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Abstract—Active brain-computer interface (BCI) provides 
a natural way for direct communications between the brain 
and devices. However, its detectable intention is very limited, 
let alone of detecting dual intentions from a single 
electroencephalography (EEG) feature. This study aims to 
develop time-based active BCI, and further investigate the 
feasibility of detecting time-movement dual intentions using 
a single EEG feature. A time-movement synchronization 
experiment was designed, which contained the intentions of 
both time (500 ms vs. 1000 ms) and movement (left vs. right). 
Behavioural and EEG data of 22 healthy participants were 
recorded and analyzed in both the before (BT) and after (AT) 
timing prediction training sessions. Consequently, 
compared to the BT sessions, AT sessions led to 
substantially smaller absolute deviation time behaviourally, 
along with larger high-frequency event-related 
desynchronization (ERD) in frontal-motor areas, and 
significantly improved decoding accuracy of time. Moreover, 
AT sessions achieved enhanced motor-related contralateral 
dominance of event-related potentials (ERP) and ERDs than 
the BT, which illustrated a synergistic relationship between 
the two intentions. The feature of 20–60 Hz power can 
simultaneously reflect the time and movement intentions, 
achieving a 73.27% averaged four-classification accuracy 
(500 ms-left vs. 500 ms-right vs. 1000 ms-left vs.1000 ms-
right), with the highest up to 93.81%. The results initiatively 
verified the dual role of high-frequency (20–60 Hz) power in 
representing both the time and movement intentions. It not 
only broadens the detectable intentions of active BCI, but 
also enables it to read user’s mind concurrently from two 
information dimensions. 
 

Index Terms—Active brain-computer interface, high-
frequency power, single-interval timing prediction, 
movement, dual intention. 

I. INTRODUCTION 
RAIN-computer interface (BCI) is a rising technology 
that can provide a direct communication pathway 
between the brain and external devices, ingeniously 
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integrating biological intelligence and machine intelligence. 
Electroencephalography (EEG) is the most commonly used 
signal for BCIs [1], [2]. According to signal generation mode, 
EEG-BCI can be divided into active, reactive and passive types 
[3]. In particular, the active BCI uses EEG signals that are 
independent of external stimuli and can directly reflect users’ 
target intention, making BCI controls closer to the natural 
expression of brain intention. However, at present, active BCIs 
primarily rely on movement-induced event-related 
desynchronization/synchronization (ERD/ERS) [4], [5], the 
limited control signal restricts the detection of diverse 
intentions and severely hindered active BCIs from working in 
more application scenarios. Therefore, it is of vital importance 
to adapt additional voluntary mental activities into an active 
BCI, expanding the intentions that can be detected by active 
BCI. 

Time is a fundamental dimension of our existence; it is a 
ubiquitous experience and a building block for effective 
perceptions and actions. During almost all the daily interactions 
between brain and external environment, target time intentions 
are often expressed by actively estimating the onset moment of 
upcoming events, which is also known as timing prediction [6], 
[7]. Therefore, active BCI is promising to make a great progress 
if the time intention can be successfully detected. To achieve 
this, it is necessary to thoroughly investigate effective EEG 
encoding and decoding of timing prediction. There are two 
ways for generating timing prediction, i.e., beat-based rhythmic 
or memory-based single-interval timing prediction [8], [9], [10]. 
Evidently, the latter is much closer to user’s mindset and more 
widely used, despite that its available neural evidence is much 
less than the rhythmic one and harder to encode. Previous 
studies suggest that the contingent negative variation, N1-
P2/N2 and P300 are modulated by single-interval timing [11], 
[12], [13], [14]. Recent studies propose that neural oscillations 
are instrumental in the preparation or maintenance of time 
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information [15], [16]. Our prior research further established 
that single-interval timing prediction with varied length, i.e., 
400 ms vs. 600 ms, led to distinct beta-gamma ERDs and 
sequential delta event-related potential (ERP) enhancement 
[17], [18]. These features were verified to be separable, 
preliminarily confirming the feasibility of detecting time 
intention. 

Movement and timing prediction are believed to share certain 
neural structures and mechanisms [19], [20], [21], with some 
timing prediction studies even reported similar alpha, beta or 
gamma oscillation patterns as those of movement [22], [23], 
[24]. This finding suggests the potential for simultaneous 
detection of time and movement from a single EEG feature. 
This dual detection capability in active BCI could enhance 
precision and reduce delay, enabling not only spatial but also 
temporal awareness. However, existing encoding and decoding 
knowledge is far from enough to realize perfect time-movement 
dual detection. Most important of all, it remains unknown 
whether the two intentions essentially work in a synergistic or 
interinhibitive way. Previous studies reported the unidirectional 
facilitation effect of one intention on the other [25], [26], [27], 
[28], but none paid equal attention to neural responses of both 
time and movement, leaving a confusion of whether one 
intention would be influenced when the other is enhanced. 
What’s more, the memory-based single-interval timing 
prediction widely used in interaction tends to trigger more 
endogenous signals and taking up more cognitive resources 
than the beat-based rhythmic one mentioned in the above 
studies [29], [30], which may encroach on the resources for 
motor expression. Therefore, it is necessary to address a 
complementary question. What’s the interaction pattern 
between movement and precise single-interval timing 
prediction? We hypothesize that there exists a single EEG 
feature that effectively reflects both intentions. 

