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Abstract—The L-test is a performance-based measure to 
assess balance and mobility. Currently, the primary outcome 
from this test is the time required to finish it. In this study we 
present the instrumented L-test (iL-test), an L-test wherein 
mobility is evaluated by means of a wearable inertial sensor 
worn at the lower back. We analyzed data from 113 people 
across seven cohorts: healthy adults, chronic obstructive 
pulmonary disease, multiple sclerosis, congestive heart 
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failure, Parkinson’s disease, proximal femoral fracture, and 
transfemoral amputation. The iL-test automatic 
segmentation was validated using stereophotogrammetry. 
Univariate and multivariate analyses were performed on 164 
kinematic features derived from inertial signals to identify 
distinct patterns across different cohorts. The iL-test 
accurately recognized and segmented activities during the L-
test for all cohorts (technical validity). A random forest 
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classifier revealed that proximal femoral fracture and 
transfemoral amputation induced significantly different 
mobility patterns compared to healthy people with AUC 
values of 0.89 and 0.99, respectively. Strong correlations 
were found between kinematic features and clinical scores in 
multiple sclerosis, congestive heart failure, proximal femoral 
fracture, and transfemoral amputation, with consistent 
patterns of decreased movement ranges and smoothness 
with increasing disease severity. Furthermore, features 
derived from 90° and 180° turns were found to be important 
contributors to differentiation amongst cohorts, 
underscoring the need to evaluate different turn degrees and 
directions. This study emphasizes the iL-test potential to 
deliver automated mobility assessment across a wide range 
of clinical conditions, indicating a prospective avenue for 
improved mobility assessment and, eventually, more 
informed healthcare interventions. 

 
Index Terms— mobility, wearable sensors, objective 

measurements.  

I. INTRODUCTION 

OBILITY, the capacity to move, transition, and 

navigate one's environment, is fundamental to 

human independence and well-being [1]. It reflects 

our ability to engage with the world, interact with our 

surroundings, and maintain a good quality of life. Yet, it is a 

facet of health that often goes unnoticed until compromised 

by injury, chronic conditions, or age-related syndromes [2,3]. 

To assess mobility comprehensively in clinical populations, 

healthcare professionals have traditionally relied on clinical 

questionnaires and tools to measure functional mobility, such 

as the Timed Up and Go (TUG) test [4]. The TUG test, a 

concise yet informative assessment, requires individuals to 

rise from a seated position, walk a short distance, perform a 

180° turn, and return to a seated position. The score is 

represented by the time taken to perform the test, usually 

measured with a stopwatch. It is a valuable tool for clinicians, 

offering quick insights into an individual's mobility and fall 

risk [5]. The use of wearable technology such as inertial 

sensors allowed the development of the instrumented TUG 

(iTUG), which has been used in various studies in the past 

years [6] to enable analyses of the quality of the movements 

performed during the TUG assessment. Research using the 

iTUG has demonstrated the clinical relevance of sensor-

derived variables in predicting fall risk and diagnosing 

mobility impairments [6,7]. These findings highlight the 

importance of incorporating inertial sensor-based analyses 

into mobility assessments, providing a strong rationale for 

extending their application to the L-test. 

In 2005, Deathe and Miller [8] introduced the L-test as a 

variation of the TUG test, designed to overcome the ceiling 

effect of the TUG found in higher-functioning individuals. 

The first proposers of the L-test indicated that when assessing 

a patient's gait during clinical examinations, clinicians usually 

asked the patient to get up and walk out of the room, turn 90° 

and go down the hall, then return to the room and sit down. 

This walking path, representing an “L” configuration, 

required turns to both the right and the left. In fact, in real-

world conditions, one should be prepared to perform several 

turns in different directions and angles. Comprised of turns in 

both directions and at 90° and 180°, the L-test might provide 

a more comprehensive and detailed evaluation of an 

individual's mobility status, making it a promising platform 

for in-lab advanced mobility assessment. 

Over the past 10 years, several studies have confirmed the 

L-test as a reliable, objective tool for assessing walking ability 

in different populations [9–12] and a recent study [13] 

validated an algorithm to segment activities during an L-test 

in 20 able-bodied participants. However, no studies have been 

found to incorporate inertial sensors to analyze kinematics 

features during the L-test in different clinical populations. 

