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Abstract—Shoulder rehabilitation is considered one of the
most effective treatments for restoring functional abilities,
reducing shoulder pain, and enabling the leading of an active
life, improving mobility, strength, and endurance. However,
the burdens of travel and time may prevent patients from
taking part in such rehabilitation programs. The increased
availability of wearable sensors and the development of
machine learning (ML) algorithm has shown the feasibility
of remote home-based rehabilitation therapy. In this study,
we proposed a wearable system based on three magneto-inertial sensors to classify shoulder rehabilitation exercises.
The classification has been performed by five different supervised ML algorithms [i.e., k -nearest neighbors (k-NNs),
support vector machine (SVM), Naïve Bayes (NB), decision tree (DT), and random forest (RF)] to find out the most
performant one. The feasibility of the wearable system was assessed on 19 healthy subjects during six rehabilitation
exercises. Each exercise was performed six times, for a total of 684 samples. The data were analyzed and classified
using the five mentioned classification models. Performances of the algorithms in accurately classifying exercise activity
were evaluated with the k-fold cross-validation method and the nested validation method. The results demonstrated the
effectiveness of the proposed algorithms in recognizing all the exercises. Features derived from acceleration, angular
velocity, and orientation data were shown to reach the optimal predictive accuracies. Future work should focus on
evaluating the performance of such systems on data acquired on patients with musculoskeletal disorders and on the
inclusion of more shoulder rehabilitation exercises in the protocol.

Index Terms— Activity recognition, classification, inertial measurement unit, machine learning (ML), rehabilitation
exercises, shoulder, wearable sensors.

I. INTRODUCTION

SHOULDER disorders (SDs) represent the most fre-
quently reported musculoskeletal disorders, entailing pain,

reduced functionalities, and a decreased quality of life [1].
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An adequate rehabilitation protocol represents the primary
therapeutic protocol to guarantee the return of complete shoul-
der function [2], [3], [4]. Different treatment methods exist to
execute medical rehabilitation. Among these, physical ther-
apy, also known as physiotherapy, aims to restore functional
abilities and enable the leading of an active life, improving
mobility, strength, and endurance [5], [6]. Traditional shoulder
rehabilitation methods consist of a therapist–patient one-to-
one activity and on the execution of physical exercises [7].
Physical therapists actively monitor and direct patients through
their rehabilitation process, while they are in a hospital or
clinical setting [6]. The traditional rehabilitation process is
time-consuming, requires going directly to the physiotherapy
center for each session, is restricted by the availability of
trained clinicians, and places a significant economic burden
on patients [8]. Therefore, the effectiveness of rehabilitation
is primarily dependent on the patient’s engagement, which
can be affected by a variety of factors [8]. Considering the
increasing incidence of SD and progressive population aging,
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during the last decades, there is a demand for an efficient
home-based rehabilitation therapy [9]. Patients perform the
prescribed treatment independently in their home environment.
However, unlike sessions conducted under the supervision of a
therapist, successful self-home therapy demands a significant
increase in commitment from the patients [6]. According to the
European Musculoskeletal Conditions Surveillance and Infor-
mation Network, the breakthrough for an effective treatment
of muscular skeletal disorders is the proactive participation
of the patient. Challenges that impact the effectiveness of
home-based programs include adherence to the prescribed
rehabilitation program and exercise correctness. Evidence sug-
gests that patients often do not fully comply to the prescribed
program of exercise [6], [10]. Consequences of a nonadherence
to the prescribed rehabilitation program are the prolongation
of the duration of treatment and the risk of relapse. In addition,
without the supervision of their therapist, many patients per-
form their exercises incorrectly [6], [11]. Therefore, objective
and quantitative assessment of adherence to exercise programs
and of exercise performance are necessary to improve rehabili-
tation outcomes [12], [13]. Quantitatively assessing adherence
and the execution of exercises offers several advantages in
monitoring and improving the overall efficacy of rehabilitative
treatments. Such measures enable clinicians to evaluate the
extent to which patients are adhering to therapeutic pre-
scriptions, allowing timely interventions to provide feedback,
patient engagement, and adjustments to the ongoing rehabili-
tation program based on individual needs. A variety of sensors
have been introduced to address the demand for gathering
objective data of movement quality in home settings (see
Fig. 1) [14], [15]. However, most of them are often not suitable
for home-based rehabilitation [16], [17]. Optical sensors are
widely used to monitor human activities, but the effective use
of these systems is not practical in many indoor environments
since they suffer from lighting variations, environmental occlu-
sion, and space constraints [18], [19]. Nowadays, wearable
systems can be directly attached to the user ensuring all-time
data collection [13], [20], [21], [22], [23], [24]. These solutions
may allow the tracking of patient functioning and recovery
during rehabilitation protocol [25]. Among several sensors,
magneto-inertial measurement units (M-IMUs) are spreading
to develop wearable systems since they are portable, inexpen-
sive, and unobtrusive [1], [21], [26], [27]. Data recorded by
IMUs components (e.g., accelerometers [28], [29], [30], [31],
a combination of accelerometers and gyroscopes [17], [24],
[32], [33], and orientation data [32], [34], [35], [36]) are used
to the automatic detection of physical activities with different
algorithms. Regarding applications to shoulder motion, several
studies have used machine learning (ML) algorithms based on
M-IMUs’ data [11], [16], [17]. Heterogeneity among studies
is relative to the type, the number, and the placement location
of the sensors on the human body, as well as the executed
shoulder exercises and the implemented ML algorithms [37].
Regarding the set of exercises executed, only a few movements
have been investigated. Some studies limit their analysis only
to planar motion movements, such as flexion/extension [29],
[33], [38], [39], [40], abduction/adduction [29], [33], [38],