This study designed a trainable time-movement 
synchronization experiment that can concurrently encode the 
intentions of time (500 ms vs. 1000 ms) (supplementary A.1) 
and movement (left vs. right). The experiment was conducted 
in both the before (BT) and after (AT) training sessions, which 
aims to explore whether precise timing prediction is an innate 
talent or can only be obtained from training, and investigate 
whether movement intention could remain robust when timing 
prediction is enhanced. The behavioural and EEG data from the 
pre-movement period were analyzed. As a result, AT sessions 
led to evidently increased time-related high-frequency (30–60 
Hz) ERD in frontal-motor areas, along with strengthened 
motor-related contralateral dominance of ERP and 20–30 Hz 
ERD, which confirmed the beneficial role of training in 
improving timing prediction precision, preliminarily verified 
the feasibility of time-movement dual encoding. The decoding 
result based on a single EEG feature, i.e., 20–60 Hz power, 
achieved 65.18% and 73.27% averaged four-classification 
accuracy for the BT and AT sessions, respectively, with the 
highest four-classification accuracy of 93.81%. This study 
provides a completely new approach for multidimensional 
information detection of active BCI, and provides more neural 

evidence for better understanding the interactions between time 
and movement. 

II. METHOD 
 

A. Participants 
Twenty-two healthy volunteers (15 females, 19–25 years 

old), who were students in Tianjin University, participated in 
this study. All participants were right-handed and had normal 
or corrected-to-normal vision. They were all free from 
psychological or neurological diseases and had sufficient rest 
before the experimental procedures. Experimental procedures 
involving human volunteers were approved by the Institutional 
Review Board at Tianjin University. All possible consequences 
of the experiment were explained, and written informed consent 
was obtained from each participant. 

 

B. Experimental procedures 
A time-movement synchronization experiment was designed 

for this study. Auditory and visual stimuli of this experiment 
were generated by the MATLAB Psychtoolbox toolkit and 
presented on a 27-inch LED screen placed 80 cm away from the 
subject at eye level. To better understand the differences 
between the conditions with and without precise timing 
prediction, a training process was involved, and the formal 
experiments were conducted in both BT and AT sessions. 
Generally, the training process after the formal BT experiment 
took about three days, and the formal AT experiment was 
conducted on the day immediately after training process. 

Fig. 1(a) and (b) shows the detailed process of the single-trial 
formal BT and AT experiments. Specifically, each trial started 
with a 1000 ms audio-visual cue to inform subjects of the 
required length of the following single-interval timing by cue 
colors (white: 500 ms; blue: 1000 ms). Then there was a blank 
period with a duration of 1000–2000 ms at random. After that, 
the first flash emerged and lasted for 120 ms. When it 
disappeared, subjects began to timing and indicated the end of 
a specific time period by pressing the button. Feedback 
indicating the deviation time, which was the difference between 
subjective and standard timing, appeared 100 ms after the 
button press. At last, there was a random blank period of 1000 
to 1500 ms. There were 8 blocks in each experiment, and each 
block contained 30 trials. The 500 ms and 1000 ms timing tasks 
were carried out randomly with equal probability. Moreover, 
subjects were instructed to press the button using their right 
index in four blocks and their left index in the other four blocks. 
All the blocks were presented randomly. Therefore, such 
process can form four time-movement conditions, i.e., 500 ms-
right, 500 ms-left, 1000 ms-right, 1000 ms-left, each condition 
has 60 trials.  

The training process included two parts. The first part mainly 
showed participants with the standard 500 ms/1000 ms time 
interval in order to enhance subjects’ precise timing ability. The 
second part was consistent with formal experiment, but only 
behavioural data was recorded. In the behavioural analysis,  
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Fig. 1. Detailed procedure for a single trial. (a) Visual cues are presented in white for the 500 ms condition. (b) Visual cues are presented in blue 
for the 1000 ms condition. (c) The location of the electrodes.  

 
trials with a deviation time within ±80 ms were defined as 
qualified trials, and behavioural accuracy was defined as the 
ratio of qualified trials to all trials. Subjects would not be 
allowed to start the AT formal experiment until the behavioural 
accuracy reached more than 80%. 

The comparisons between BT and AT can reflect how neural 
representation changed with improved timing precision, as well 
as provide an approach for investigating the impact of the 
introduction of time information on the encoding and decoding 
of movement intention. Fig. 1(c) shows the exact location of the 
electrodes, with green, yellow and pink representing the frontal 
area, left motor area and right motor area, respectively. 
 

C. EEG data acquisition and pre-processing 
Scalp EEG signals were recorded by the Neurocan Synamps2 

system at a sampling rate of 5000 Hz. EEG data of 64 electrodes 
were collected by Quik Cap electrode cap according to the 
international 10–20 system. The reference electrode was set on 
the top of the head and grounded to the forehead, and the notch 
frequency was set at 50 Hz. In the pre-processing process, the 
stored EEG data was down-sampled to 500 Hz by using 
MATLAB's EEGLAB toolkit, and the signal was band-pass 
filtered by 0.1–100 Hz by FIR Ⅰ band-pass filter. The data from 
-1500 ms to 1000 ms relative to the button press (i.e., 0 ms) was 
selected for further analysis. We selected the moment of button 
press as the zero time for consistent data alignment across all 
trials, ensuring that the period leading up to the button press 
captures both time and movement intentions. 
 

