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Continuous Estimation of Hand Kinematics from
Electromyographic Signals based on Power-and

Time-Efficient Transformer Deep Learning Network
Chuang Lin∗, Chunxiao Zhao, Jianhua Zhang, Chen Chen, Ning Jiang, Senior Member, IEEE, Dario Farina,

Fellow, IEEE, and Weiyu Guo∗

Abstract—Surface Electromyographic (sEMG) signals con-
tain motor-related information and therefore can be used for
human-machine interaction (HMI). Deep learning plays an
important role in extracting motor-related information from
sEMG signals. However, most studies prioritize model accuracy
without sufficient consideration of model efficiency, including the
model size, power consumption, and the computational speed of
the model. This leads to impractical power consumption, heat
dissipation levels and processing time in wearable computation
scenarios. Here, we propose an efficient Transformer method that
employs the EMSA (Efficient Multiple Self-Attention) and prun-
ing mechanism to improve efficiency and accuracy concurrently,
when estimating finger joint angles from sEMG signals. The
proposed method does not only achieve state-of-the-art accuracy
but can also be deployed on wearable devices to satisfy real-time
applications. We applied the proposed model on the Ninapro
DB2-dataset to estimate finger joint angles during grasping tasks.
RNN series models, Convolution series models, and Transformer
series models were used as reference models for comparison.
In addition to common model accuracy, the deployment per-
formance of the models was tested on microprocessors, such as
Intel CPU i5, Apple M1, and Raspberry Pi 4B. When tested on
38 subjects of the Ninapro DB2, the proposed model resulted in
a correlation coefficient of 0.82 ± 0.04, root mean squared error
(RMSE) of 10.77 ± 1.48, and normalized RMSE of 0.11 ± 0.01,
which were all similar to the results achieved by the state-of-
the-art (SOTA) reference methods. Further, the computational
time of the proposed methods was 65.99 ms on the Raspberry
Pi 4B, which outperformed all the RNN series models and the
Transformer series models. The model size and the power (the
minimum size and power are 0.39 MB and 2.28 w) consumption
of the proposed model also outperformed that of all reference
Transformer methods. These experimental results indicate that
our model can maintain the accuracy of the SOTA methods
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while significantly improving efficiency, thus being a promising
approach for real-life applications in wearable devices.

Index Terms—sEMG, Continuous Estimation, Finger Kine-
matics, Transformer, Model Efficiency.

I. INTRODUCTION

W ITH the development of artificial intelligence, neural
networks have been gradually exploited in the field of

electromyography processing. Specifically, deep neural net-
works (DNNs) are poised to make significant advances in
the development of EMG-based hand prostheses for upper
limb amputees [1]. However, the existing methods fail to fully
satisfy practical requirements, as they can not simultaneously
satisfy the requirements of accuracy and inference speed.
Therefore, researchers have focused on investigating more
accurate and efficient motor intention recognition methods
from EMG signals [2]. Classification and continuous motion
estimation are two common tasks in human-machine interac-
tion (HMI). The classification can map actions into predefined
discrete categories [3]. On the other hand, continuous motion
estimation involves estimating continuous motion character-
istics of actions from EMG signals. Compared to discrete
classification, continuous motion estimation can more directly,
naturally, and flexibly reflect motor intention. Continuous
estimation can be performed with model-free methods [4],
or musculoskeletal model-based methods [5]. Currently, deep
learning is a promising approach for HMI and human-machine
collaboration (HMC), and the pursuit of high accuracy and
efficiency has become an important goal in the field. The
RNN series models have been extensively used to estimate
continuous hand kinematics from electromyographic signals.
For example, a method for the estimation of hand pose
from sEMG using an RNN structure is described in [6].
The estimation of continuous finger movements using a Long
Short Term Memory (LSTM) neural network is proposed in
[7]. A Long Exposure Convolutional Memory Network (LE-
ConvMN) has also been proposed to predict the finger joint
angles for multiple actions [8]. However, the RNN series
models have a limitation in that they can not operate in
parallel, resulting in lower model efficiency in practical usage.
Another type of method used for EMG processing is the Con-
volution series models [9], such as the Temporal Convolutional
Network (TCN) [10]. The convolution series models are very
efficient, but their accuracy is low due to the instability of
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the convolutional structure and the random characteristics of
the sEMG signals. Recently, the Transformer series models
have attracted great attention in the field of motion estimation
from surface EMG [9]. In [2] the multi-feature Transformer is
proposed to improve estimation accuracy, which is a milestone
in continuous estimation from sEMG signals. In [11], the Bidi-
rectional Encoder Representations for Transformers (BERT)
is proposed to estimate continuous finger movements across
subjects. As far as we know, almost all the presented work
has been conducted with the aim of improving the accuracy of
estimation, with less attention to efficiency. Model efficiency
is a crucial research direction in deep learning [12]. In order
to cope with the problem of large memory footprint as well as
energy consumption, the Bioformer method [13], which is an
embedding Transformer, was introduced to address the classi-
fication efficiency. A pruning VIT network has been previously
proposed to identify high-density sEMG (HD-sEMG) signals
reducing the required training samples in the training stage
[14]. A Transformer-based gesture recognition algorithm for
HD-sEMG has been proposed to achieve high accuracy but
with high complexity [15]. For the task of continuous sEMG
estimation, existing literature on Transformers [2] reports their
accuracy and inference time on hardware devices such as
ARMs (Advanced RISC Machines, Raspberry Pi 4B is a
typical ARM), which does provide a detailed analysis of
the model’s deployability. In the latest study that performed
cross-subjects testing, BERT [11][16] was evaluated as a
large model on CPUs, but the higher arithmetic power of
Intel’s latest processor can not fully reflect its deployability
on low-power embedding devices. LSTA-Conv is also a cross-
subjects model and has been applied in EMG processing but
without reporting the inference time on hardware [17]. In our
preliminary investigation, we observed that the Transformer
models are very accurate in estimating the continuous motion
of finger joints, but very little work has been carried out on its
efficiency. In this study, we focus on improving the efficiency
of the Transformer method while concurrently preserving high
accuracy in the continuous estimation of joint angles from
sEMG signals.