Fig. 1. Wearable sensors for rehabilitation purpose.

[40], and internal/external rotations [29], [36], [38], [40].
Instead, other studies include also more complex functional
tasks, such as touch ear, use fingers to climb wall, pendulum,
and hand-to-back [28], [33], [36], [38], [39], [40]. However,
it is still challenging to recognize the exercise performed by
the subjects in an unstructured environment.

The objective of this study is to combine a custom wearable
system based on three M-IMUs with supervised ML algo-
rithms to classify six of the most relevant exercises in shoulder
rehabilitation [41]. The innovative configuration of the pro-
posed wearable system allowed for a comfortable solution with
an easy and fast setup, offering a practical solution for moni-
toring shoulder rehabilitation sessions. To understand how the
selected algorithm influences the performance of the system in
terms of exercise classification, we analyzed the experimental
data recorded on 19 subjects performing six exercises of
shoulder rehabilitation with five ML algorithms [i.e., k-nearest
neighbors (k-NNs), support vector machine (SVM), Naïve
Bayes (NB), decision tree (DT), and random forest (RF)].
This study poses the basis for the possible application of
the proposed system for monitoring home-based rehabilitation
sessions. The ease of setup and the modularity of the proposed
system enhance the patient’s ability to self-position the sensing
units without requiring operator support. In the future, this
solution may provide complete and useful data to the clinicians
to monitor patient progress remotely and correct the ongoing
rehabilitation process if needed. This enables to customize
rehabilitation programs based on individual patient needs,
improving the patients’ outcomes.

This article is structured as follows. Section II describes the
experimental setup used, the dataset, and the human activity
recognition workflow. Section III presents the results, and
finally, Section IV discusses the results and concludes this
article.

II. METHODS AND MATERIALS

A. M-IMU-Based Wearable System
A wearable system equipped with three M-IMUs (Xsens

DOT, Xsens Technologies, Enschede, The Netherlands) has
been used in this study [42]. Each Xsens DOT incorpo-
rates 3-D-gyroscopes, accelerometers, and magnetometers.
Xsens DOTs are small (36.3 × 30.4 × 10.8 mm—
length × width × height), lightweight (10.8 g), and wireless
sensors. The embedded processor in the sensors handles
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Fig. 2. Xsens DOT placement. The three straps were wrapped around
the segments of interest. The circles show the coordinate systems of the
three sensors: red, green, and blue arrows represent the X -axis, Y -axis,
and Z -axis, respectively. The dot indicates an outgoing arrow, while the
cross indicates an incoming arrow.

sampling, calibration, and strap-down integration (SDI) of
inertial data. Raw data are initially collected at high frequency
and then downsampled to 60 Hz for transmission.

The Xsens DOTs communicated wirelessly via Bluetooth
5.0 with a smartphone (OnePlus 8T–8 GB RAM + 128 GB
ROM, processor Snapdragon1-865) running the Xsens DOT
App for Android. Synchronization of the sensors is initi-
ated through the application, requiring approximately 14 s.
This process ensures that all sensor data are accurately
time-synchronized to a common sensor time base.