D. EEG signal analysis 
The ERP analysis was conducted, setting the average value 

from the time period of -1500 ms to -1300 ms before the button 
press as the baseline. The clustering-based permutation test in 
Fieldtrip was used to statistics each time point, and ultimately 

selecting -500–0 ms as the expected time window for both 500 
ms and 1000 ms ERP component analysis.  

The event-related spectral perturbation (ERSP) was 
employed to investigate the event-related changes in spectral 
power over time across a broad frequency range. The spectral 
power values were computed using short-time Fourier 
transform on 1,250 data points within the time range of -1500 
ms to 1000 ms, with a frequency resolution of 1.95 Hz. To 
examine the pre-movement ERD, the time window from -1500 
ms to -1300 ms was used as the baseline.  

Supported 𝐹𝐹𝑖𝑖(𝑓𝑓, 𝑡𝑡)  was the spectral estimation of trials 𝑖𝑖 
EEG signals 𝑥𝑥(𝑡𝑡), where 𝑓𝑓 represents frequency, 𝑡𝑡 represents 
time, and 𝑁𝑁  represents the number of trials. The ERSP was 
shown as equation: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓, 𝑡𝑡) =   1
𝑁𝑁
∑ �𝐹𝐹𝑖𝑖(𝑓𝑓, 𝑡𝑡)�2   𝑘𝑘
𝑖𝑖=1                   (1) 

Considering the time-frequency distribution characteristics of 
the ERSP (beta: 20–30 Hz; gamma: 30–60 Hz). Select -500–0 
ms, 20–30 Hz (500 ms); -1000–0 ms, 20–30 Hz (1000 ms) as 
the time-frequency windows for studying movement 
information, and select -500–0 ms, 30–60 Hz (500 ms); -1000–
0 ms, 30–60 Hz (1000 ms) as the time-frequency window for 
studying time information. Finally, it was found that 20–60Hz, 
-900–0 ms can be used for studying the time-movement dual 
intentions. 

It is worth noting that the ERP, ERSP and their brain 
topographies were superimposed and averaged across all 
subjects. 
 

E. EEG signal classification 
Classification methods based on Riemannian geometry have 

proven to be highly effective in decoding power features. 
Within these methods, the primary concept of the Riemannian 
tangent space lies not in constructing a spatial filter, but rather 

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2025.3529997

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4 
 
 
in directly mapping the data to a geometric space that is suitable 
for the metric analysis. Specifically, the covariance matrix 
present in the Riemannian manifold is mapped to a Euclidean 
space, enabling the utilization of various classification 
algorithms, including support vector machines (SVM), linear 
discriminant analysis (LDA), or logistic regression. 

However, when dealing with EEG data, since the covariance 
matrices representing the multi-channel EEG signals are 
symmetric positive definite matrices (SPD) belonging to 
Riemannian manifolds, and most classification models are 
designed to operate within Euclidean spaces. Therefore, it 
becomes necessary to perform a tangent space mapping on all 
covariance matrices at a selected reference point. 

Suppose 𝐶𝐶𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑁𝑁𝐶𝐶×𝑁𝑁𝑡𝑡  represents the covariance matrix, 
where 𝑀𝑀 ,𝑁𝑁𝐶𝐶 ,𝑁𝑁𝑡𝑡  denote the trials, channels, and time points, 
respectively. Within this Riemannian manifold space, the 
shortest path from 𝐶𝐶1  to 𝐶𝐶2  is referred to as a geodesic. The 
distance along this geodesic can be calculated using the 
following equation: 

𝛿𝛿𝑅𝑅(𝐶𝐶1,𝐶𝐶2) = [∑ 𝑙𝑙𝑙𝑙𝑙𝑙2𝑁𝑁
𝑛𝑛=1 𝜆𝜆𝑛𝑛]

1
2                    (2) 

where 𝜆𝜆𝑛𝑛 denotes the 𝑛𝑛𝑡𝑡ℎ eigenvalue of 𝐶𝐶1−1𝐶𝐶2. 
In the Riemannian manifold, the symmetric positive definite 

matrix, denoted as M, that minimizes the sum of squared 
Riemannian distances to each covariance matrix, is considered 
the Riemannian mean of the covariance matrices. 

𝑀𝑀 = argmin
CϵSPD

∑ 𝛿𝛿𝑅𝑅2I
i = 1 (𝐶𝐶,𝐶𝐶𝑖𝑖)                     (3) 

In equation, 𝐼𝐼 represents the number of covariance matrices 
on the manifold, and 𝑆𝑆𝑆𝑆𝑆𝑆  represents the set of symmetric 
positive definite matrices of the same dimension. 