In order to meet the requirements of accuracy and ef-
ficiency concurrently, we propose two efficient Transformer
models: sTransformer-EMSA and sTransformer-EMFN, that
will be explained in details in the following. The proposed
models were applied on the Ninapro DB2 dataset, and were
compared with a variety of models commonly used in the
field of continuous estimation. Not only we compared the
accuracy of the models, but also their size, power dissipation,
and the deployment time on a variety of edge devices. The
Soft-dtw loss function [18] was adopted in the training stage to
improve the accuracy of estimation. The experimental results
demonstrated that the proposed models achieve high efficiency
and accuracy. The paper’s main contributions are as follows:

• sTransformer-EMSA: The EMSA with downsampling
mechanism is proposed in Transformer to improve the
efficiency of continuous estimation.

• sTransformer-EMFN: The fusion strategy of EMSA with
down-sampling and Feedforward Neural Network (FNN)

with pruning in Transformer is proposed, aiming at
improving the efficiency of the model.

• The Soft-dtw loss function is adopted to improve the
accuracy of the model in the training stage.

II. MATERIAL AND METHODS

A. Dataset and Feature Extraction

Ninapro [19] is an open-source dataset of EMG signals.
Ninapro employs the Ottobock 13E200-50 and Delsys Trigno
Wireless EMG systems (using 12 wireless sEMG electrodes)
and the CyberGlove II data gloves (using a 22-sensor to
capture the joint angles). These data acquisition tools have
a sampling rate of 2kHz. The Ninapro DB2 includes data
from 40 healthy subjects (28 men, 34 right-handed). In our
experiments, data from 38 subjects were used for presenting
the results (data from two subjects were excluded because
judged as corrupted) .

(a) (b)
Fig. 1. Eight grasping movements (a) with items such as water glasses, discs,
and tennis balls are used in continuous motion estimation and CyberGlove II
data-glove (b). The red dot represents the degrees of freedom of the ten joints
[8]

We selected the eight common grasping movements
shown in Fig. 1 (a), and the 10 finger joints as shown in Fig.
1 (b). In the published papers [8][11], six typical continuous
grasping actions are selected for estimation, we follow the
same way, that is, we selected the same eight grasping actions
as in [8][11] to estimate. Inspired by [8], we used long-
exposure to elongate the data extraction range and enhance
the generalization of the data. Root means square (RMS) [20]
was used to extract data features. We set the duration of the
time window for RMS calculation to 100 ms and the step
length to 0.5 ms.

In the Ninapro dataset, each grasping action is repeated
six times, and the corresponding sEMG signals and joint angle
information are recorded for each repetition (trial). Each action
was further divided into a training dataset, consisting of four
trials, and a testing dataset, comprising two trials.

B. Data normalization

The µ-law normalization [21] is often used in audio
processing, mainly to logarithmically amplify low-frequency
audio signals and to improve the generalization of the models
to low-frequency features. Previous work has demonstrated
that the µ-law normalization works well for sEMG signals
[11]. The µ-law normalization is performed as follows:

F (xi
t) = sign(xi

t)
ln(1 + µ̂|xi

t|)
ln(1 + µ̂)

(1)
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where xi
t represents the sEMG data for i.th channel, and

µ̂ represents the hyperparameters which we need to set. In
addition to µ-law normalization, we also used z-zero (zero-
mean) normalization to compare with [22]. The temporal char-
acteristics of sEMG signals vary greatly between samples, and
some abnormal values may affect the training of the model. z-
zero normalization can normalize the standard deviation of the
feature values so that RMS-extracted feature data conforms to
a normal distribution and the training efficiency of the model
improves. The z-zero normalization is given by:

Z(xi
t) =

xi
t − µi

σi
(2)

where xi
t represents the sEMG data for i.th channel, µi is the

mean value of sEMG data for each channel, and σi is the
standard deviation of sEMG data for each channel.

C. Performance parameters
The Pearson correlation coefficient (PCC) was used to

measure the correlation between the actual and the predicted
joint angles. In this paper, we used PCC to evaluate the models.
It was computed as follows:

CC =

∑N
t=1

(
θpred − θpred

) (
θreal − θreal

)√∑N
t=1

(
θpred − θpred

)2√∑N
t=1

(
θreal − θreal

)2
(3)

where θpred, θpred, θreal, θreal denote the model-predicted
joint angle value, the average value of the model-predicted
joint angle, the real joint angle value, and the average value
of the real joint angle.t represents the observation time, and
θpred, θpred, θreal, θreal are the functions of t.