The wearable system is characterized by an easy and fast
setup. The three M-IMUs were fastened to body districts
using elastic straps provided by Xsens to ensure reliable
positioning by preventing slippage with the underlying skin.
Each sensor was first placed horizontally inside the pocket
of the corresponding strap, with the Y -axis pointing upward.
Then, the three straps were wrapped around the segments of
interest. Fig. 2 shows the final positions of the sensors in the
wearable system. One sensor was positioned on the thorax over
the flat portion of sternum, with the Y -axis pointing upward
cranially, the Z -axis pointing away from the body, and the
X -axis pointing laterally to the left. Another sensor was placed
slightly posterior on the upper arm near the elbow, with the
Y -axis pointing upward, the X -axis pointing laterally to the
right, and the Z -axis to complete the right-handed coordinate
system. The remaining sensor was placed on the forearm’s
dorsal side near the wrist, with the Y -axis pointing upward, the
X -axis pointing away from the body, and the Z -axis pointing
laterally to complete the right-handed coordinate system.

B. Experimental Protocol
Nineteen healthy volunteers (five male and 14 female) with

no shoulder musculoskeletal disorders were enrolled in this
study. All participants were right-handed. The characteristics
of the younger cohort are (mean ± standard deviation): age,
25.2 ± 1.7 years; height, 167.9 ± 8.5 cm; and weight, 61.6 ±

11.9 kg. Specifically, for female volunteers, the age ranged
from 23 to 28 years, the height ranged from 156 to 170 cm,

1Trademarked.

TABLE I
SHOULDER PHYSIOTHERAPY EXERCISES FOR DATA COLLECTION

Fig. 3. N-pose: anatomic stance with arms along the sides, and the
palms of the hands facing internally. (a) Frontal view. (b) Right side view.

and the weight ranged from 46 to 80 kg. Instead, for male vol-
unteers, the age ranged from 24 to 26 years, the height ranged
from 170 to 187 cm, and the weight ranged from 60 to 88 kg.

The experiments have been carried out at the biomechanical
laboratory of the Fondazione Policlinico Universitario Cam-
pus Bio-Medico of Rome. Before experimental sessions, all
volunteers read and signed an informed consent approved by
the Ethical Committee of University Campus Bio-Medico of
Rome (protocol code: 09/19 OSS ComEt UCBM). Then, the
volunteers were instructed on the protocol consisting of a
static trial and six dynamic tasks. The static recording, known
as N-pose, corresponds to an anatomic stance with the arms
at the sides and the palms of the hands facing internally
(Fig. 3). Six shoulder rehabilitation exercises were selected
from the guidelines developed by the American Society of
Shoulder and Elbow Therapists [41]: Task 1) upright active
flexion/extension; Task 2) upright active flexion/extension with
a weight (2 kg); Task 3) external rotation with the shoul-
der at 90◦ of adduction, holding a weight (2 kg); Task 4)
towel slide; Task 5) external/internal rotation self-assisted
with a stick; and Task 6) abduction/adduction (see Table I).
Under supervision, each subject was required to complete six
consecutive repetitions of each task at a comfortable and self-
selected speed. Therefore, a total of 684 shoulder movements
(19 subjects × six tasks × six repetitions) were analyzed.

C. Data Analysis
The data analysis was performed offline in MATLAB

environment (version R2022b, TheMathWorks2 Inc., Natick,
MA, USA). The ML approach is composed of the following

2Registered trademark.
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steps: 1) signal preprocessing; 2) signal segmentation and
labeling; 3) features extraction; 4) features standardization and
selection; and 5) classification and validation.

1) Preprocessing: The data of delta angle, delta velocity,
and 3-D orientation (expressed by quaternions) were collected
with a sampling frequency of 60 Hz. A low-pass fifth-order
Butterworth filter with a cutoff frequency of 2 Hz was applied
to delta angle and delta velocity data to remove high-frequency
noise. Angular velocity and acceleration were obtained from
the filtered data of delta angle and delta velocity, respectively.