Mapping each covariance to the tangent vector in the 
Riemannian tangent space is typically done by choosing the 
Riemannian mean 𝑀𝑀 as the reference point, at this point: 

𝑆𝑆𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀(𝐶𝐶𝑖𝑖) = 𝑀𝑀1/2  𝑙𝑙𝑙𝑙𝑙𝑙(𝑀𝑀−1/2𝐶𝐶𝑖𝑖  𝑀𝑀−1/2)𝑀𝑀1/2      (4) 

𝑠𝑠𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢( 𝑀𝑀−1/2𝑆𝑆𝑖𝑖  𝑀𝑀−1/2)                     (5) 

The symbol 𝑠𝑠𝑖𝑖  in the above equation represents the tangent 
vector obtained by mapping 𝐶𝐶𝑖𝑖  to the tangent space with the 
Riemannian mean M as the reference point. 

After mapping the covariance matrices on the Riemannian 
manifold to tangent vectors, the logistic regression 
classification (LogR) model is applied through the tangent 
vectors to complete the classification and prediction, 
abbreviated as the tangent space logistic regression algorithm 
(TS+LogR). The data used for classification is three-
dimensional data 𝑋𝑋𝐾𝐾 ∈ 𝑅𝑅𝑀𝑀×𝑁𝑁𝐶𝐶×𝑁𝑁𝑡𝑡 . The data length ranges from 
-900 ms to 0 ms (supplementary A.2), with a total of 450 data 
points. The classification is performed using all 60 channels and 
ten-fold cross-validation to calculate the classification accuracy. 
Additionally, based on the ERSP results, the 20–30 Hz and 30–
60 Hz are first selected for decoding movement and time 
intention, respectively. Finally, 20–60 Hz, which is 
demonstrated have higher motor classification accuracy than 

the 20–30 Hz, is selected for decoding the time-movement dual 
intentions. 

 

F. Statistical analysis 
Statistical analyses were first conducted on behavioural 

results using a two-way repeated measures ANOVA. The factor 
of movement (left vs. right) and timing-prediction-related 
training (BT vs. AT) was defined as the within-subject and 
between-subject factor, respectively.  

As to statistical analyses of EEG data, to test the interactions 
between movement and training of timing prediction, a two-
way repeated measures ANOVA was performed, defining 
movement (left vs. right) and timing-prediction-related training 
(BT vs. AT) as the within-subject and between-subject factor, 
respectively. In cases where the interactive effect was presented, 
further analyses were conducted to explore the separate effects 
of each factor. Conversely, if no interactive effect was found, 
the main effects of timing-prediction-related training and 
movement were examined. In addition, to evaluate whether 
timing-prediction-related training have an impact on the EEG 
responses of timing prediction, paired sample t-tests were 
conducted on the time-related EEG responses between BT and 
AT session. The time-related classification also utilized a paired 
sample t-test to compare differences between BT and AT 
session.  

Error bars represented standard deviation, and Bonferroni 
correction was applied to all the conditions accounting for 
multiple comparisons. Statistical significance was determined 
based on a p-value threshold of less than 0.05. All statistical 
analyses were conducted using the SPSS software package. 

III. RESULT 

A. Behavioural analyses 

 

Fig. 2. Comparative analysis of absolute deviation time in BT and AT 
sessions. (a) Under the 500 ms condition. (b) Under the 1000 ms 
condition. Abbreviation: BT-Before training; AT-After training (The 
following text is the same as it). ***: P<0.001 

In behavioural analyses, the absolute deviation time, i.e., the 
absolute value of the difference between subjective timing and 
standard time interval, was calculated under the 500 ms and 
1000 ms conditions, respectively. Fig. 2 (a) shows that in the 
500 ms condition, the absolute deviation time was 158.85±
87.83 ms (left), 140.13±78.92 ms (right) in BT sessions, and 
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55.87±29.67 ms (left), 66.23±12.86 ms (right) in AT sessions. 
Fig. 2 (b) shows in the 1000 ms condition, absolute deviation 
time was 191.11±90.76 ms (left) and 166.31±85.54 ms (right) 
in BT sessions, 75.29±28.12 ms (left) and 76.47±25.06 ms 
(right) in AT sessions. In both conditions, absolute deviation 
time was significantly reduced (500 ms: F(1,21)=68.9, 
P<0.001; 1000 ms: F(1,21)=65.53, P<0.001) and standard 
deviations became much smaller in AT sessions, which 
indicated the precise timing prediction was successfully built 
up in AT sessions. It is also evident that the left or right hand 
had almost no impact on the absolute deviation times (500 ms: 
F(1,21)=0.067, P=0.79; 1000 ms: F(1,21)=0.8, P=0.38). 
Moreover, compared to 500 ms, the 1000 ms condition had a 
much larger absolute deviation time in both BT and AT, 
consistent with previous findings reporting the accuracy of 
timing decreased as the temporal length prolonged [31]. 