The root means square error (RMSE) [23] can be used to
measure the error between the actual joint angles and the joint
angles predicted by the deep learning model. RMSE can be
used as one of the criteria for judging the merit of the model.
RMSE is calculated as follows:

RMSE =

√
1

N

∑N
t=1 (θpred − θreal)

2 (4)

Since the range of activity of each finger is subject-
specific, it is not possible to use RMSE to evaluate the merit
of the algorithm uniformly, so we used the normalized value
NRMSE as an evaluation index:

NRMSE =
RMSE

θmax − θmin
(5)

where θmax and θmin represent the maximum and minimum
values of actual joint angles respectively.

The computational power is also a very important eval-
uation metric in deep learning, and we used the real ARM
device to evaluate how much computational power the models
consumed. We used the ratio of inference time to model power
consumption as an evaluation metric, called ARM Model
Efficiency (AME):

AME =
Infer T ime

Power
(6)

where Infer Time is the inference time for model deployment,
and Power is the power consumption of the offline operating
model for ARM devices.

III. THE MODEL FRAMEWORK

The details of the structure of the proposed model are
presented in this section. The proposed model for continuous
estimation from sEMG signals is shown in Fig. 2, including
feature extraction (RMS), model prediction, and smooth layer.
The structure of the model contains the following main mod-
ules: the positional encodings, the encoder-decoder, EMSA,
and the pruning FNN module, as shown in Fig. 3. Compared
with the standard Transformer, the proposed model, which is
based on EMSA and the pruning mechanism, achieves high
accuracy and efficiency.

A. Positional Encoding

In 2017, Transformer was proposed in the natural lan-
guage processing (NLP) field with its Muti-Head self-attention
structure [24]. Recently, Transformer has been used in the field
of myocontrol to perform gesture classification and continuous
estimation tasks. In our model, the input 12-channel sEMG
signal is first positionally encoded. We used the same posi-
tional encoding method as in [24]:

P(pos,2i) = sin
( pos

10002i/d

)
(7)

P(pos,2i+1) = cos
( pos

10002i/d

)
(8)

where d represents the dimension of the vector, pos and i
are the position and dimension of the input sEMG signals,
respectively. Each dimension of the position encoded sEMG
signal corresponds to a sinusoid, with wavelengths forming a
geometric series of 2π to 1000·2π.

The sEMG after RMS feature extraction
Xinput = [x0, x1, x2, ..., xm] is encoded at the input
layer, where Xinput represents the 12 channels∗100ms RMS
features of sEMG signals. Here, m is 199. We linearly expand
Xinput according to the number of hidden layers, which
helps to extract the spatial information of the sEMG signals.
The expanded data is designated as Xemb:

Xemb = Linear (Xinput) (9)

We extract temporal information from Xemb by projec-
tion embedding:

XPE =
[
xemb
1 , xemb

2 , ..., xemb
m

]
+ Tpe (10)

where xemb
m represents projection embedding of Xemb in linear

layer, Tpe is the time vector after encoding the position in
equations (7) and (8), which gives the model the ability to
capture the temporal information from sEMG features, XPE

is incorporation of Xemb and location information.

B. Efficient Mult-Head Self-Attention (EMSA)

The EMSA module [25] can improve the efficiency of
standard Transformer. The EMSA mechanism consists of a
Self-attention mechanism, downsampling of the convolution
mechanism, and a layer of normalization. Self-attention can
enhance the ability to characterise EMG signal features and
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Fig. 2. Model structure based on the transformer approach for continuous kinematic estimation of finger joints. The raw sEMG signal is input to the model
through feature extraction, position coding, efficient multiple self-attention mechanism, and pruning FNN layer, the smoothing layer, and finally the prediction
of the joint angle. RMS refers to the way in which features are extracted. N represents the number of layers in the model.

(a) Encoder-Decoder (b) EMSA (c) Pruning FNN

Fig. 3. The detailed structure of transformer module: (a) Encoder-Decoder module (b) EMSA module (Downsampling of K,V key values using 2D convolution),
(c) Pruning FNN module (Pruning of hidden layer neurons in the FNN layer)

to understand the relationship of sEMG signals sequence be-
tween different channels. Convolutional operation is executed
to extract the spatial information of sEMG signals. Layer
normalization which can be addressed by the proposed model
degradation is applied to the module to make the output
distribution of the residual connections layer.

The Self-attention mechanisms included queries Qh, keys
Kh, and values Vh. The transpose of Kh and Qh was then
subjected to a dot product operation, followed by a softmax
operation to update the weights, and then multiplied by dot
product with the matrix Vh to get the result of self-attention:

Self-attention (Qh,Kh, Vh) = softmax

(
QhK

T
h√

dkk

)
Vh (11)

where the dkk is the dimension of the keys. Multi-headed
attention allows the model to use different attention heads to
focus on the relations of the sEMG of inputs. The convolu-
tional operation is adopted in EMSA to downsample Kh, Vh.

