial proportion
of power usage. Consequently, implementing the proposed
approach can minimize the volume of data transmissions,
which significantly alleviates power consumption burdens on
edge devices.

IV. TWO-STAGE DISTRIBUTED ECG CLASSIFIER

While the distributed multistage classification architecture
is compatible with multiple stages, we chose to implement
a multistage classifier (as shown in Fig. 2) for experimental
illustration due to its simplicity. Here, we propose to use a
low-complexity, high-sensitivity binary classifier for Stage-1
inferencing. In Stage-1, ECG is classified as either Normal or
Abnormal class. Only the Abnormal signals are then sent to the
Stage-2 classifier, which is implemented as a CNN-based high-
accuracy multiclass classifier, to be deployed on the cloud.
This multistage classification significantly reduces the amount
of data transmitted to the cloud, sensor power, and inference
latency and achieves a good balance of performance and
complexity.

A. Stage-1 Inferencing
In Stage-1 inferencing, it is desirable to use a

low-complexity classifier as it is to be implemented in
a resource-limited edge device. Toward this, we propose
using a simple, binary classifier that classifies ECG into
Normal or Abnormal classes. In addition, high sensitivity
is desirable to reduce false negatives. Compared to DL
approaches, a traditional feature-based ML classification
method with lower complexity is deemed more appropriate
for Stage-1. In literature, various ML methods have been
employed for classifying abnormalities.

[35] employed an SVM classifier for arrhythmia classifi-
cation, resulting in a classification accuracy of 94.45% and a

TABLE II
ACCURACY AND SENSITIVITY OF K-FOLD (K = 5) CROSS-VALIDATION

OF STAGE-1 STANDALONE TREE-BASED CLASSIFIERS

sensitivity of 70.30%. The sensitivity performance is poor, and
the accuracy is not very satisfactory either. Moreover, SVM
is difficult to interpret, and features may need normalization
and scaling. Logistic regression is characterized by its trans-
parency and efficiency. However, its performance deteriorates
significantly when handling a large number of variables, and
it does not possess the capability to automatically capture
interactions [36]. Naïve Bayes is distinguished by its speed,
scalability, and ability to operate with limited data. Never-
theless, it lacks direct interpretability and assumes variable
independence [37].

Using tree-based models is a commonplace approach for
addressing classification tasks, predominantly owing to their
explainability and remarkable predictive performance [38],
[39], [40]. Model complexity is estimated by counting the
number of arithmetic operations, such as multiplications and
additions. Table I shows the approach used for estimating
arithmetic operations for all tree-based algorithms. Each deci-
sion of each branch of these tree-based models is considered a
multiplication. For decision tree (DT) and RF, we traverse the
tree using the depth-first search (DFS) algorithm to calculate
the average tree depth, which gives the number of multiplica-
tion operations. The complexity of XGBoost and light gradient
boosting machine (LGBM) is estimated using the number of
boosting rounds and maximum depth. The complexity of an
EBM classifier can be estimated using the number of features
(N ) and interactions (K ).

To evaluate the models, we conducted a thorough com-
parison of the receiver operating characteristic (ROC) curve
presented in Fig. 3. It can be observed that the DT has the
lowest area under the ROC Curve (AUC), while the AUC for
the other models all exceeds 0.99.

Since the data for biomedical AI is very scarce, K -fold
(K = 5) cross-validation is conducted, and the mean and
standard deviation of accuracy and sensitivity across the folds
are reported in Table II to provide a comprehensive under-
standing of the models’ generalization capabilities. Based on
the results in Table II, XGBoost achieves the highest mean
accuracy and relatively high mean sensitivity, which is 98.14%
and 93.41%. EBM achieves 95.91% and 95.99% for mean
accuracy, and sensitivity separately. Those high mean values
of the metrics and minimal standard deviation values reflect a
remarkably high consistency in performance across different
cross-validation folds. The result enhances our confidence in
the reliability of the models and also indicates that our models
are less influenced by specific data distributions, showcasing
improved generalization capabilities.

To determine whether the model is appropriate for Stage-1
inferencing, Table III displays the performance of four
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Fig. 2. Block diagram of the multistage distributed ECG classifier.