This study introduces the instrumented L-test (iL-test) as a 

novel mobility assessment tool and evaluates its feasibility for 

extracting digital mobility outcomes (DMOs) that are both 

technically valid and clinically informative across diverse 

clinical cohorts. We achieve this through: (1) technical 

validation of the automatic segmentation of the iL-test 

through comparison with stereophotogrammetry as the gold 

standard; (2) discriminant validation, assessing the feasibility 

of sensor-derived kinematic features to potentially 

differentiate between cohorts; and (3) construct validity, 

evaluating the clinical relevance of these kinematic 

parameters by correlating them with established clinical 

scales.  

II. MATERIALS AND METHODS 

A. Study Design and Participants 

The study included two distinct datasets: the Technical 

Validation Study dataset (TVS) of Mobilise-D and the MOTU 

dataset. In the Mobilise-D dataset, a convenience sample of 100 

adults from six different cohorts was analyzed: healthy adults 

(HA), chronic obstructive pulmonary disease (COPD), multiple 

sclerosis (MS), congestive heart failure (CHF), Parkinson’s 

disease (PD), and proximal femoral fracture (PFF). Participants 

were recruited at five sites: the Newcastle upon Tyne Hospitals 

NHS Foundation Trust and the Sheffield Teaching Hospitals 

NHS Foundation Trust, UK (ethics approval granted by the 

London-Bloomsbury Research Ethics Ethics Committee, 

19/LO/1507); Tel Aviv Sourasky Medical Center, Israel (ethics 

approval granted by the Helsinki Committee, Tel Aviv 

Sourasky Medical Center, Tel Aviv, Israel, 0551-19TLV); 

Robert Bosch Foundation for Medical Research (ethics 

approval granted by the ethical committee of the medical 

faculty of The University of Tübingen, 647/2019BO2) and 

University of Kiel, Germany (ethics approval granted by the 

ethical committee of the medical faculty of Kiel University, 

D438/18). All participants gave written informed consent to 

take part in the study. Additional information about the TVS 

protocol can be found in [14–16]. 

The MOTU dataset consisted of 13 transfemoral amputees 

(TFA) recruited by the MOTU project in two clinical sites: the 

INAIL Prosthesis Centre, Budrio, Italy (ethics approval granted 

by CE AVEC, 537/2019/OSS/AUSLBO) and the Palazzolo 

Institute of the Don Gnocchi Foundation, Milan, Italy (ethics 

M 
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approval granted by the IRCCS Fondazione Don Carlo Gnocchi 

Ethics Review Board, 08_16/10/2019). The study was 

conducted following the ethical principles for medical research 

expressed in the Declaration of Helsinki. Written informed 

consent was obtained from all participants.  

B. Experimental Protocol 

In the test, the participant was asked to sit in a chair, stand 

up, walk straight, turn 90° around a mark, walk straight to the 

second mark, make a 180° turn, walk straight to the first mark, 

make a final 90° turn, and return to the chair to sit down 

(supplementary video).  

The participants performed the L-test while wearing an 

inertial sensor on the lower back. In Mobilise-D, the L-test 

was made of two arms 4m x 2m, and the inertial sensor was a 

Dynaport MM+ (McRoberts, the Netherlands) (sampling 

frequency 100 Hz, triaxial acceleration range: ± 8g, 

resolution: 1 mg; triaxial gyroscope range: ± 2000°/s, 

resolution: 0.07 °/s).  In MOTU, the L-test was made of two 

arms 7m x 3m, and the inertial sensor was from the mTest3 

functional assessment suite (mHealth Technologies, Bologna, 

Italy) (sampling frequency 100 Hz, triaxial acceleration 

range: ±2g, resolution: 0.06 mg; triaxial gyroscope 

range: ± 250°/s, resolution: 0.0076 °/s). The Mobilise-D used 

a reduced distance version of the test due to constraints of the 

stereophotogrammetry systems at some of the clinical sites. 

To ensure consistency in the analysis, metrics directly 

sensitive to path length, such as total walking duration, were 

excluded from comparisons (see Table III). 
 

TABLE I 

PARTICIPANTS’ CHARACTERISTICS (MEAN ± SD) 

 
LLFDI: Late Life Function and Disability Instrument; KCCQ: Kansas City Cardiomyopathy 

Questionnaire; FEV-1: forced expiratory volume in one second (expressed as a percentage of the predicted 

norm); EDSS: Expanded Disability Status Scale; UPDRS-III: Unified Parkinson's Disease Rating Scale 

Part III; SPPB: Short Physical Performance Battery; AMP: Amputee Mobility Predictor. 