The downsampling times of the convolution are derived
from the size of the convolution kernel, stride, and padding.
We regulated the parameters of convolution to balance the
computational accuracy and efficiency of the model. For
simplicity, we set the downsampling times to a fixed value.
The procedure of downsampling can be described as follows:

Xc = Conv(Xpe) (12)

Xl = LayerNorm(Xc) (13)

where Xpe ∈ Rc×h×w is reshaped by the XPE ∈ Rc×l which
is the projection embedding from the sEMG signal. Xc is the
output of the convolutional operation, Xl is the output of the
layer normalization, c and l are the number and length of the
channel, respectively, h and w are the height and width of the
sEMG signals features, respectively.

In addition, the model uses the classical encoder-decoder
architecture of Transformer, using the output of the encoder
as the input to the memory decoder for fitting the joint angles,
which enhances the fitting ability of the model.

C. Adaptive Pruning FNN

The internal structure of EMSA is mainly matrix multi-
plication, thus it performs linear transformations. The learning
ability of linear transformations is not as strong as that of non-
linear transformations. EMSA can learn a new representation
of the sEMG signals, while the representation might not be so
strong. The FNN layer was used to enhance this representation
after EMSA. The number of neurons in the FNN layer has a
huge impact on the performance of the model and can be
regulated according to demands.

To alleviate the pressure and improve the performance of
the model [26] [27], we tried to set the number of neurons in
FNN, which is the layer with adaptive pruning. The binary gate
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gt, which controls the granularity of hidden units, was sampled
from Bernoulli, a distribution with a learnable parameter αp

that can be automatically optimized by the gradient. The gt is
obtained as:

gt ∼ Ber (Sigmoid (αp)) (14)

Sigmoid(αp) is the activation function to calculate the select-
ing possibility of the i-th neuron. The purring FNN can be
expressed as:

FNN (X) =
∑
i∈cin

gtGelu(XW fc1)W fc2 + b (15)

where W fc1 ∈ Rcin×c
in

′ and W fc2 ∈ Rc
in

′×cin are a
full-connected layer that can be learnable, cin denotes the
predefined dimensions, and cin′ denotes the FNN hidden
dimensions, which can be learned through pre-training. The
adaptive pruning mechanism ensures the efficiency of the
pruning.

D. Smoothing Layer

The Transformer series model was originally designed for
NLP, and when using it in predicting finger joint angles, some
fluctuations are introduced. We set up a smoothing module
after training module to reduce fluctuation. The smoothing
module aims to mitigate the oscillations in the model by aver-
aging the samples within the sliding window. The smoothing
layer is given as:

AvgSmooth(X) =

[
w∑
i=1

xi/w,

w∑
i=2

xi/w, ...,

w∑
i=n

xi/w

]
(16)

where w is the size of the sliding window, and X =
[x1, x2, ..., xi] is the predicted value of the finger of the hand
joint angles by the model.

E. Distance-based Loss Function: Soft-dtw

In previous models of continuous estimation, we have
often used the mean square error (MSE), a Euclidean distance,
to measure the difference between the real and the estimated
angles. MSE is a loss function based on the Euclidean dis-
tance. However, the Euclidean distance-based loss function
is vulnerable to fluctuations, such as noise and some other
uncertainties.

Dynamic Time Warping (DTW) [28] is a method of
calculating the similarity between two sequences, which can
be regularised according to the time dimension and waits
until the predicted results are better matched. The DTW is
a nondifferentiable process. Cuturi & Blondel [18] designed
a Soft minimum instead of the DTW minimum to get a
differentiable Soft-dtw.

For the sequences of real and estimated joint angles, the
output of the model is Y = (y1, y2, ..., yn) ∈ Rp∗n, where p
and n are the length and width of the sequences, respectively.
The actual sequence is Y = (y1, y2, ..., yn) ∈ Rp∗n. Let’s
define the set R = [ri,j ], R ∈ Rn∗n as the cost matrix, and ri,j

as the component of the cost matrix. By using the algorithm
of dynamic programming, the Soft-dtw can be defined as:

rji = δ(i, j) +minγ {ri,j−1, ri−1,j , ri−1,j−1} (17)

minγy1, ..., yn =

{
mini≤nyi, γ = 0

−γlog
∑n

i=1 e
−yi
γ γ > 0

(18)

where δ is the distance function. γ is a smoothing parameter.
This is the first time that a loss function from a time

series has been applied to the continuous estimation of finger
joints from sEMG signals.

IV. EXPERIMENTS AND RESULTS

We conducted experiments using different variants of the
proposed models and compared them with the commonly used
models in the field of hand kinematic estimation from sEMG
signals. The proposed model uses PyTorch 1.8.0 [29] and was
trained on an NVIDIA GeForce RTX 3090 GPU. The time
window for all models was set to 100 ms, and the step size
was set to 50 ms. The Adam optimizer was used for all models,
with a learning rate of 0.0001 and a batch size of 32 for
training. Two types of normalization u-law normalization and
z-zero normalization are conducted in experiments.