 

B. ERP analyses 

 

Fig. 3. (a) In the 500 ms condition, averaged ERPs evoked by left- 
and right-movement under C3 and C4 channels, respectively, zeros 
indicated button press moment. (b) Amplitude topographies. (c) 
Comparison of amplitudes in bilateral motor areas. (d) In the 1000 ms 
condition, averaged ERPs under C3 and C4 channels. (e) Amplitude 
topographies. (f) Amplitude comparison. *: 0.01<P<0.05 

The ERP of C3 and C4, which are typical electrodes located 
at motor-related areas, were analyzed to investigate whether the 
motor-related ERP still works after the involvement of precise 
timing prediction. As Fig. 3 (a, c) show, in the 500 ms 
condition, compared to the BT, AT sessions revealed much 
larger negative slopes in pre-movement (-500–0 ms) period 
(F(1,21)=7.108, P=0.014), showing a trend towards a motor-
related contralateral dominance pattern. Fig. 3 (b) shows 
averaged amplitude topographies in pre-movement (-500–0 ms) 
period, more negative ERPs were found in contralateral brain 
areas of movement in the BT and AT sessions. Moreover, in AT 
sessions, the negative amplitude not only became much larger 
in motor areas, but also emerged in frontal areas 
(supplementary A.3). 

As Fig. 3 (d–f) show, in the 1000 ms condition, there were 
similar motor-related ERP variations as 500 ms condition, and 
the involvement of precise timing prediction increased the 
amplitudes of negative ERPs (F(1,21)=6.542, P=0.018) and the 
tendency of motor-related contralateral dominance patterns, as 
well as expanding the range of activated brain regions, with 
significant negative ERPs likewise observed in frontal and 
motor regions. The results indicate that the motor-related ERP 
variations still exist and may be even larger after the 
involvement of precise timing prediction, providing the 
potential to simultaneously detect the time and movement 
intentions. 
 

C. ERSP analyses 

 

Fig. 4. (a) In the 500 ms condition, averaged ERSP time-frequency 
distribution under C3 and C4 in BT (upper) and AT (lower) sessions. (b) 
Topographic maps of averaged power within 20–30 Hz, -500–0 ms. (c) 
Statistical analysis of averaged power in bilateral motor areas. *: 
0.01<P<0.05, **: 0.001<P<0.01 

Fig 4 (a) shows ERSP time-frequency distributions under the 
500 ms condition in the BT (upper) and AT (lower) sessions. 
Notably, in the typical motor-related frequency (10–30 Hz), the 
ERDs were almost the same among conditions in 10–20 Hz 
(supplementary A.4), yet differences were found in 20–30 Hz 
frequency range. Thus, the following analyses mainly focused 
on the 20–30 Hz ERDs in -500–0 ms time window. As Fig. 4 
(b) shows, in BT sessions, ERD was found in bilateral motor 
areas, the left-right difference was small. Whereas in the AT 
session (Fig 4 (b, c)), a motor-related contralateral dominance 
pattern, in which the ERD on the contralateral side of 
movement was much larger than that on the ipsilateral 
(F(1,21)=8.48, P=0.001), was observed in both the left- or 
right-movement conditions. Contralateral ERD in the AT 
session was much larger than that of BT (F(1,21)=8.48, 
P=0.04), revealing a discernible interplay between the 
establishment of precise timing prediction and movement. 
Moreover, topographies of ERD differences between left- and 
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right-movement revealed obviously opposite power 
distribution in the AT session, where right and left hemispheres 
showed power increase and decrease, respectively.  

Similar motor-related ERSP variations were also found in the 
1000 ms condition. In BT sessions (Fig. 5 (a) (upper), (b)), 
motor-related ERDs were found in bilateral motor areas and 
similar between left- and right-movement. In AT sessions (Fig. 
5 (a) (lower), (c)), the ERD was significantly larger than that in 
the BT session (F(1,21)=6.542, P=0.018), with a significant 
contralateral dominance of 20–30 Hz ERD when the left index 
moved; the ERD difference between left and right also revealed 
opposite variation in bilateral hemispheres. These results 
indicated that the beta (20–30 Hz) ERD can still represent 
movement intention when time encoding was involved, and 
precise timing prediction can even enhance the motor-related 
power feature. 

 

Fig. 5. (a) In the 1000 ms condition, averaged ERSP time-frequency 
distribution under C3 and C4 in BT (upper) and AT (lower) sessions. (b) 
Topographic maps of averaged power within 20–30 Hz, -1000–0 ms. (c) 
Statistical analysis of averaged power in bilateral motor areas. *: 
0.01<P<0.05 

The time-related ERSP features were then investigated. By 
comparing ERSP time-frequency distributions in Fig 4 (a) and 
5 (a), we found noticeable ERD difference between the BT and 
AT sessions in the frequencies higher than 30 Hz, which may 
reflect a successful encoding of precise time information. Thus, 
the study investigated high-frequency (30–60 Hz) ERSP 
topographies. As shown in Fig. 6 (a, b), in the 500 ms condition, 
high-frequency ERD mainly located in the frontal-motor areas 
became much larger in the AT session (frontal: T(21)=2.512, 
P=0.02; motor: T(21)=2.136, P=0.045). In the 1000 ms 
condition (Fig. 6 (d, e)), AT session led to much larger the high-
frequency ERD in motor areas (T(21)=2.261, P=0.034). 
Furthermore, this study explored the ERD difference between 
the 500 ms and 1000 ms conditions in Fig. 6 (c, f). 
Consequently, there was a significant difference between the 
two-timing predictions in AT sessions (left: T(21)=-2.492, 

P=0.021; right: T(21)=-4.031, P=0.001). The results indicated 
that high-frequency (30–60 Hz) ERD can reflect successful 
encodings of precise time information, and revealed 
distinctions between 500 ms and 1000 ms timing prediction. 