TABLE III
BINARY ECG CLASSIFICATION PERFORMANCE OF STAGE-1

STANDALONE TREE-BASED CLASSIFIERS

Fig. 3. ROC curve of Stage-1 standalone tree-based classifiers.

tree-based algorithms, calculated using equations in [15]
and (2). Table III shows EBM has a significantly lower level
of complexity than any other evaluated model, except for
DT. On the other hand, EBM can reach significantly higher
sensitivity than other models, which is why EBM is chosen
as the Stage-1 inferencing model in the proposed architecture
because the sensitivity of Stage-1 must be as high as possible.
In addition, most of the existing classification techniques
reported in the literature use black-box approaches that lack
interpretability. Omitting interpretability in clinical decision
support systems poses a threat to core ethical values in
medicine and may have detrimental consequences for indi-
vidual and public health [41]. Considering the importance of
interpretability, we propose to employ EBM as the Stage-1
inferencing classifier.

EBM is a tree-based, cyclic gradient boosting generalized
additive model (GAM) with automatic interaction detec-
tion [42]. Boosting is an ensemble learning method that
combines a set of weak learners into strong learners to improve
performance. EBMs are often as accurate as state-of-the-art

Fig. 4. Illustration of how EBM algorithm works.

black-box models while remaining completely interpretable,
and the number of leaf nodes on the EBM tree used in boosting
can be varied for performance tuning. Equation (1) shows how
EBM learns from the combination of original features and their
interactions

g(E[y]) = 6 fi (xi ) + 6 fi, j (xi , x j ) (1)

where g is the link function that adapts the GAM to classifi-
cation, i , j varies from 0 to the number of features, (xi , x j )

means the pairwise interactions between features.
Fig. 4 displays the process of EBMs generating trees and

making predictions. A small tree is trained for each feature,
and the residual is computed. This procedure is repeated for
each feature, and a round-robin approach is used. After the first
iteration, boosting rounds follow, with each feature generating
a graph showing the prediction results of all trees. The final
model is the sum of scores generated from a series of graphs.

B. Stage-2 Inferencing
DL has gained immense popularity in recent years due

to its exceptional performance in a wide range of applica-
tions and the capability to handle large volumes of complex
data [43], [44], [45], [46]. CNN is a powerful DL tool,
which is increasingly being used in practical applications.
The efficacy of the 1-D CNN model shown in Fig. 5 has
been verified through validation on the MIT-BIH Arrhythmia
dataset, exhibiting a high degree of accuracy and sensitivity.
The hyperparameters used in this 1-D CNN model are as
follows: Seed = 1, Learning Rate = 0.001, Batch Size = 128,
and Epochs = 100. This ten-layer 1-D CNN consists of three
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Fig. 5. Baseline CNN architecture for classification.

convolutional layers, two batch normalization layers, two max-
pooling layers, one global average pooling layer, and two fully
connected layers. The input of the network is a single ECG
beat with 260 samples, and the outputs will be the different
classes. For each convolutional layer, we use the rectified
linear unit (ReLU) as the activation function. A dropout with
a probability of 0.5 was applied in layers 4, 7, and 9 to reduce
overfitting.

V. DATASET AND PREPROCESSING

The ECG records from the MIT-BIH Arrhythmia database
are used in this work [23]. This dataset is the most commonly
used dataset for evaluating ECG classifiers [24], [26], [27],
[47], [48], [49], [50], [51], [52]. Comparing methodologies
that utilize the same dataset can ensure the validity of
our results. It consists of ambulatory ECG obtained from
48 subjects. Noise in ECG signals can significantly impact
classification tasks [21], [53]. It’s crucial to ensure the
accuracy and reliability of diagnosis of different types of
arrhythmias under noisy ECG recording environments [54].
When the noise level is too high, sending data to a cloud
server can result in the data being unusable for diagnostic
applications and automated analysis [55]. In the MIT-BIH
dataset [23], signals have been filtered through a bandpass
to remove noise, with a passband ranging from 0.1 to 100 Hz,
and then digitized at a rate of 360 Hz per signal, ensuring
elimination of unwanted frequencies beyond this range. Thus,
in this case, we don’t do filtering in this work. Each record is
∼30 min long and sampled at 360 Hz.

We extracted time intervals between fiducial points (such
as RR, PR, and RT Intervals), peak amplitudes (for P and T
waves) and polarity of ECG wave segments, overall signal
shape, and so on, for feature-based ECG Stage-1 classi-
fier [16]. The overall morphology of ECG could be used
for distinguishing ECG beats [56]. It was shown that ECG
morphology could be represented using 260 samples centered
around the R peak [27]. To reduce complexity, we employed a
10× downsampled variant (i.e., 26 samples) in this study as an
additional feature. Finally, appending all individual features,
a feature vector of size 32 was created as the Stage-1 classifier
input. As seen in Fig. 6(a) and (b), this consists of 26 ECG
samples indicating the compressed morphology, four time
intervals, and two peak amplitudes/polarities. For the Stage-
2 classifier, we used ECG segmented into separate beats (260

Fig. 6. (a) Features extracted from ECG Signals and (b) 26 uniform
sampling points from QRS complex.