In the experiments, CC, RMSE, and NRMSE are indica-
tors that measure the performance of the model in predicting
the joint angles. For each movement, there are 6 trials, we
select 4 trials for training and 2 trials for testing, we perform
cross-validation, C4

6 trails were selected for training, and the
left C2

6 trails for testing. Our deep learning model predicts
eight kinds of consecutive grasping action then averages the
results over 38 subjects. The amount of model parameters,
which represents the size of the model, inference time, and
AME, are metrics for evaluating the efficiency of the model
on the hardware device. Specifically, we measured the power
consumption on the ARM device and combined AME to
evaluate the efficiency of the model on the power aspect. The
amount of the parameters in the Transformer series model was
saved and used as a reference for model size. For these results,
the Friedman test and the Wilcoxon signed-rank test were used
to assess the significance of the proposed model.

We trained the convolution series, RNN series, and Trans-
former series models for eight movements on 38 subjects to
evaluate the performance of different models, Table I shows
the results normalized to µ-law, the hyperparameters µ̂ was
set to 220 in our study for consistency with the previous study
[11], and Table II shows the results normalized to z-zero, with
the model prefix ’s’ indicating the use of a smoothing layer,
the suffix ’-EMSA’ after the model indicates the use of an
efficient multiple self-attention mechanism, ”-win” denotes the
utilization of a sliding window algorithm in the multi-headed
attention mechanism, ’-EMFN’ indicates the use of an efficient
attention mechanism and pruning of the FNN layer, and ’* ’
denotes a model trained using the Soft-dtw loss function, and
’LE’ denotes a model using the long-exposure mechanism.
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TABLE I
AVERAGE PERFORMANCE OF DIFFERENT SERIES MODELS ON

CONTINUOUS ESTIMATION OF HAND KINEMATICS ON
NINAPRO DB2 WITH µ-LAW

Model CC RMSE NRMSE Epoch Time(s)

Convolution Series Models

TCN 0.6805 14.11 0.1511 2.53
LS-TCN 0.7040 13.43 0.1437 2.56

RNN Series Models

LSTM 0.6221 15.019 0.1597 6.20
GRU 0.6217 17.54 0.1863 8.10
LE-LSTM 0.6871 16.40 0.1737 46.00
LE-ConvMN 0.8338 10.48 0.1138 27.22

Transformer Series Models

sBERT 0.7966 11.67 0.1261 5.07
sBERT-EMSA 0.7993 11.43 0.1236 5.04
sTransformer 0.7820 12.21 0.1319 4.97
sTransformer-win 0.8003 11.85 0.1278 6.80
sTransformer-EMSA 0.7920 11.76 0.1267 5.13
sTransformer-EMSA* 0.7930 12.24 0.1321 5.65
sTransformer-EMFN 0.8030 12.06 0.1302 5.05

1. Table I presents the experimental results obtained using the µ-law
normalization function.
2. ’s’ denotes a model using a smoothing layer, ’win’ denotes a sliding
window applied in the attention mechanism, ’EMSA’ denotes the efficient
multiple self-attention mechanism, and ’EMFN’ denotes the fusion of
EMSA with pruning FNN layers. The marker ∗ represents the Soft-dtw
loss function is adopted for training the model.

Comparing Table I and Table II, the z-zero normalization
was better than the u-law normalization for accuracy. We
found that the model sTransformer-EMSA* in Table II, which
is trained with the Soft-dwt loss function (unpruned), achieved
the highest performance (CC = 0.8234 ± 0.04; RMSE =
10.66 ± 1.45; NRMSE = 0.1145 ± 0.01). The second best
model is sTransformer-EMFN (CC = 0.8177 ± 0.04, RMSE =
10.77 ± 1.48, NRMSE = 0.1158 ± 0.01), which was pruned.
The accuracy of LE-ConvMN was higher than sTransformer-
EMSA* and sTransformer-EMFN, but the training time of LE-
ConvMN was also longer. From Table II, we found that the
average CC, RMSE and NRMSE of the proposed methods
(sTransformer-EMSA, sTransformer-EMFN) of was better .
than TCN (CC=0.7713 ± 0.05, p < 0.001; 12.24 ± 1.62, p <
0.001; 0.1390 ± 0.01, p < 0.001), better than LS-TCN (CC =
0.7844 ± 0.04, p < 0.001; RMSE = 12.24 ± 1.48, p < 0.001;
NRMSE = 0.1314 ± 0.01, p < 0.001), better than sBERT (CC
= 0.7916 ± 0.05, p = 0.003; RMSE = 13.51 ± 1.80, p < 0.001;
NRMSE = 0.1452 ± 0.02, p < 0.001),better than LSTM (CC =
0.7437 ± 0.04, p < 0.001; RMSE = 12.39 ± 1.80, p < 0.001;
NRMSE = 0.1326 ± 0.01, p < 0.001), better than LE-LSTM
(CC = 0.8030 ± 0.05, p = 0.076; RMSE = 11.58 ± 1.81, p =
0.027; NRMSE = 0.1244 ± 0.02, p = 0.003), but worse than
LE-Conv-MN (0.8557 ± 0.03; RMSE = 9.580 ± 1.30; NRMSE
= 0.1034 ± 0.01). LE-convMN is currently the approach with
the best single individual accuracy.

Among 38 subjects, subject S5 performed the best. Fig.4
shows the results with two representative angles in the classical
network and our proposed Transformer-EMFN.