2) Calibration and Euler Angle Estimation: To estimate joint
angles, it is necessary to measure the relative orientation
of two adjacent body segments forming the joint [43]. The
output quaternion from each M-IMU represents the orientation
of the sensor coordinate system with respect to the local
Earth-fixed reference coordinate system. These outputs cannot
be converted into clinically interpretable data because the
coordinate frames of the sensors are not aligned with the
anatomical coordinate frame of the respective body segment
to which they are attached [26], [27]. The aim of the sensor-
to-segment calibration is to express the relative orientation
of each sensor to the segment to which it is attached [44].
In this study, the static sensor-to-segment calibration algorithm
was performed by preprocessing data acquired from Xsens
DOTs over the static N-pose acquisition [43], [45]. After the
calibration quaternions have been calculated, joint rotations
were estimated as the relative orientation of two adjacent
body segments [23]. Specifically, humerothoracic (HT) joint
angles were defined as the orientation of the humerus body
segment relative to the thorax body segment, whereas elbow
joint angles were defined as the orientation of the forearm body
segment relative to humerus body segment [46]. Subsequently,
a conversion from quaternion to rotation angles was performed
using different Euler rotation sequences. The HT joint angles
were evaluated using the Cardan sequence XZY for Task 6
and the Cardan sequence ZXY for all the other tasks [47],
whereas the elbow joint angles were assessed using the Cardan
sequence ZXY during all the exercises [27].

3) Signal Segmentation and Labeling: A manual segmen-
tation was first performed to isolate every single repetition
performed by each subject. The signal considered in the
subsequent analysis was the one between the beginning of
each repetition of the movement and the end of the same
repetition (Fig. 4). Each isolated repetition of each task was
considered as a sample, resulting in 684 overall (114 samples
for each task). Since supervised learning was implemented,
a unique label was attributed to each sample (see Table I): FE
for Task 1, FEd for Task 2, ERs for Task 3, SL for Task 4, EIR
for Task 5, and AA for Task 6, providing six activity classes
in total.

4) Features Extraction: Afterward, a feature extraction pro-
cess was performed, which consisted of providing the most
relevant information that will have a crucial role in the
classification process [48]. Specifically, the following features
were extracted: variance, mean, standard deviation, median,
maximum value, minimum value, range, root mean square,
interquartile range (between 25th and 75th percentiles), corre-
lation coefficient, kurtosis, and skewness. These calculations

were automated and carried out for each sample. Since one
of the goals is to show and compare the effectiveness of
different data in human activity recognition when they are
used separately, these features were extracted from the triaxial
accelerometer data, the triaxial gyroscope data, the quaternion
data, and from the Euler angles of HT and elbow joints.

5) Features Standardization and Selection: Then, features
standardization was conducted according to the following
equation, so they were scaled to zero mean and unit variance.
Standardization allows all features to contribute equally to the
classification process

x ′
=

x − µ

σ
(1)

where x and x ′ are the original and normalized features,
respectively, and µ and σ are the mean and standard deviation
of the x signals, respectively. Feature selection constitutes
an essential phase for improving classification accuracy [33],
[48]. Although all the features could be useful to represent
the data, it is not a good procedure to employ a large
number of features. The objective of feature selection is to
identify a subset of relevant features that are highly informative
regarding classification process and eliminate irrelevant and
redundant attributes. This involves reducing the complexity of
the model, obtaining good generalization to avoid overfitting
and avoid the curse of dimensionality [6], [49]. The Relief-F
feature filtering method was implemented in this study to
determine the most appropriate feature sets. This algorithm
assigns a weight value W to each feature depending on how
well its value distinguishes between instances, and it ranks
them according to feature relevance scores [38], [49]. After
setting of an empirical threshold, only features that have a
weight greater than it are selected, whereas those below the
threshold are excluded.

6) Classification and Validation Method: The classifiers cho-
sen for this study represent a range of supervised ML models
successfully implemented in previous shoulder motion classi-
fication studies. The five supervised ML classification models
were: k-NN, SVM extended for multiple class classification
scenario (using the one-versus-one method), NB, DT, and RF
with an ensemble of 180 trees [50], [51].

The entire dataset was divided into two portions, a train-
ing part (90% of the dataset) and a test part (10% of the
dataset). The data of the remaining 10% of the dataset (two
subjects) were extracted to further validate the effectiveness
of the classification models. The training of the classifiers
on the other 17 subjects was performed using two different
validation methods. K-folds cross validation (CV) randomly
distributes all labeled samples into K -folds of equal size [52].
Stratification was employed to ensure that each fold was
representative of the cohort. Training is performed on data
contained within K − 1 folds, and testing is performed on the
remaining fold. This process is repeated K times, to ensure
that all data are used for training and testing once. At the end,
the K results obtained for all the experiments were averaged to
provide a single estimation of training performances (Fig. 5).
Nested CV (NCV), also known as double CV, consists of
splitting data into K outer folds. Each fold is held out for
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Fig. 4. Signal segmentation of quaternion data, accelerometer data, angular velocity data, Euler angles of HT joint, and Euler angles of elbow
joint, acquired by forearm M-IMU during the six repetitions of Task 1.