TABLE IV
NUMBER OF HEARTBEATS IN TRAINING, AND

TEST SET ON THE EDGE

TABLE V
NUMBER OF HEARTBEATS IN TRAINING, VALIDATION,

AND TEST SET IN THE CLOUD

samples [27]) as input. The segment is centered on the R peak
as shown in Fig. 5. Based on the AAMI standards, ECG is
mapped into five classes, that is, N, SVEB, VEB, F, Q [57].

VI. EVALUATION AND RESULT

In the evaluation process for the first stage, the feature
extraction is done by using “ecgpuwave” tool. The second
stage of validation was completed using the PyTorch frame-
work. As shown in Table IV, 70% of the total ECG beats
were used for training and the remaining for testing the EBM
classifier. The “Abnormal Rate” shown in the table indicates
the proportion of abnormal beats in the overall dataset. The
system is designed to send the abnormal beats to Stage-2
inferencing for further testing. The multistage distributed ECG
classification system expects that DtC will include all the
abnormal beats with assured high sensitivity.

The model training and testing are done using the PyTorch
platform with a Tesla T4 GPU. Table V displays the number
of ECG signals used in the process of evaluating the ten-layer
1-D CNN model. The training set consists of 70% of the whole
dataset, 15% of the whole dataset is used for validation, and
another 15% of the whole dataset for testing. The number of
FLOPs consumed in each layer is shown in Table VI.

A. Feasibility
1) Edge: It is assumed that a microcontroller nRF5340

series low energy system-on-chip (SoC) device running
at 64 MHz is employed on the edge. The cycles consumed
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TABLE VI
FLOATING POINT OPERATIONS

FOR EACH LAYER

TABLE VII
PARAMETER SETTINGS AND BINARY CLASSIFICATION

PERFORMANCE OF EBM ALGORITHM

by the EBM classifier can be estimated using the number
of features (N ) and interactions (K ), which equals N + K
multiplications and N + K + 1 additions, that is, 265 clock
cycles are taken by the classifier. Divided by the max clock
speed, the execution will be achieved within 2.47 ms.

B. Performance
Various figures of merit are used for measuring per-

formance, such as accuracy, sensitivity, specificity, and F1
score [15]. DtC is given below

DtC =
Number of Abnormal

Number of Total
× 100% (2)

where DtC represents the amount of data sent to the cloud (as
a result of being identified as Abnormal) as a percentage of
total data in the test set.

1) Stage-1 Standalone: To evaluate the standalone per-
formance of the Stage-1 EBM classifier, we experimented
with various parameter configurations of leaf nodes and
interactions. Table VII displays the results for different con-
figurations. It can be seen that more leaf nodes do not
significantly improve performance, and hence we kept only
two leaf nodes to reduce complexity. It is noted that a higher
number of pairwise interactions can improve performance and
decrease DtC at the expense of complexity.

Fig. 7 shows how detection sensitivity and complexity vary
with the number of interactions. The complexity here indicates
the total number of arithmetic operations. When increasing
the feature interactions from 100 to 300, detection sensitivity

Fig. 7. Analysis of sensitivity, complexity with respect to interactions.

Fig. 8. Feature importance analysis for Stage-1 EBM classifier.

TABLE VIII
CLOUD PERFORMANCE FOR EACH CLASS AND

THE OVERALL DATASET

increases a very small 0.82%, while the interaction increases to
400. Thus, 100 interactions may be a good trade-off between
complexity and sensitivity. In our experiment, we applied an
interaction number of 100 and a leaf node number of 2.

Compared to other traditional black-box approaches, the
EBM-based glass-box model can not only achieve high perfor-
mance with very low complexity but also add explainability
to the classifier output. Fig. 8 shows the individual feature
importance for the EBM binary ECG classifier. The pro-
cesses of training and testing the model are not conducted
independently for each subject. Therefore, the importance
of each feature remains the same for all subjects. ECG-
Morphology in the figure represents the average feature score
of all the compressed morphology samples. EBM is an additive
model where the contribution of each feature to the result is
straightforward, which offers explainability and makes it easy
for clinicians to interpret the potential cause of an ECG beat
classified as abnormal.