 

Fig. 6. (a) In the 500 ms condition, the topographic maps of 30–60 
Hz, -1000–0 ms. (b) Averaged power analysis of the frontal and bilateral 
motor area. (c) Averaged power comparison under left hand. (d) In the 
1000 ms condition, the topographic maps of 30–60 Hz, -1000–0 ms. (e) 
Averaged power analysis of the frontal and bilateral motor area. (f) 
Averaged power comparison under right hand. *: 0.01<P<0.05, **: 
0.001<P<0.01 

 

D. Decoding results of time-movement dual intentions 
The ERSP analyses showed that 20–30 Hz and 30–60 Hz 

ERD have close associations with the movement and precise 
time information, respectively. Thus, it is necessary to further 
explore whether 20–60Hz ERD features could simultaneously 
decode time and movement dual information. TS+LogR 
method was used to calculate the classification accuracy in BT 
and AT sessions. As TABLE I shows, the classification 
accuracy of movement (left vs. right) was 98.20±5.80% and 
97.47±9.17% in the BT and AT sessions, the establishment of 
precise timing prediction did not influence the detection of 
movement intentions (T(21)=1.029, P=0.37). The decoding 
performances of time intention (500 ms vs. 1000 ms) were then 
analyzed, yielding an averaged classification accuracy of 65.79
±8.18% and 76.10±9.47%, respectively, for the BT and AT 
sessions. The establishment of precise timing prediction 
improved detection accuracy of time intention significantly 
(T(21)=-4.038, P<0.001). The decoding results of movement-
time dual intentions (500 ms-left vs. 500 ms-right vs. 1000 ms-
left vs. 1000 ms-right) showed that the averaged four-
classification accuracy was 65.18±8.11% and 73.27±9.72% 
respectively for BT and AT sessions, with the highest four-class 
accuracy of 93.81%. The results not only indicated that the 
establishment of precise timing prediction can improve the 
decoding accuracy of time information (T(21)=-3.992, 
P=0.001), but also verified that the high-frequency power can 
simultaneously reflect the dual intentions of time and 
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movement.  

TABLE I 
THE CLASSIFICATION ACCURACY (%) FOR DATA WITH DIFFERENT 

CONDITIONS AT 20–60 HZ 

 

 

Fig. 7. Binary classification results between two pairs of movement-
time dual intentions (500 ms-left, 500 ms-right, 1000 ms-left, 1000 ms-
right) based on TS+LogR classification methods. *: 0.01<P<0.05; **: 
0.001<P<0.01 

To better understand how the involvement of precise timing 
prediction influences the decoding performance of dual 
intentions, this study investigated the binary classification in the 
BT and AT sessions, respectively. Fig. 7 shows average binary 
classification accuracies in BT and AT sessions. Significant 
improvement was found in the binary conditions of 500 ms-left 
vs. 1000 ms-left (T(21)=-3.089, P=0.006), and 500 ms-right vs. 
1000 ms-right (T(21)=-3.045, P=0.006) after establishing 
precise timing prediction. These results indicated that the 
increase in AT sessions four-classification outcomes is 

primarily attributed to the heightened accuracy in recognizing 
time intention following the establishment of precise timing 
prediction. 

In addition, the results also show that the feature differences 
between different time intentions (500 ms vs. 1000 ms) 
combined with the feature differences between different 
movement intentions (left vs. right) yielded higher 
classification accuracies (500 ms: T(21)=-2.123, P=0.046; 1000 
ms: T(21)=-2.21, P=0.038) after precise timing prediction were 
established, further illustrating the close relationship between 
timing prediction and movement. 

IV. DISCUSSION 
This study designed a novel time-movement synchronous 

experiment that can simultaneously encode time and movement 
intentions, demonstrating a synergistic interaction pattern 
between precise timing prediction and movement. It also 
validated the hypothesis that a single EEG feature (20–60 Hz 
high-frequency power) can simultaneously decode time-
movement dual intentions. Different from traditional BCIs 
where an EEG feature is used for detecting merely one 
intention, this study highlighted the new potential that two 
specific dimensions of information can be successfully decoded 
by using a single EEG feature. Such finding is promising to 
broaden the intentions detectable by active BCIs and provide 
new neurophysiological evidence for a deeper understanding of 
the neural mechanisms underlying the interaction between 
precise timing prediction and movement. 