 

C. L-test segmentation algorithms 

The L-test was segmented into six subphases: Sit-to-Walk 

(StW), Walking (W), three turns comprised of a first 90° turn 

(T1), followed by a 180° turn (T2) and a second 90° turn (T3), 

and Turn-To-Sit (TtS). Figure 1 presents an example of the 

inertial signals recorded during an instrumented L-test. 

State-of-the-art algorithms were applied to identify each of 

the segmented phases of the L-test. An adapted version of the 

Adamowicz algorithm was used to identify standing and sitting 

transfers. The algorithm identifies postural transfers based on 

the convolutional wavelet transform of the acceleration norm 

[17]. An adapted version of the El-Gohary algorithm was used 

to identify turn segments using a peak identification procedure 

on the angular velocity around the vertical axis [18]. We used 

two gait sequence detection algorithms (GSD A and GSD B) to 

identify the walking phase based on the acceleration signal [19]. 

GSD A was applied to cohorts with faster walking speeds (HA, 

CHF, COPD), and GSD B was applied to those with slower 

walking speeds (MS, PD, PFF, TFA). A last block, named 

‘state-machine logic’, was applied after identifying all events. 

This block corrected any overlap between two consecutive 

identified events based on the logical succession of the L-test 

sub-phases. Figure 2 details the steps followed in the L-test 

segmentation. Supplementary Table 1 details the signal 

preprocessing required for each of the described algorithms. 

 

 
Fig. 1. Recorded sensor signals (V: vertical, ML: mediolateral, AP: 

anteroposterior) during the iL-test: triaxial acceleration [m/s2] (upper) 

and angular velocity [°/s] (lower). The black dashed vertical lines 

segment the task. 

 

 
 

Fig. 2. L-test segmentation algorithm. Left: L-test path, purple 

highlights the three turns to be identified while walking; red highlights the 

Turn-To-Sit (TtS) segment. Middle: Instrumented L-test segmentation 

flow. Right: Algorithms used in the identification of each of the phases. 

GSD A was applied to P1: HA, COPD, and CHF , and GSD B to P2: MS, 

L test L test
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PD, PFF, and TFA. 

 

We validated the segmentation according to the logical 

criteria shown in Table 2. A segmentation (true or false) was 

considered successful if all sub-phases were correctly 

identified. For the three turns during walking (C3), additional 

conditions were tested to verify that each of the turns was 

congruent with the path of the L-test. Validation = C1 & C2 & 

C3 & C4, where C3 = C3.1 & C3.2 & C3.3 & C3.4 & C3.5. 
 

TABLE II 

L-TEST LOGICAL VALIDATION FOR CORRECT SEGMENTATION. 

 
 

Moreover, a second validation procedure was applied to the 

cohorts of the Mobilise-D dataset. Stereophotogrammetry was 

used as a reference system [20] to establish the accuracy of 

walking and postural transfer algorithms. In Figure 3, the 

dashed vertical lines mark the postural transfer and gait events 

identified by the iL-test segmentation algorithm. A Sit-to-Walk 

was obtained by merging a Sit-to-Stand with the start of a gait 

segment. Processed information from stereophotogrammetry 

was used to get the initial and end walking segments. For the 

validation of postural transfers, the start and end of standing and 

sitting were derived from the vertical axis of the raw stereo 

signal from the lower back. An automatic algorithm identified 

the vertical displacement by finding peaks on the derivative of 

this signal (Figure 3, bottom).  

 

 
Fig. 3. Validation of the L-test segmentation against 

stereophotogrammetry. Accelerometer signals (upper) and raw vertical 

stereo signal from a marker at the lower back (bottom). Black dashed 

vertical lines indicate the start and end of the algorithm-identified events. 

Red marks indicate the start and end of the gold standard segments 

derived from the stereophotogrammetric system. 

 

The mean absolute error (MAE) between the gold standard 

and the iL-test algorithms at the start and end of each postural 

transfer and gait segment was computed to assess the accuracy 

of our proposed method in identifying and segmenting the 

phases within the L-test. In addition to MAE, the Jaccard index 

[21] was calculated to evaluate the similarity between the 

algorithm's segmentation and the gold standard. The Jaccard 

index measures the intersection over the union of two sets, 

providing a metric that quantifies the percentage of overlap 

between the identified and true segments. 