Fig. 5. K -fold CV. Split the data (90% of the entire dataset) into K -folds
(K = 5 as an example). Training is performed on data of K − 1 folds,
and testing is performed on the remaining fold.

Fig. 6. Nested CV. Split the data (90% of the entire dataset) into K
outer folds (K = 5 as an example). Then, all the K − 1 folds are merged
and split into inner folds (five inner folds for example). Feature selection
and training are performed using the inner subtraining folds, and testing
is performed on the remaining inner fold. Use the best inner training
model, including features extracted to train the classification model on
the entire outer training dataset and test on the outer testing fold.

the test, while the remaining K − 1 folds are merged and
further split obtaining a subtraining and validation datasets
(Fig. 6). Within each of these subfolds, the classification
models are trained on the subtraining dataset and tested on
the validation dataset. Then, the best subset of features with
the best performance across the validation datasets is selected
and used to train the classification model on the entire set
of the outer training dataset. The model is then tested on the
outer testing dataset [49], [52].

7) Performance Metrics: A confusion matrix (CM) is a table
that enables the visualization of the classifier’s performance in

Fig. 7. Relationship between the features selected by relief-F algorithm
at different threshold values and classifier accuracies. SVM: support
vector machine; k -NN: k -nearest neighbors; NB: Naïve Bayes; DT: deci-
sion tree; and RF: random forest.

classifying the label of a test set for which the true labels are
known. The rows of the CM correspond to the true classes,
whereas the columns correspond to the predicted classes. The
diagonal cells represent those samples that are correctly classi-
fied, while the off-diagonal values are the incorrectly classified
samples. In particular, TP is true positive, which represents the
number of positive observations that were predicted as positive
by the model; FP is false positive, which represents the number
of negative observations that have been predicted as positive by
the model; FN is false negative, which represents the number
of positive observations that were predicted as negative by the
model; and TN is true negative, which represents the number
of negative observations that were predicted as negative by the
model [53].

The classification performances of the models were assessed
in terms of different metrics, which are based on the CM.
The quality measures evaluated were accuracy (Acc), both
overall and balanced, specificity (Sp), sensitivity (Se), recall,
or precision (Pr). Accuracy measures the overall effectiveness
of a classifier and is computed as the ratio of correctly
classified samples and the total number of samples. Specificity
measures the ability of the classifier to detect negative labels,
whereas sensitivity measures the ability of the classifier to
detect a desired label [6].
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Fig. 8. Confusion matrices for activity recognition using the fivefold CV. Shoulder exercises are given as follows. 1: flexion/extension without
a weight. 2: flexion/extension with a weight. 3: external rotation with the shoulder at 90◦ of adduction, holding a weight (2 kg). 4: towel slide.
5: external/internal rotation self-assisted with a stick. 6: abduction/adduction. (a)–(e) Confusion matrices for the k -NN classifier, SVM classifier,
NB classifier, DT classifier, and RF classifier, respectively.

TABLE II
METRICS OF PERFORMANCE USING FEATURES EXTRACTED FROM ACCELERATION, ANGULAR VELOCITY,

AND QUATERNION DATA, IMPLEMENTING FIVEFOLD CV

TABLE III
METRICS OF PERFORMANCE USING FEATURES EXTRACTED FROM EULER ANGLE DATA OF THE

HT AND ELBOW JOINTS, IMPLEMENTING FIVEFOLD CV

TABLE IV
OVERALL METRICS OF PERFORMANCE USING DIFFERENT FEATURES SETS

In addition, the Fβ-score was also calculated and defined as
follows:

Fβ-score =

(
1 + β2

)
· (Pr · Se)

(Pr + Se)
(2)

where β is a weighting factor that controls the degree of
importance of sensitivity and precision. This parameter is a
positive real number. In this article, β was set equal to 1,
to give the same importance to both sensitivity and precision.

Other metrics, including the Matthews correlation coeffi-
cient (MCC), the Fowlkes–Mallows index, the Youden index
(or informedness), and the prevalence threshold (PT), were

also computed to provide a more comprehensive assessment
of the model’s performance [54], [55].