2) Stage-2 Standalone: The Stage-2 model was trained, val-
idated, and tested using the PyTorch platform in a standalone
fashion. During the training phase, an augmented training set
is employed, while approximately 15% of the total dataset is
used for testing. The various parameters for evaluating model
performance are reported for individual classes and the overall
model. Table VIII displays the results for individual classes
and the overall dataset.
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Fig. 9. Analysis of accuracy, sensitivity on the edge with respect to
EBM-threshold.

3) Multistage Classifier: In multistage classification,
an EBM classifier is employed in Stage-1 and a CNN
classifier in Stage-2. It’s important to note that while EBM
is our current choice for Stage-1, our proposed distributed
classifier is agnostic of the exact models used. We remain
open to exploring and incorporating other models based on
evolving needs and objectives. The ECG heartbeats deemed
abnormal by Stage-1, the entire heartbeat consisting of
260 samples, will be sent to Stage-2 for reclassification
by the Stage-2 classifier. If the logistic regression value
exceeds the EBM threshold, the ECG beat is classified as
abnormal, whereas a lower value is classified as normal.
The EBM-threshold is used to regulate the amount of data
retained at the endpoint and transmitted to the next stage, and
this experiment is carried out 100 times with EBM-thresholds
evenly distributed between 0 and 1. All signals consisting of
260 samples identified as abnormal in the first stage will be
forwarded to the second stage model for classification.

In the experiments, we used the “ecgpuwave” package to
extract those features, which is a package of the waveform
database (WFDB) software package designed specifically for
processing ECG signals [58]. Using this package, users can
accurately detect and label heartbeat positions in ECG signals,
extract crucial features related to heartbeat waveforms, and
calculate time intervals between adjacent heartbeats.

The edge accuracy and sensitivity with regard to the EBM
threshold are plotted in Fig. 9. Accuracy increases rapidly
as the EBM threshold increases from 0 to 0.1, after which
it stays at about 98%, while sensitivity decreases as the
threshold increases. In Stage-1, it is important not to miss
abnormal beats. Therefore we propose to prioritize optimizing
for sensitivity by using a lower EBM-threshold at the expense
of Stage-1 accuracy. Any beat incorrectly labeled abnormal
will be reclassified by the Stage-2 CNN classifier with higher
accuracy. For a standalone Stage-1 classification, an EBM-
threshold between 0.1 and 0.2 is an ideal trade-off as it
achieves a good balance between accuracy and sensitivity
performance.

Fig. 10 plots multistage system accuracy and sensitivity
with respect to DtC. The plot shows that by transmitting a
mere 41% of data to the cloud (EBM-threshold set to 0.01),
an accuracy and sensitivity of 98% can be achieved. This per-
formance is comparable to a high-performance CNN classifier
deployed fully in the cloud, as shown in Table VIII while
saving nearly 60% of communication bandwidth and other
resources. The proposed two-stage system allows a graceful

Fig. 10. Analysis of system accuracy, sensitivity with respect to DtC.

Fig. 11. Analysis of system accuracy, sensitivity, DtC, energy with
respect to EBM-threshold.

degradation in performance and achieves 98% accuracy and
95% sensitivity when DtC is at a mere 18% (EBM-threshold
set to 0.2). In practical scenarios, DtC selection should be
based on real-time system requirements. The fact that the pro-
posed multistage system achieves a comparable performance
of a high-performance classifier while requiring much less
data transfer and system resources verifies the utility of our
approach.

Setting a lower EBM-threshold results in a higher DtC
value, leading to higher sensor energy consumption. However,
this yields the highest values for both system accuracy and
sensitivity. The system sensitivity is significantly influenced by
the EBM-threshold, while the system accuracy tends to vary
more gradually. In practical scenarios, if the device can provide
sufficient energy, a smaller EBM-threshold is preferred to
achieve higher performance. However, if the sensor energy or
communication bandwidth (DtC) is limited, a tradeoff between
energy, DtC, and performance needs to be considered when
determining the EBM-threshold.