High-frequency (beta-gamma) power has a causal 
connection with timing prediction [32]. A decade ago, research 
revealed the brain's ability to internalize the temporal regularity 
of isochronous sound via beta band power modulation [33]. 
With specific time courses, beta power and its lateralization 
characteristics tend to be instrumental in predicting the onset of 
the target stimulus in a rhythmic sequence [15], [34]. 
Subsequent findings showed beta-gamma power variations in 
multi-second (>1000 ms) single-interval timing, which has a 
dissociation mechanism from the rhythmic temporal prediction 
[30]. To be specific, in interval production tasks, higher beta 
power between the two key presses indexed longer produced 
durations, and the coupling strength between alpha phase and 
beta power was sensitive to time production precision [35], 
[36]. Beyond indicating subsequent behaviours, beta-gamma 
oscillation was involved in the time-related predictive coding. 
In particular, beta power participates in the active neural 
encoding of duration information or temporal structure; it can 
be modulated by previously perceived intervals and react to the 
surprise about sensory event timing, just as in other prediction 
processes that depend on prior knowledge and place more focus 
on prediction surprise [37], [38], [39], [40], [41], [42]. 
Furthermore, gamma oscillation is indispensable in predictive 
timing, serving as a mechanism that underlies the maintenance 
of duration information [37], [43]. In the current study, larger 
beta-gamma ERD in the frontal and motor brain areas was 
observed in AT sessions, along with a significant beta-gamma 
ERD difference between 500 ms and 1000 ms timing. These 
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results not only reaffirm the crucial role of beta-gamma power 
but also provide additional neural evidence for a better 
understanding of precise timing prediction. Few studies have 
investigated whether the specific beta-gamma EEG pattern is 
an innate talent of the brain or not. Previous observations were 
induced by either imprecise time estimation or merely post-
training precise timing prediction, providing no clear 
explanation for the doubt. This study found that the trained 
beta-gamma ERD was enhanced, and the ERD difference 
between 500 ms and 1000 ms was significant only in AT 
sessions. Decoding results based on 20–60 Hz power found the 
classification accuracy between the 500 ms and 1000 ms 
conditions was only 65.79% in the BT session, which improved 
to 76.10% in AT sessions. This indicated that improved sub-
second time perception needs proper training, and the enhanced 
beta-gamma ERD may underlie such perception improvement, 
deepening the traditional understanding of precise timing 
prediction. Additionally, compared to numerous multi-second 
studies, few studies tested whether beta-gamma power still 
plays a fundamental role in sub-second single-interval timing. 
Our results confirmed beta-gamma ERD can index the length 
of time duration even in sub-second (<1000 ms) timescales, 
especially in the frontal and motor brain areas.  

This study confirmed the EEG separability of sub-second 
timing predictions with distinct lengths. Previous studies often 
focused on the neural representations of timing prediction, 
which is a grand-averaged result across subjects and trials. Few 
studies explore the feasibility of detecting time intention based 
on the single-trial EEG data. For this, we conducted a sequence 
of studies to test the EEG separability induced by timing 
prediction with varied length. To be specific, in an interval 
matching task in visual modality, two temporal templates, 400 
ms and 600 ms, were distinguished based on the combination 
feature of delta (0–4 Hz) waveform and beta-gamma (20–60 
Hz) power, achieving 76.45% averaged binary classification 
accuracy [17]. In a duration production task, EEG features 
induced by 1000 ms, 1500 ms and 2000 ms timing predictions 
were analyzed, revealing a positive correlation between 
duration length and beta-gamma (20–60 Hz) ERD, with a 
70.26% averaged tri-classification accuracy [31]. Even in a 
rhythmic tapping task, the time-related beta-gamma power 
variation was evident and decodable [44]. While these studies 
demonstrated the widespread involvement of beta-gamma ERD 
in the predictive timing process across various mental task, 
stimulus modality and duration length, a major drawback was 
the unchanged predicted temporal length within a single block, 
potentially strengthening neural representations of predictive 
timing with specific length. It needs exploring whether the 
high-frequency power distinctions induced by varied temporal 
length are still robust when there are several predicted temporal 
lengths within a single block. In the current study, the two 
predicted temporal lengths (500 ms vs. 1000 ms) randomly 
presented within a block. Remarkably, the beta-gamma power 
still differentiated the distinct temporal lengths, achieving 
76.10% averaged time-related decoding accuracy (500 ms vs. 
1000 ms) with a maximum accuracy of 95.42%, which provides 

strong evidence that the beta-gamma power is a robust EEG 
feature for detecting time intention.   

The current study differed from other movement studies in 
two key aspects. Firstly, the time length required for 
representing movement intention is greatly reduced. Traditional 
motor imagery or motor execution paradigms usually need a 
time length of over 2 seconds to sufficiently express movement 
intention [45], [46], [47]; there also exists a long period that 
often exceeds 2 seconds for motor preparation [48]. However, 
this study completed motor execution almost instantaneously, 
with preparation times as short as 500 ms or 1000 ms. This rapid 
process raises questions about the effectiveness of movement 
detection under such conditions. The study revealed more 
negative pre-movement contralateral waveforms of motor-
related cortical potential (MRCP) and pre-movement ERD 
lateralization in both the 500 ms and 1000 ms conditions, 
indicating that the motor-related EEG representations still exist 
even with extremely short movement expression times. 
Decoding results further showed that compared to the MRCP 
features in time domain, the power feature can provide more 
useful and stable information for decoding movement intention 
in the pre-movement period (supplementary A.5). Moreover, 
using the power feature with wider frequency band (20–60 Hz) 
achieved 98.20% and 97.40% average left-right classification 
accuracy, respectively, for the BT and AT sessions, which were 
much higher than using the power in a traditionally motor-
related frequency band (20–30 Hz) (supplementary A.6).  