Furthermore, the receiver operating characteristic (ROC)
curve provides a graphical representation of the classification
performances [56], [57]. It represents the relation between
the false positive rate (FPR) and the true positive rate
(TPR), which can be calculated from the sensitivity and the
specificity

FPR = 1 − Sp (3)
TPR = Se. (4)
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TABLE V
PERFORMANCE METRICS FOR EACH CLASSIFIER AND FOR ALL THE TASKS PERFORMED USING TENFOLD CV METHOD

TABLE VI
PERFORMANCE METRICS FOR EACH CLASSIFIER AND FOR ALL THE TASKS PERFORMED USING THE NESTED

CV METHOD (WITH TEN INNER AND OUTER FOLDS)

Fig. 9. Confusion matrices for activity recognition using the tenfolds CV. Shoulder exercises are given as follows. 1: flexion/extension without
a weight. 2: flexion/extension with a weight. 3: external rotation with the shoulder at 90◦ of adduction, holding a weight (2 kg). 4: towel slide.
5: external/internal rotation self-assisted with a stick. 6: abduction/adduction. (a)–(e) Confusion matrices for the k -NN classifier, SVM classifier,
NB classifier, DT classifier, and RF classifier, respectively.

It has been demonstrated that the area under the ROC
curve (AUC) is an excellent indicator of the classification
performance because it visualizes the classifier performance
as a curve rather than a single scalar number, which conveys
more information than many scoring measures.

III. RESULTS

The implementation of the relief-F algorithm as feature
selection method involves the setting of threshold. The features
with a weight superior to this threshold are selected, whereas
all features lower than the threshold are excluded.

In general, the higher the threshold, the lower the number of
selected features. To examine the impact of the number of fea-
tures on the performance of motion recognition of the shoulder
exercises, different experiments were executed, including a
different number of features. Starting from a low threshold
value, this was incremented by 0.010. The performance of all
the classifiers was evaluated for each i th iteration. Fig. 7 shows
the relationship between the number of retained features at
each iteration and the accuracy values of the five classification
models. The trends for all the classifiers are generally similar.

An increase in a number of features implicates an increase in
the classification accuracy of all the classifiers. At the end,
the threshold was set at 0.09 because the further addition of
features did not provide great improvement to the classifiers’
performance.

Accurate classification of shoulder exercises is reliant on
suitable types of sensor data. To figure out the most accurate
sensor data for activities’ recognition, a comparison was made
between the results obtained with different sets of features
as input. Tables II and III summarize, respectively, the per-
formances employing features extracted from acceleration,
angular velocity, and quaternion data and employing features
extracted from Euler angles of the HT and elbow joints. Then,
the averages of these metrics were calculated considering all
the classifiers (Table IV).

The use of inertial data obtained 93.05% of overall accuracy,
92.82% of F1 score, 93.05% sensitivity, 98.61% specificity,
and 93% precision. Instead, the use of Euler angles obtained
lower values, i.e., 70.28% of overall accuracy, 67.64% of
F1 score, 70.28% sensitivity, 94.06% specificity, and 72.12%
precision.
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Fig. 10. Confusion matrices for activity recognition using the nested CV (with ten inner and outer folds). Shoulder exercises are as follows.
1: flexion/extension without a weight. 2: flexion/extension with a weight. 3: external rotation with the shoulder at 90◦ of adduction, holding a weight
(2 kg). 4: towel slide. 5: external/internal rotation self-assisted with a stick. 6: abduction/adduction. (a)–(e) Confusion matrices for the k-NN classifier,
SVM classifier, NB classifier, DT classifier, and RF classifier, respectively.

Fig. 11. ROC curves and AUC values using the fivefolds CV. (a)–(e) ROC curves for the k -NN classifier, SVM classifier, NB classifier, DT classifier,
and RF classifier, respectively.

Fig. 12. ROC curves and AUC values using the tenfold CV. (a)–(e) ROC curves for the k -NN classifier, SVM classifier, NB classifier, DT classifier,
and RF classifier, respectively.

Fig. 13. ROC curves and AUC values using the nested CV (with ten inner and outer folds). (a)–(e) ROC curves for the k -NN classifier, SVM
classifier, NB classifier, DT classifier, and RF classifier, respectively.