D. Kinematic parameters 

A set of 164 kinematic features was extracted for each 

participant during the L-test. These features included durations, 

ranges, and smoothness, offering a comprehensive view of 

mobility (Table 3). These features were extracted from triaxial 

accelerometer and gyroscope signals independently depending 

on the property analyzed. Stride length and speed calculations 

integrated both accelerometer and gyroscope data. 

Accelerometer and gyroscope signals were low-pass filtered 

with a 5 Hz, 4th order Butterworth filter. These features were 

selected conveniently to match with features used in previous 

instrumented tests, such as the iTUG [6,22–24]. The duration 

of the walk sub-phase was not considered as it is sensitive to the 

path length of the L-test, which differed between cohorts.   
 

TABLE III 

FEATURES EXTRACTED FROM EACH SENSOR, SUB-PHASE OF THE 

INSTRUMENTED L-TEST. 

 
V = vertical, ML = medio-lateral, AP = antero-posterior  

 

In this article, a specific kinematic parameter is identified by 

its corresponding sub-phase abbreviation, followed by the type 

 it to  tand  tand to  it

 it to  alk  alk Turn to  it
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of feature, sensor, and the axis to which it applies. For example, 

the normalized jerk score of the gyroscope in the vertical axis 

during the second turn, is named T2-NJS GyroV. 

E. Statistical analyses 

We explored the differential distribution of the kinematic 

features among the cohorts with univariate and multivariate 

analyses. The normality of the kinematic parameters was tested 

using Shapiro-Wilk tests. Univariate analyses included the 

Kruskal-Wallis test and pairwise post-hoc analyses through the 

Dunn’s test. The multivariate analysis evaluated a classifier's 

ability to use the kinematic features to discriminate between 

each cohort and healthy adults. We trained random forest 

classifiers based on recursive feature elimination, selecting the 

top 10 features, and validated them using a k-fold (k=5) 

stratified cross-validation with 5 repetitions. Features were z-

scored before classification to ensure consistency. 

Hyperparameters, including the number of estimators, were 

optimized using a grid search. Accuracy, F1-score, and the area 

under the receiver operating characteristic (ROC) curve (AUC) 

were used to evaluate the classifiers’ performance. 

Clinical concurrent validity was assessed by a linear 

correlation analysis between the kinematic features obtained 

from the L-test and relevant clinical scales specific to each 

cohort (Table 4). The iL-test kinematic features were also 

correlated with the Late Life Function and Disability 

Instrument (LLFDI - functional component) in the Mobilise-D 

cohorts. The correlations were quantified with  pearman’s 

correlation coefficient.  

 
TABLE IV 

CLINICAL SCALES DESCRIPTION 

 
 

Statistical significance was set at p<0.05. All p-values were 

adjusted to control for multiple comparisons [25]. The 

statistical analyses were carried out using Python 3.8 with 

“scipy”, “statsmodels”, and “scikit_posthocs” libraries. 

RESULTS 

A. iL-test Validation 

The applied algorithms segmented all sub-phases within the 

L-test in all cohorts automatically. The four logical conditions, 

including the five sub-conditions for turns (Table 2), were met 

for all participants of all cohorts. Two representative subjects 

of each cohort are shown in Supplementary Table 2 to illustrate 

the intermediate steps in the validation of sub-conditions for 

turns (C3). 

When compared against stereophotogrammetry (the gold 

standard), the iL-test algorithm demonstrated very good 

segmentation performance. On average, mean absolute error for 

all cohorts were 0.2 seconds for postural transfers and 0.5 

seconds for walking identification (Figure 4). The average 

Jaccard Index for all cohorts was 80% for postural transfers and 

90% for the walking sub-phases. 

 

 
Fig. 4. Mean absolute error at the start and end of the segments. 

 

B. Univariate Analysis 

A total of 164 features were extracted, Shapiro-Wilk revealed 

a non-normal distribution of the features. The average L-test 

walking speed for HA was 1.0 m/s (sd = 0.2 m/s) with a stride 

length of 1.1 m (sd = 0.2 m).  In contrast, transfemoral amputees 

(TFA) exhibited a reduced walking speed (0.6 m/s, sd = 0.2 

m/s) and stride length (0.8 m, SD = 0.2 m). A table with 

reference values for all features and for each cohort can be 

found in Supplementary Table 3. 

The Kruskal-Wallis test indicated that 100 features were 

differentially distributed in at least one cohort. Afterwards, 

Dunn's test revealed that 88 characteristics differed 

significantly between clinical cohorts. Of the 88 characteristics, 

eleven were significant across at least ten cohort pairs 

(Supplementary Table 4).   