In terms of training time, the µ-law normalization method
took longer to achieve convergence compared to z-zero. In

TABLE II
AVERAGE PERFORMANCE OF DIFFERENT SERIES MODELS ON

CONTINUOUS ESTIMATION OF HAND KINEMATICS ON
NINAPRO DB2 WITH Z-ZERO

Model CC RMSE NRMSE Epochs Time(s)

Convolution Series Models

TCN 0.7713 12.24 0.1390 2.50
LS-TCN 0.7844 12.02 0.1314 2.56

RNN Series Models

GRU 0.7421 12.52 0.1337 6.02
LSTM 0.7437 12.39 0.1326 7.80
LE-LSTM 0.8030 11.58 0.1244 46.96
LE-ConvMN 0.8556 9.580 0.1034 28.03

Transformer Series Models

sBERT 0.7916 13.51 0.1452 5.05
sBERT-EMSA 0.7921 12.97 0.1390 5.03
sTransformer 0.8206 10.68 0.1151 4.98
sTransformer-win 0.8171 10.86 0.1167 6.73
sTransformer-EMSA 0.8213 10.71 0.1152 5.10
sTransformer-EMSA* 0.8234 10.66 0.1145 5.60
sTransformer-EMFN 0.8177 10.77 0.1158 5.01

1. Table II illustrates the results obtained using z-zero normalization
function.
2. ’s’ denotes a model using a smoothing layer, ’win’ denotes a sliding
window applied in the attention mechanism, ’EMSA’ denotes the efficient
multiple self-attention mechanism, and ’EMFN’ denotes the fusion of
EMSA with pruning FNN layers. The marker ∗ represents the Soft-dtw
loss function is adopted for training the model.

our model, z-zero converged after approximately 150 epochs,
while µ-law took approximately 250 epochs to converge. We
found that the long-exposure series of the models was the
slowest, with about 1000 epochs. The LE-Conv MN requires
recording the information from the previous training of the
model and uses it in the next training, which prolongs the
training time. On the other hand, TCN, which is a typical
convolution series model, was the fastest due to the nature
of convolution, which allows for parallel computing. The
local connection within the TCN further speds up the training
process. The Transformer series model was larger, and the
training speed between different Transformers was negligible.
The feature of parallel computing can accelerate the training
of Transformer models, while it can not be utilized in practice.

Table III shows the inference time of different models
on different devices. We deployed the models on an Inter
CPU I5-7300HQ, an Apple M1 chip, and a Raspberry Pi 4B
device to measure the inference time in real applications. The
model inputs are the same sEMG signals, the concrete input
format is 12 channels*100ms with a 2000Hz sampling rate,
that is, a 12*200 data matrix. The past 12 channels*100ms
is necessary for RMS processing, it is because the step size
in RMS in our simulation is 1 sampling point per time.
The output of all models is a joint angles vector in 10*1,
corresponding to the 12*200 data matrix. There is a 150ms
delay between the predicted joint angles and the real joint
angles because the step size of the sliding time window
is 150ms. We record the computing time from inputting to
outputting as inference time on all devices. Among them, the
I5-7300HQ (maximum power consumption 45w) and Apple
M1 (maximum power consumption 39w) are computer CPUs
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(a) LSTM (b) TCN

(c) BERT (d) Transformer-EMFN

Fig. 4. The graph shows the results of our model based on the z-zero standard discourse approach on a single individual. The figure shows two predicted
joints (Middle finger proximal interphalangeal joint and Middle finger metacarpophalangeal joint), and three models for comparison, where the blue curve is
the result predicted by the model and the red curve is the actual result.

known for their high computing ability but also high chip
power consumption,making them difficult to be deployed in
wearable devices. On the other hand, Raspberry Pi 4B is an
ARM-based device with a maximum power consumption of
only 6.25W and requires only a 5V power supply. We can
assess whether a model is suitable to be deployed in wearable
devices based on the comparison of inference time and power
consumption. The experimental results in Table III show that
TCN (2.11ms, 1.08ms, 8.06ms, p < 0.001) is the fastest
among the convolution series models; LE-ConvMN (13.35ms,
8.54ms, 100.04ms, p < 0.001) is the fastest among the RNN
series models; our model (13.28ms, 11.30ms, 65.99ms, p <
0.001) is the fastest among the Transformer series models.
TCN is the fastest model on multiple devices, but its accuracy
is the lowest, which limits its application in practice. The
accuracy of our model is as similar as that of LE-ConvMN,
while the inference speed of our model is much faster than
that of LE-ConvMN. The Transformer series models can be
trained in parallel, that is an advantage that LE-ConvMN does
not have. We conclude that our model is the most promising
in wearable applications.

The power consumption of Inter CPU and Apple’s M1
chip are too high for wearable applications, so we focused on
testing the Transformer series models on the Raspberry Pi 4B.
Table IV shows the model efficiency of different Transformer
series models on Raspberry Pi 4B with z-zero normalization.
We can find that BERT has the biggest model size, the
longest inference time, and the highest AME, it is mainly
due to BERT adopts learnable vector instead of positional
encoding, the learnable vector contains too many linear layers.
In contrast, our downsampling of K and V and the pruning of
the unimportant hidden neurons in the FNN layer reduces the

computational density and the amount of parameters, leading
to lower power consumption, the lowest AME, smallest model
size and the fastest inference speed among all the Transformer
series models. The proposed model is slightly less accurate
than the baseline model sTransformer,but the efficiency has
been greatly improved.