To better investigate the approach of using the features
extracted from acceleration, angular velocity, and quater-
nion data as input to the classifiers, a comparison of
the performances was carried out implementing different
validation methods: fivefolds CV, tenfolds CV, and the nested
CV (with ten inner and outer folds). Tables II, V, and VI
detail the performance metrics for each classifier with all
these validation methods. High values of average performance
metrics were obtained in every cases. Results point out that
the employed classification protocol is efficient at recognizing
the six shoulder exercises with overall accuracy values ranging
between 84.72% and 98.61% implementing the fivefold CV,

between 83.33% and 100% implementing the tenfold CV, and
between 87.50% and 100% implementing the nested CV.

In addition, Tables VII–IX compare the accuracies in clas-
sifying each class separately and, then, the averages of
those values. Figs. 8–10 show the related confusion matrices,
whereas Figs. 11–13 show the ROC curve graphs and the
related values of the AUC of all the classifiers.

Fig. 14 shows the features extracted with the proposed
feature selection method. The three different columns indicate
how many features are related to which data. In terms of
percentage, by averaging the values obtained from the three
validation methods, the relief-F algorithm selected 53.67%
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TABLE VII
RECOGNITION ACCURACY FOR ALL SIX SHOULDER EXERCISES

IMPLEMENTING FIVEFOLD CV METHOD

TABLE VIII
RECOGNITION ACCURACY FOR ALL SIX SHOULDER EXERCISES

IMPLEMENTING TENFOLD CV METHOD

TABLE IX
RECOGNITION ACCURACY FOR ALL SIX SHOULDER EXERCISES

IMPLEMENTING THE NESTED CV METHOD (WITH TEN

INNER AND OUTER FOLDS

Fig. 14. Percentage of selected features with the relief-F algorithm.
In sequence, from left to right: implementing fivefold CV, implementing
tenfold CV, and implementing nested CV (ten inner and outer folds).

of features from the quaternion data, followed by 42.33%
of features extracted from acceleration data. Only 4% of the
features were the ones related to angular velocity data.

IV. DISCUSSION AND CONCLUSION

This study investigated the potential application of a wear-
able system based on three M-IMUs in classifying six shoulder
rehabilitation exercises. The use of Euler angles of HT and
elbow joints can be interesting as they can better discriminate
the assessed exercises. However, this attitude representation
suffers from a gimbal lock problem. Orientation singularities
can make Euler angles unsuited to correctly represent the
different activities in some cases, and consequently, they will
produce less accurate results. Indeed, Tables III and IV show
that the use of the features set related to Euler angles decreases

the overall recognition accuracy (70.28%). This indicates
that the inertial data contain more discriminant information
than the Euler angles in human activity recognition. Zmitri
et al. [32] performed the same analysis implementing the
leave-one-out CV technique, obtaining lower accuracy value
when using Euler angles data (80.3%) than when using quater-
nion data (87.9%).

The results shared above demonstrate the effectiveness of
the proposed ML algorithms in classifying shoulder rehabili-
tation exercises. High recognition performances were obtained
with all the implemented validation methods. The experi-
mental results indicate an excellent recognition rate and a
high level of agreement between the classification results and
the true labels. Table II shows the performances of all the
classifiers implementing the fivefold CV. In this validation
approach, the k-NN classifier achieved an overall accuracy
of 84.72%, the SVM classifier attained 93.06%, both the
NB and DT classifiers achieved an accuracy of 94.44%, and
the RF achieved an overall accuracy of 98.61%. Averaged
accuracies were notably higher for most classifiers, with the
k-NN reaching 94.91%, and both the NB and DT achiev-
ing 98.15%, while the RF reached an outstanding 99.54%.
The SVM classifier demonstrated an averaged accuracy of
97.69%, exceeding the reported accuracy in a comparable
study (96.85%) where five exercises were classified [28].
The RF classifier performed significantly better than all the
other ones with an overall and an averaged accuracy equal to
98.61% and 99.54%, respectively. It achieves high values also
for the other metrics, such as 98.61%, 98.61%, 99.72%, and
98.72% for F1 score, sensitivity score, specificity score, and
precision score, respectively. In addition, the other metrics,
including 86.81% for MCC, 88.81% for FM, 0.0191 for PT,
and 0.9833 for Youden, indicated perfect classification results.

The implementation of the tenfold CV method improves
the classification performances of almost all the classifiers.
Table V shows that an overall accuracy equal to 87.50%,
88.90%, 94.44%, and 100% was achieved by the k-NN, the
SVM, the NB, and the RF, respectively. The other metrics were
also high for these four classifiers, as all specificity scores
exceeded 97.50%, all precision scores exceeded 87.97%, all
F1 scores exceeded 86.69%, and all sensitivity scores exceeded
87.50%. The RF classifiers demonstrated exceptional perfor-
mance, accurately classifying all the labels of the test dataset
and achieving 100% for all the metrics, with the PT metric
of 0, indicating perfect classification.