TFA showed significantly reduced StW angular velocity 

ranges around the mediolateral (ML) axis when compared to 

the other cohorts. Walking speed and turn angles were greatly 

reduced in cohorts with more impaired mobility (PFF, TFA) 

(Figure 5). 

Only one feature, the angle during the third turn (T3), was 

found to significantly differentiate between COPD and HA. 

Features derived from both 90° (T1, T3) and 180° (T2) turns 

were found to significantly differentiate participants with CHF, 

MS, and PD versus HA. Participants with PFF and TFA had the 

largest number of features (35 and 68 respectively) that 

significantly differentiated them versus HA and these features 

comprised all the sub-phases of the L-test (Table 5). 
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TABLE V 

SIGNIFICANTLY DIFFERENT FEATURES BETWEEN EACH COHORT AND HA 

 

 

C. Multivariate Analysis 

Random forest classifiers were built to differentiate between 

each cohort and HA. Models for PFF and TFA exhibited an 

AUC over 90%, indicating substantial differences in mobility 

when compared to healthy adults. In contrast, models for CHF 

and COPD showed a performance near chance (Table 6, 

Supplementary Figure 1). 

Models for MS and PD revealed moderate differences in 

mobility compared to healthy adults. Also, consistent with 

findings in univariate analysis, the model-selected features 

included a combination of features derived from the 90° and 

180° turns. In addition to turn-derived features, walking-based 

features were found to be discriminative for PFF and TFA 

cohorts (Table 6). 

 
 

 

 

 

 

TABLE VI 

MODEL PERFORMANCE METRICS 

 

D. Clinical Construct Validity 

The clinical construct validity of the iL-test kinematic 

features was assessed by correlating them with clinical scales 

specific to each clinical cohort. The MS cohort revealed 18 

features significantly correlated with the EDSS scale (T1: 1, T2: 

6, Tt :11), with 12 having high correlations (ρ > 0.7) and 6 

having moderate correlations (ρ > 0.6). A reduced movement 

range, longer duration, and higher jerk during turns were 

correlated with a higher EDSS score (deterioration of the 

condition). Also, a worse condition was associated with longer 

 
Fig. 5. Box plot with representative features for each segment. Significant differences are highlighted on top of the box plots  

(*: 1.00e-02 < p <= 5.00e-02, **: 1.00e-03 < p <= 1.00e-02, ***: 1.00e-04 < p <= 1.00e-03, ****: p <= 1.00e-04) 
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and jerkier movements during the turn to sit (TtS). 

For the PFF cohort, 59 features were significantly correlated 

with the SPPB score (StW:11, W:2, T1:5, T2:15, T3:13, 

Tt :13), with 28 having high correlations (ρ > 0.7) and 31 

having moderate correlations (ρ > 0.58). Longer duration and 

jerkier transitions during a StW and TtS were associated with a 

lower SPPB score (deterioration of the condition). Also, a lower 

score was correlated with reduced movement ranges, longer 

duration, lower vertical angular velocity, higher jerk during 

turns, reduced walking speed, and shorter steps.  

For the TFA cohort, 33 features were significantly correlated 

with the AMP score (W:1, T1:4, T2:8, T3:3, TtS:17), with 30 

having high correlations (ρ > 0.7) and 3 having moderate 

correlations (ρ > 0.67). Longer duration, jerkier transitions, and 

reduced movement ranges during turns and turn-to-sit were 

associated with a lower AMP score (deterioration of the 

condition). Also, reduced walking speed was correlated with a 

lower score. No significant features were found to be correlated 

in the other cohorts. Supplementary figure 2 shows selected 

features for the cohorts that revealed significant correlations. 

We further expanded the analysis by examining the LLFDI 

in the Mobilise-D cohorts. For the CHF cohort, 7 features were 

significantly correlated with the LLFDI score (StW:2, T2:5). 

Reduced medio-lateral angular velocity and higher jerk were 

associated with a lower LLFDI score (adverse outcome). Lower 

vertical angular velocity and jerkier movements during turns 

were also associated with a lower score. MS participants 

revealed two significant features in the TtS segment: the range 

and maximum value of the anteroposterior axis were positively 

correlated with LLFDI.  