We conducted experiments with DB7 and SEEDs to

TABLE III
DIFFERENT INFERENCE TIME OF DIFFERENT SERIES MODELS

ON CONTINUOUS ESTIMATION OF HAND KINEMATICS ON
NINAPRO DB2 WITH Z-ZERO NORMALIZATION

Model Intel CPU Apple M1 Raspberry Pi 4B

Convolution Series Models (ms)

TCN 2.11 1.08 8.06
LS-TCN 4.4 2.37 24.42

RNN Series Models (ms)

GRU 25.75 9.12 117.13
LSTM 25.91 10.49 137.96
LE-LSTM 27.21 10.72 138.67
LE-ConvMN 13.35 8.54 100.04

Transformer Series Models (ms)

sBERT 39.34 36.20 336.99
sBERT-EMSA 32.51 28.25 301.89
sTransformer 30.22 16.31 116.43
sTransformer-swin 54.19 28.22 216.80
sTransformer-EMSA 22.61 12.25 102.55
sTransformer-EMFN 13.28 11.30 65.99

1. The inference time of different models on different hardware
devices were tested, and results are the average of several subjects.
2. The CPUs used in the table are the Intel microprocessor I5-
7300HQ, Apple’s M1, and the Raspberry Pi 4B. Intel and Apple
are mainly computer laptop CPU devices and Raspberry Pi 4B is a
microcomputing processor device.
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TABLE IV
MODEL EFFICIENCY OF DIFFERENT TRANSFORMER SERIES

MODELS ON RASPBERRY PI 4B WITH Z-ZERO
NORMALIZATION

Model Params(MB) Infer(ms) Power(W) AME

sBERT 59.63 336.99 2.20 153.18
sBERT-EMSA 59.5 301.89 2.10 143.76
sTransformer 3.43 116.43 3.10 37.56
sTransformer-swin 3.53 216.80 2.40 90.33
sTransformer-EMSA 3.43 102.55 3.00 34.18
sTransformer-EMFN 2.95 65.99 2.80 23.57

1. The batch size is set to 1 and the window length of input is set to 200
points.
2. The device used to measure the inference time is the Raspberry Pi 4B.

explore the effects of noise and electrodes shifting on our
model. In DB7, when Gaussian noise with SNR 10 dB is
added, the accuracy of Transformer-EMFN is decreased by
only 0.5 %. This preliminary proves the ability of our model to
resist noise. In SEEDS[30] datasets , we conduct the electrodes
shifting simulation. We used the odd rows of electrodes
for training and the even rows of electrodes for testing to
simulate the shifting of the electrodes. After Electrodes’s
shifting, the accuracy of Transformer-EMFN (CC = 0.7610,
RMSE = 12.25, NRMSE = 0.1324) is decreased by 5.12%
comparing with no electrodes’ shifting. Finally, we came to
record the model inferring time on DB7 with ARM PI 4B. The
inferring time of Transformer-EMSA and Transformer-EMFN
is 105.78ms and 67.35ms, respectively, which is promising for
real-time applications.

We also executed online test: High-density sEMG
was acquired from forearm muscles utilizing three grids
(ELSCH064NM3, 8 × 8 channels, OT Bioelettronica, Italy)
which was connected to a multichannel amplifier (QUATTRO-
CENTO, OT Bioelettronica, Italy). The sEMG signals (192
channels) were recorded in monopolar derivation with a gain
of 500 and sampled at 2048 Hz. Following recording, the
signals underwent bandpass filtering with cut-off frequencies
set between 10 and 500 Hz, and A/D conversion on 12 bits.
Simultaneously, finger kinematics parameters were captured
using a 5DT Data Glove 14 Ultra (5DT Inc. USA). Syn-
chronization between the sEMG recorder and data glove was
achieved through a MATLAB program (Figure 5(b)). The data
glove measures the angles of 14 finger joints at a sampling
rate of 16 Hz. Six movements (3-digit pinch, cylinder grasp,
disc grasp, key grip, pinch and grasp, fist) were chosen, each
movement executed for 30s, and 20s is used as the training
set for training the models, and the remaining are used as
testing set to evaluate models. The model was combined in
the online experimental system. A sliding time window with
a step size of 150ms and a window length of 100ms is used to
estimate the joint angles from sEMG signals in Figure 5 (a),
before estimation, the RMS is calculated within this sliding
window, the step size of calculating RMS is 0.5ms. Four able-
bodied subjects (all male, aged 32 ± 5 years) participated in
the experiment. The results are shown in Table V.

From TABLE V our model performed well in
online test, (PCC=0.8028±0.08, RMSE=12.02±0.45,
NRMSE=0.1298±0.22), the inference time (ms) for our

model on sEMG with 192 channels (Intel CPU=14.35±0.25,
Apple M1=10.20±1.47, Raspberry Pi 4B=105.36±5.58) is
relevantly short, and the model efficiency (Params=13.2MB,
Power=2.30±0.27W, AME=45.81±4.40) can satisfy the
demands of real applications.