Secondly, the involvement of timing prediction contributes 
to the evident difference from traditional movement studies that 
typically focus on a single intention in the subject’s mind [49]. 
This dual encoding stressed an urgent need to explore the 
interactions between movement and timing prediction, a critical 
aspect for advancing active BCIs. To comprehend these 
intentions, the central concern is whether the EEG features of 
the two intentions can both remain robust enough for effective 
decoding, especially when one intention is enhanced. Timing 
prediction and movement are believed to have shared neural 
structures or circuits, such as the premotor cortex, inferior 
parietal lobule and the central thalamus [21], [50], [51]. Some 
studies found movement can promote the precision of timing 
prediction. For instance, a tone interval bias judgment task 
under auditory-motor synchronized stimulation reported a 
positive correlation between active motor control and P300 
amplitude [12], as well as pre-stimulus beta power [52]. A 
syllable-tracking task for different frequencies found that 
combining rhythmic finger-tapping movements produced a 
more pronounced delta-beta coupling effect [53]. Recent 
studies on the impact of timing prediction on movement have 
started to unfold. Studies have shown that estimating longer 
time intervals would take up more cognitive resources. For 
example, a time estimation of 3000 ms can lead to the 
disappearance of potentials related to motor preparation when 
performing a motor task afterward [54]. However, other 
research on time perception reported that estimating durations 
shorter than 2000 ms tend to be automatic process that does not 
require taking up too much cognitive resources [6]. For 
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instance, in active motor control tasks based on temporal 
predictions within 1500 ms, a significant P3 component is 
observed under high-probability expectation conditions, 
reflecting the accumulation of motor resources [55]. 
Additionally, involvement in rhythmic temporal prediction 
within 1500 ms helps enhance the encoding and decoding of 
motor-related EEG signals [44]. However, these results 
primarily focused on the neural activities of either movement or 
timing prediction, with no study sufficiently describing the 
bidirectional interactions that equally consider EEG features 
induced by both intentions within an experiment, making it 
difficult to meet the demand of active BCIs to detect the time-
movement dual intention. In this study, the 500 ms and 1000 ms 
timing predictions yielded more significant high-frequency 
(30–60 Hz) ERD difference in AT sessions, as well as a 10.31% 
improvement decoding accuracy. As the enhancement of timing 
prediction, larger lateralization of low-frequency MRCP and 
beta ERD was found, and the movement decoding accuracy 
remains nearly constant (P=0.37), which indicated the 
movement intention can still be robust when the timing 
prediction is enhanced. The results provide new neural evidence 
for better understanding the interactions between time and 
movement. Furthermore, this study concurrently detected time-
movement dual intention based on the high-frequency (20–60 
Hz) power, yielding a 73.27% average four-classification 
accuracy. The above results provide the first evidence that a 
single EEG feature can represent two mental processing.  

The results of this study provide new perspectives and 
directions for further research on BCIs in the fields of neural 
control and motor rehabilitation. Firstly, in terms of enhancing 
the performance of BCIs in controlling external devices, this 
study clarifies the synergistic patterns between time and 
movement by thoroughly analyzing the EEG features related to 
these parameters, achieving a composite intention decoding 
based on single-subject, single-trial data. Building on this, 
future research could focus on the online decoding of time-
movement composite intentions, which could improve the 
speed of conveying movement intention to various external 
devices, such as robotic arms, unmanned vehicles, and drones, 
as well as supporting the control of more complex information, 
thus realising the synergistic perception of time and movement 
by external devices. Also, it is necessary to expand the temporal 
command set by adding timing predictions, as the current 
duration and number of decodable commands are limited. 

Secondly, in terms of enhancing the application of BCIs in 
motor rehabilitation, this study accelerated the information 
transmission rate of movement intention decoding and 
supported a broader range of cognitive content. This effectively 
prevents patients from experiencing fatigue or losing interest 
due to prolonged experimental sessions, thereby opening up 
new possibilities for developing innovative rehabilitation 
training models based on movement intention. A potential 
limitation of this study is that the task requires participants to 
perform a button press after completing the timing, which may 
restrict participation by individuals with motor impairments. To 
address this, future research could gradually transition from 

actual movement to motor imagery. Previous studies have 
shown that rhythmic temporal prediction significantly enhances 
both actual movement and motor imagery. By gradually 
introducing this transition in motor patterns, it may be possible 
to develop a new paradigm of motor imagery based on timing 
prediction in future studies. 

VI. CONCLUSION 
This study demonstrated that the neural representations of 

movement can remain robust even when the brain concurrently 
encodes the very precise single-interval timing prediction, 
providing new neural evidence for the interactions between 
time and movement. Moreover, for the first time, a single EEG 
feature, i.e., high-frequency (20–60 Hz) power, was verified 
effective in reflecting dual intentions of time and movement, 
which is a completely new approach for broadening the 
detectable intention and information dimension for the active 
BCIs.  
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