In PFF participants, 8 features showed significant 

correlations with the LLFDI score (StW:7, T2:1). Increased 

angular velocity range during T2 and longer duration and 

jerkier transitions in all the axes during StW were associated 

with a lower LLFDI score (lower functional level). After p-

value adjustment for multiple comparisons, no significant 

correlations were found for HA, COPD, and PD cohorts, yet 

moderate correlations (ρ ≈0.6) revealed similar trends, with 

lower walking speeds and shorter steps associated with a lower 

LLFDI. Reduced movement ranges, longer duration, and jerkier 

movements during turning and TtS were also associated with a 

lower LLFDI score. Supplementary figure 3 shows selected 

features for the cohorts that revealed significant correlations. 

Two sub-components of the LLFDI score were also 

independently explored (basic lower extremity and advanced 

lower extremity) with similar results. 

DISCUSSION 

This study introduces the instrumented L-test approach for 

comprehensive mobility assessment. The segmentation 

algorithm properly identified all the sub-phases comprised in 

the L-test in all cohorts. Subsequent technical validation against 

stereophotogrammetry revealed small errors and similar 

performance for postural transfers and gait identification as in 

previous instrumented mobility studies [6]. Here, we would like 

to remind readers of the nature of the multicohort study and 

highlight the power of this approach in the successful 

application of the instrumented L-test in severely compromised 

cohorts such as people with proximal femoral fractures and 

transfemoral amputees. This automated approach offers a 

promising solution to the limitations of manual assessments and 

the subjectivity inherent in such evaluations. The ability of the 

iL-test algorithm to accurately identify and segment activities 

within the L-test provides a strong foundation for future 

mobility assessments. With a low error, it offers objective 

results, essential in clinical practice. To confirm further the 

reliability of the segmentation algorithm, we randomly selected 

participants and visually inspected the correspondence of the 

acceleration signals and the stereophotogrammetry data with 

the automatic segmentation (Fig. 3). This visual verification 

served solely as an additional confirmation step and does not 

imply that human intervention is required for the proposed tool.  

A total of 164 sensor-based features were extracted from all 

the L-test segmented events, with the selection of features 

guided by previously validated instrumented mobility tests 

(e.g., iTUG). The decision was made to keep most features used 

in the literature to ensure a comprehensive analysis of mobility 

in each cohort. In the univariate analysis, our findings 

emphasize the nuanced nature of kinematic differences 

observed during the L-test across various clinical cohorts. 

While only one feature, the angle during the third turn (T3), 

significantly differentiated COPD from HA, the picture was 

different for other cohorts. Participants with CHF (6 features), 

MS (17 features), and PD (16 features) displayed significant 

differences in features derived from both 90° (T1, T3) and 180° 

(T2) turns compared to healthy adults. The most distinctive 

patterns were observed in PFF (35 features) and TFA (68 

features), highlighting the multifaceted kinematic distinctions 

characterizing these cohorts throughout the entire L-test sub-

phases. The multivariate analysis confirmed these findings. The 

robust performance of the models for PFF and TFA, as 

indicated by AUC values exceeding 90%, underscores the 

effectiveness of these features in capturing substantial 

differences in mobility patterns when compared to healthy 

adults. 

In contrast, the models built for CHF and COPD cohorts 

demonstrated performances near chance, suggesting no 

substantial mobility limitation (related to the L-Test functional 

aspects) in these cohorts. The models for MS and PD cohorts 

revealed moderate differences in mobility compared to healthy 

adults, aligning with the patterns observed in the univariate 

analysis. A recursive feature elimination approach was applied 

to mitigate feature collinearity and enhance the interpretability 

of the selected models. Specific information on relevant 

features was found in sit-to-walk, walking, turning, and turn-to-

sit segments in each cohort, as discussed in detail in the 

following sections. 

A. Sit-to-Walk 

In the PFF cohort, longer durations and jerkier transitions 

during Sit-to-Walk (StW) were associated with lower Short 

Physical Performance Battery (SPPB) scores and a lower Late 

Life Function and Disability Instrument (LLFDI) score. These 
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findings suggest that individuals with proximal femoral 

fractures who exhibit prolonged and less fluid movements 

during postural transfers may experience compromised 

physical performance and functional abilities [26]. This 

observation aligns with common clinical experiences reported 

by individuals recovering from femoral fractures, where 

challenges in postural transitions and the associated dynamic 

aspects of movement are prevalent. Importantly, a low SPPB 

score has been shown to be a predictor of adverse clinical 

outcomes such as cognitive decline, falls, and death [27]. 