The results obtained by the RF in this study surpassed
those reported in other studies [29], [36], [38]. The highest
performances achieved by Bavan et al. were 97.2% of accu-
racy, reporting more challenges in classifying flexion and
abduction tasks [38]. Specifically, the RF model yielded met-
rics of 98.40% of accuracy and precision, 96.5% of sensitivity,
and 99.23% of specificity. Alhammad and Al-Dossari [29]
reported lower values achieved by the RF compared to this
study: 96.86% of accuracy and sensitivity, 97.2% of precision,
and 97.02% of F1 score. Finally, Hua et al. [36] achieved
97.4% accuracy using the k-NN classifier and 98.6% accuracy
with the RF classifier.
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The nested CV method yielded to similar results obtained
with the tenfold CV. The DT classifier improves its perfor-
mance, from 83.33% to 87.50% of overall accuracy. Table VI
shows the overall accuracies equal to 87.50%, 87.50%,
94.44%, and 100% achieved by the k-NN, the SVM, the NB,
and the RF, respectively.

Tables VII–IX and Figs. 8–13 highlight the ability of all the
classifiers to recognize each single shoulder exercise. Most
of the six rehabilitation exercises considered in this study
were classified correctly. In particular, 100% of prediction
accuracy was always obtained for Tasks 3–5 and also for
Task 6 with the SVM, NB, and RF classifiers. Since these
exercises were extremely different from each other, each one
presented easily recognizable and classifiable features. All
the classifiers encountered the greatest difficulties for the
classification of two exercises, i.e., Task 1 (flexion/extension
without a weight) and Task 2 (flexion/extension with a weight).
These two movements are the same, differing only in the use
of a dumbbell (2 kg). This misclassification could be related
to the involvement of healthy participants with no shoulder
musculoskeletal diseases that executed the two movements
in the same way. For this reason, there were no significant
differences between the sensor data acquired while performing
these two tasks. However, the averaged accuracies ranged
between 94.91% and 99.54% using the fivefold CV, between
94.44% and 100% using the fivefold CV, and between 95.83%
and 100% using the nested CV. These results are coherent with
the AUC ones. The AUC values for Tasks 3–5 were always
equal to 1, meaning that the TPR was equal to 1 and the
FPR was equal to 0. In most cases, also Task 6 was classified
correctly by all classifiers, with AUC ranging between 0.9 and
1. Lower values were obtained for Task 1 (AUC ranging
between 0.6417 and 1) and Task 2 (AUC ranging between
0.8 and 1).

Results obtained in this work are promising for the applica-
tion of the proposed wearable system for shoulder home-based
remote monitoring. The ease of setup and the modularity
of the proposed wearable system increase the ability for
the patient to self-position the sensing units without oper-
ator support, increasing the variety of contexts in which it
can be used. The relatively poor distinction between flex-
ion/extension movements without and with a weight could
potentially be improved by integrating more sensors. For
example, electromyography (EMG) sensors can determine
which muscles are being activated to enhance classifiers’ mod-
els, including additional features (such as muscles’ fatigue),
and to more accurately evaluate the efficiency of rehabilitation
exercises.

Some limitations are evident in this study. Firs, only
six rehabilitation exercises were selected from the guide-
lines provided by the American Society of Shoulder and
Elbow Therapists. While these exercises are representative of
commonly practiced ones, there exist additional movement
exercises that were not examined in this study. Second, the
study sample exclusively consisted of younger and healthy
subjects, potentially compromising the representativeness of
observed characteristics for older age groups. Patients with
shoulder musculoskeletal disorders (such as rotator cuff tears)

are expected to exhibit greater variability in the pace and tra-
jectory of movements compared to healthy subjects, presenting
heightened challenges for classifiers in accurately categorizing
the performed exercises. Third, the experimental data were
recorded during supervised sessions. The extraction of features
from continuous exercise sessions conducted in uncontrolled
environments poses greater challenges. Future endeavors will
explore unsupervised or semi-supervised learning approaches,
along with the inclusion of larger sample size, the assessment
of proposed algorithms on data acquired from patients with
musculoskeletal disorders, and the incorporation of additional
shoulder rehabilitation exercises in the protocol.
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