(a) (b)

Fig. 5. The online testing procedure. (a) Sliding time windows. (b) Online
experiment setup

TABLE V
AVERAGE ACCURACY, INFERENCE TIME ON INTEL CPU,

APPLE M1 AND RASPBERRY PI 4B AND MODEL EFFICIENCY
FOR OUR MODEL ON FOUR SUBJECTS IN ONLINE

EXPERIMENT

Accurac CC RMSE NRMSE
0.8028 12.02 0.1298

Inference Time Intel CPU Apple M1 Raspberry Pi 4B
(ms) 14.35 10.20 105.36

Efficiency Params Power AME
13.2MB 2.30W 45.81

In the online experiment, we set the step size at 150
ms, the reason is the inference time of our model is 14.35
ms and the time of data filtering, calculation of RMS, and
other time costs are about 120 ms. In the online experiment,
less inference time can lead to a smaller step size of the
time window, which can get more estimated angles during the
same time. More estimated angles can improve the smoothness
of human-computer interaction and reduce the possibility of
losing critical information. Though the inference time of LE-
ConvMN is only 100.04ms on sEMG with 12 channels, the
inference time on HD-sEMG (192 channels) is 653.30ms,
which is too long to be accepted in HIM. Generally, the models
with faster inference time always suffer from lower accuracy,
while our model combines fast inference with high accuracy,
which makes it a good choice for real-time applications.

In conclusion, among the Transformer series models, the
proposed model with smoothing layers, EMSA, and pruning
FNN layers, yielded the best results. Among the convolution
series models, TCN had the fastest inference speed but suf-
fered from low accuracy. LS-TCN had improved the accuracy,
but it still fell short of practical demands. Among RNN series
models, recurrent neural networks achieved good accuracy but
suffered from an inability to train in parallel, which leading
to longer training time and inference time. The classical
Transformer model can be trained in parallel, and there is
still room for improvement in the number of parameters and
inference time. Our model outperformed TCN, LS-TCN, and
LE-LSTM in all metrics, including PCC, NRMSE, inference
time, and power consumption. Although LE-Conv-MN had
the accuracy advantage, our model outperformed it in terms
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of training time, inference time, and power consumption. In
summary, our model can be trained in parallel, with shorter
training and inference time and lower power consumption,
making it have strong practical value.

V. DISCUSSIONS

In the current study, we proposed the sTransformer-
EMSA and sTransformer-EMFN methods to continuously
estimate finger joints kinematics from sEMG signals. We
compared the performance of Convolution series, RNN series
and Transformer series models, with metrics such as CC,
RMSE, NRMSE, and training time per epoch. We also cal-
culated the inference time for a window of input during the
testing phase, the model size, power consumption, and AME.
Our results demonstrated that the Transformer series model
outperformed classical models. Ablation experiments further
showed that the proposed approach outperformed the classical
Transformer model. Our method achieved a balance between
efficiency and accuracy, with shorter inference time, smaller
model size, lower power consumption, and smaller loss of
accuracy compared to the classical Transformer model, making
it more promising for practical applications.

We used efficient attention to decrease the spatial com-
plexity of the model, resulting in reduced inference time
and improved training efficiency. For accuracy, our approach
is comparable to those of SOTA methods, but with shorter
training time and inferring time, lower power consumption,
and smaller model size.

There are several limitations to our work. First of all,
although we included all individuals in Ninapro Dataset DB2,
our model was only tested on the single subject and not on
cross-subjects [11]. The transfer learning on cross-subjects
is a researching trend, and it will be our future work [31].
In addition, in this paper, the models based on Transformer
consume too much arithmetic power in the training stage. In
the future, we will research the possibility of using integral op-
erations instead of the floating-point operations in Transformer
to improve the accuracy and efficiency further.

In future research, our focus will not only be on model
compression but also on model quantization [32] . Currently,
model quantization for specific hardware devices has become
a mainstream in industrial applications, which significantly
impacts the practical application of models. Quantization
involves converting the floating-point operation into integral
operation, resulting in a substantial reduction in the amount
of model parameters and improved inference time. However,
quantization may reduce the accuracy of the model. Therefore,
how to quantize the model with minimum loss of accuracy is
an important research task. Multimodality has also begun to
emerge in various fields.

VI. CONCLUSIONS

The continuous estimation of movement from sEMG
signals has been a relevant topic in myoelectric control and
more generally in human-machine interfacing research. Pre-
vious work almost exclusively focused on decoding accuracy.
In this paper, we specifically focused on developing models

that simultaneously provided high accuracy and efficiency. We
proposed the sTransformer-EMSA and sTransformer-EMFN
models, which utilize efficient multiple self-attention to re-
place the traditional self-attention mechanism, and pruning
FNN strategy to improve algorithmic efficiency. The models
achieved an effective myoelectric homogeneous estimation
of joint angles during grasping movements. By optimizing
attention mechanisms and pre-processing, the models could
extract the temporal and spatial features from sEMG signals,
and the smooth layer facilitated superior accuracy of joint
angles. Our results from the widely used Ninapro dataset
demonstrated that the accuracy of sTransformer-EMSA and
sTransformer-EMFN is as high as those of SOTA methods,
and the efficiency is significantly better than previous methods.
Moving forward, we aim to enhance the attention mechanism
to bolster the efficiency and accuracy of the models and
explore the possibility of deploying edge computing to further
improve the comprehensive performance of the models.
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