Parkinson's disease participants exhibited reduced StW 

angular velocity and higher jerk compared to healthy older 

adults, indicating the challenges these individuals face in 

initiating movement and maintaining smooth, controlled 

motion. Previous studies have hypothesized that the diminished 

ability to transition from sitting to standing observed in 

individuals with Parkinson's disease may originate from 

decreased hip flexion joint torque and an elongated duration for 

torque generation [28,29]. 

Transfemoral amputees, on the other hand, showed 

significantly reduced StW angular velocity ranges around the 

mediolateral axis compared with all other cohorts. This result 

aligns with research indicating that transfemoral amputees often 

exhibit unique inter-joint coordination patterns, particularly at 

the hip joint, to compensate for the support-capability 

impairment due to limb amputation and to ensure foot 

placement accuracy [30,31].  

B. Walking 

In the walking segment, distinct mobility patterns emerged 

for the proximal femoral fracture (PFF) and transfemoral 

amputee (TFA) cohorts. Reduced walking speed and stride 

length were evident in the PFF group compared to healthy 

adults (HA) and were associated with lower SPPB and LLFDI 

scores. This result suggests that individuals with proximal-

femoral fractures who exhibit diminished walking speed and 

stride length may experience challenges in overall physical 

performance and functional abilities [32,33]. 

Similarly, in the TFA cohort, walking speed and stride length 

were observed to be reduced compared to HA. Lower walking 

speeds in the TFA group were also associated with a lower 

Amputee Mobility Predictor (AMP) score. These findings 

highlight the impact of reduced walking speed on the functional 

mobility of individuals with transfemoral amputation, 

emphasizing the importance of assessing and addressing gait 

parameters in this population. Studies have shown similar 

compensatory strategies, with amputees demonstrating altered 

gait parameters compared to non-disabled individuals [34–36]. 

C. Turns 

In all the analyses performed, turns emerged as a prominent 

and consistent feature across all cohorts. The significant 

findings in univariate, multivariate, and clinical concurrent 

validity analyses notably highlighted the importance of turning 

dynamics. Turns encompassing 90° (T1, T3) and 180° (T2) 

rotations exhibited distinctive kinematic patterns crucial in 

distinguishing various clinical cohorts from healthy adults. In 

real-world scenarios, individuals often perform turns in various 

directions and angles, reflecting the complexity of everyday 

mobility. Studies have underscored the connections between 

turning strategies and factors such as fatigue, balance 

impairment, and geriatric syndromes such as increased risk of 

falling [37–41]. Our findings align with these studies, 

highlighting the significance of including both narrow and wide 

turns in mobility assessments to encompass a broader spectrum 

of real-world movement patterns. 

In the MS cohort, reduced ranges in T2 and T3 vertical 

angles, coupled with increased jerk, signify notable differences 

in turning dynamics compared to healthy adults. These 

difficulties are often attributed to a combination of factors, 

including muscle weakness, spasticity, sensory deficits, and 

impaired central processing of motor commands. Specifically, 

the reduced ranges in T2 and T3 vertical angles observed in our 

study may reflect the altered postural control and coordination 

typically seen in MS during turns [42–44]. The correlation 

analysis with EDSS confirmed that a reduced movement range, 

longer duration, and higher jerk during turns were associated 

with a higher EDSS score (i.e., increased disability).  

Similarly, individuals with PD exhibited reduced ranges in 

T2 and T3 vertical angles, along with increased jerk, indicating 

distinctive turning patterns. The reduced ranges in T2 and T3 

vertical angles observed in our PD cohort during the L-test are 

consistent with previous studies reporting alterations in turning 

kinematics in PD [22,45–49]. Individuals with PD often exhibit 

jerkier, smaller, and more segmented turns, commonly 

described as "en bloc" turning [50], which can be attributed to 

underlying motor deficits. Moreover, the literature supports the 

idea that turning deficits in PD are not solely related to motor 

symptoms but may also involve cognitive aspects. PD patients 

often experience difficulties in dual-tasking situations, and 

turning is considered a cognitively demanding task [51]. This 

cognitive-motor interaction can contribute to the observed 

alterations in turning dynamics.  

In the PFF cohort, reduced T1, T2, and T3 vertical 

accelerations and increased T3 jerk were identified in univariate 

analysis, pointing to altered acceleration patterns during turns. 

These findings may stem from factors such as residual pain, 

muscle weakness, altered joint mechanics, or an adaptive gait 

strategy aimed at minimizing discomfort during turning 

activities [33,52]. Also, the correlation analysis showed that 

longer durations, lower vertical angular velocity, and higher 

jerk during turns were associated with a lower SPPB score, 

indicating potential connections between impaired turning 

dynamics and physical performance in individuals with PFF.  