Compared to the single-stage multiclass classifier in
Table IX, our proposed approach not only outperforms it in
terms of accuracy and sensitivity but also uses less sensor
power, requires less overall computations, and achieves infer-
encing more quickly. The system performance of our model
in both two-class and five-class classifications are displayed in
Table IX. The five-class classification results vary depending
on the DtC value. In [8], [20], [48], and [59] have reported
high performance. However, [20] doesn’t take the sensitivity
into account for the evaluation and test the performance
using proprietary data, [8] has high complexity in feature
extraction, [48] classify SVEB and VEB, and [59] classify
as ventricular and nonventricular beats, instead of normal and
abnormal. Lai et al. [59] combines four databases rather than
drawing conclusions based on a single database, and allocating
only 10% of the entire dataset as the test set may lead
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TABLE IX
PERFORMANCE COMPARISON OF THE PROPOSED MULTISTAGE CLASSIFIER AND OTHER MULTICLASS APPROACHES

to the possibility of overfitting. Yan et al. [47] exclude four
records before the evaluation, so the reliability of the results
is uncertain. Also, the performance presented is impractical for
real-world applications, given its low accuracy and sensitivity.
Hannun et al. [6] utilized a proprietary dataset and achieved
a low level of sensitivity. The training and testing of [6],
[26], [52], and [51] do not follow AAMI standards. In [26],
[30], and [52] are primarily focused on rhythm-based analysis
rather than beat-by-beat classification. In [49], [52], and [24]
achieve an accuracy that is approximately 1.5% higher than
or comparable to ours, while the sensitivity is lower by 2% to
around 30% than us. While [27], [50] achieve relatively high
performance, our results surpass theirs.

C. Latency
The latency of a standalone cloud-based CNN classifier is

denoted as Lc, including the time for acquisition, transmission,
and inferencing of the data in the cloud classifier, and the
latency of a standalone edge-based EBM classifier is denoted
as Le, including the time for acquisition and inferencing of
the data in the edge classifier. Upon the implementation of
our proposed distributed classifier, the average latency of the
proposed multistage classifier with different DtC is calculated
by the following equation:

L = DtC · Lc + Le. (3)

Due to the significant contribution of transmission latency,
it is plausible to disregard Le for analysis. According to the
selected data points in Fig. 10, when the DtC is 41%, an aver-
age reduction of 59% in latency can be achieved. Similarly,
when the DtC is 18%, an average reduction of 82% in latency
can be attained. As the DtC decreases, a greater reduction in
latency can be achieved, resulting in faster inferencing.

D. Energy Estimation
In this section, we estimate the energy consumption of the

Stage-1 classifier, assuming it is implemented as a standard
cell ASIC in 28 nm FD-SOI technology. The total energy
consumption on the edge is estimated by assuming that
the energy required for a 16-bit multiplication accumulation
(MAC) operation is 0.39 pJ [60], and for a 16-bit adder is

around 20 fJ [61]. The QRS detector consumes an estimated
19 nJ per beat [62]. EBM classifier consumes 51.5 pJ for
each beat classification since it does N + K multiplications
and N + K + 1 additions, which equals N + K MAC and
1 addition. A total of 0.63 mJ is used in the preliminary binary
ECG classification on the edge for our test set’s 32 825 beats.

For wirelessly transmitting data to the cloud, it is estimated
that the energy required is approximately 143 nJ/bit when
using a Bluetooth transceiver [63]. The quantity of data that
needs to be transferred to the cloud is dramatically decreased
after passing the EBM classifier, leaving the majority of
the normal ECG beats at the edge. For all the MIT-BIH
records, the total amount of data to be transmitted wirelessly
is approximately 34.3 MB in the cloud-native system, which
requires an estimated total of 41.15 J. With our proposed
technique, only 11.6 MB of data has to be transmitted to the
cloud for processing after stage-1 EBM classification. Con-
sequently, an estimated 3× reduction in energy consumption
is achieved, as only one-third of the data is required to be
sent to the cloud. Fig. 11 illustrates more energy can be saved
if the EBM-threshold is increased, as fewer data need to be
transmitted to the cloud for further classification.

VII. CONCLUSION

This article presents a novel, multistage ECG classifier for
distributed inferencing over multiple processing in the edge-
cloud continuum. The proposed system is capable of obtaining
an extremely high accuracy and sensitivity of 99.64% and
99.01% for binary classification. The experimental results
indicate that when the classification stages are staggered across
edge and cloud, the average inference latency can be reduced.
When only 40% of the data is sent, the average inferencing
latency is reduced by ∼60%. Furthermore, the latency can be
reduced by as much as ∼80% when sending 20% of the data.
By only transmitting ECG beats that are abnormal to the cloud,
an estimated 3× reduction in energy consumption is achieved
using the proposed distributed approach, consequently leading
to extended battery life.
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