For the TFA cohort, reduced T1 and T2 vertical angles, 

coupled with increased T2 jerk, suggest distinct kinematic 

patterns during turning. Furthermore, longer durations, jerkier 

transitions, and reduced movement ranges during turns were 

associated with a lower AMP score. These findings may be 

attributed to altered biomechanics due to limb loss. They could 

reflect the complex interplay between prosthetic use, residual 

limb function, and compensatory movements to navigate 

turning tasks effectively [53,54]. Associations between turn-
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related features and the AMP score highlight the clinical 

relevance of turning dynamics in the context of amputee 

mobility.  

In Dunn's test, reduced angles and ranges for all turns (T1, 

T2, and T3) were observed in the CHF cohort, suggesting 

altered kinematics during turning. Also, in COPD, a distinct 

reduction in T3 vertical angle was identified, indicating 

potential limitations in vertical angular movements during the 

third turn. However, in the multivariate analysis, these specific 

features did not exhibit discriminative power, suggesting that 

these cohorts did not show substantial mobility limitations in 

the iL-test.  

The turn-to-sit phase revealed congruent results with 

previous postural and turning events (see supplementary 

materials). Considering the shared emphasis on turns in all 

cohorts, personalized rehabilitation interventions targeting 

turning movements could benefit individuals across clinical 

cohorts. Home-based exercise programs focusing on turning 

activities could empower individuals to improve their turning 

abilities independently, addressing unique mobility needs 

identified from different angles and directions.  

Still, our study presents some limitations, including sample 

size impacting generalizability, influence of cohort severity on 

observed results, the absence of age-matched groups for direct 

comparisons, and the cross-sectional nature limiting 

longitudinal assessment. Differences in L-test path distances 

between the Mobilise-D and MOTU datasets (4m x 2m versus 

7m x 3m) might have influenced certain outcomes. However, 

we mitigated this issue by excluding metrics directly sensitive 

to distance differences, such as walking duration and focused 

on distance-independent metrics such as turn and transfer 

durations.  

Future studies should further validate these preliminary 

results in larger populations, include age-matched groups to 

better discriminate between cohorts and address potential 

confounding factors, explore subgroup analyses, longitudinal 

changes, and integrate additional sensors for a more 

comprehensive understanding of movement patterns. 

Furthermore, the normalized jerk score might be correlated with 

the task’s duration, so future studies should explore alternative 

smoothness metrics. Additionally, while this study emphasized 

speed, cadence, and stride length for their proven value in 

walking, as past studies showed, future studies could expand 

the repertoire with other walking-related metrics. Finally, 

comparative analyses with other mobility assessments, such as 

the Timed Up and Go (TUG) test, could provide deeper insights 

into digital mobility outcomes across diverse populations. 

CONCLUSIONS 

In conclusion, this study has validated the instrumented L-

test automatic segmentation in seven cohorts, demonstrating its 

potential to foster mobility assessment across diverse clinical 

cohorts. The algorithms’ accuracy in identifying and 

segmenting activities within the L-test offers an automatic 

objective tool for precise mobility assessment. The analysis of 

kinematic features as discriminators between clinical cohorts 

highlights the iL-test discriminative utility to provide nuanced 

insights into specific mobility characteristics, and supply hints 

for implementing personalized rehabilitative interventions. 

This work advances the state of the art by introducing a novel 

mobility assessment tool that expands upon the currently used 

instrumented Timed Up and Go (iTUG) test. The inclusion of 

multiple turns, both 90° and 180°, highlights unique movement 

characteristics that are not captured by the TUG, emphasizing 

the importance of evaluating diverse turning movements. 

Additionally, the use of state-of-the-art algorithms ensures high 

accuracy in gait and activity segmentation. Finally, the 

multicohort framework, involving seven distinct clinical 

populations, underscores the versatility of the iL-test in 

addressing the mobility needs of various clinical conditions. 

The significance of multiple turns, encompassing both 90° 

and 180° angles and different directions, emerged as a common 

theme across cohorts. These findings suggest that the iL-test, 

providing information about diverse activities such as turns, 

provides a promising, versatile platform for digital mobility 

assessment in various clinical populations. The findings 

presented here can serve as a foundation for future exploration, 

innovation, and the pursuit of more informed and individualized 

care for diverse clinical conditions. 
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