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Fall Risk Prediction Using Instrumented
Footwear in Institutionalized Older Adults

Huanghe Zhang∗, Chuanyan Wu∗, Yulong Huang, Rui Song, Damiano Zanotto, Sunil K. Agrawal

Abstract— This study presents a novel framework that
utilizes instrumented footwear to predict fall risk in insti-
tutionalized older adults by leveraging stride-to-stride gait
data. The older adults are categorized into fallers and non-
fallers using three distinct criteria: retrospective fall history,
prospective fall occurrence, and a combination of both
retrospective and prospective data. Three types of data
collected from N=95 institutionalized older adults are an-
alyzed: traditional timed mobility tests, gait data collected
from a validated electronic walkway, and gait data col-
lected with instrumented footwear developed by our team.
The importance of each type of data is assessed using a
brute-force search method, through which the optimal fea-
tures are selected. AdaBoost algorithms are then utilized
to develop predictive models based on the selected fea-
tures. The models are evaluated using leave-one-out cross-
validation and 10-fold cross-validation. The results show
that models using gait data from the instrumented footwear
outperformed those based on traditional tests and walkway
data, with area under the receiver operating characteristic
curve (AUC) values for predicting prospective falls being
0.47, 0.66, and 0.80, respectively. The sensitivity of the
models increases when they are trained using both past
and future falls data, rather than relying solely on past or
future falls data. This study demonstrates the potential of
instrumented footwear for fall risk assessment in elderly
individuals. The findings provide valuable insights for fall
prevention and care, highlighting the superior predictive
capabilities of the developed system compared to tradi-
tional methods.
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I. INTRODUCTION

FALLS are serious and costly events among old adults.
In 2020, according to the Centers for Disease Control

and Prevention [1], 3 million falls in older adults have been
recorded by emergency departments and caused approximately
$50 billion in direct medical costs. This economic burden of
falls will reach $100 billion by 2030. In addition, falls among
adults aged 65 or older caused over 36,000 deaths in 2020,
making it the leading cause of injury death in this population.
Thus, assessing fall risk is crucial for older adults. More than
just identifying those at risk, effective fall risk assessments
are integral to initiating targeted prevention strategies, such
as exercise-based therapies. These interventions are proven to
substantially reduce the incidence of falls and enhance the
health and quality of life for this population [2], [3].

The traditional fall risk assessment is based on clinical
observations and timed mobility tests, such as the five times sit
to stand test (FTSST) [4], the Timed Up and Go (TUG) test
[5], and the 6-Minute Walk Test (6MWT) [6]. While these
tests are quick and easy to administer, their outcomes are
subjective (i.e., clinical observations) and cannot effectively
predict falls in older adults (i.e., timed mobility tests) if used
alone [7]. Therefore, quantitative gait analysis, which has
higher diagnostic power than clinical observations, has been
proposed for fall risk assessment [8]. Research has shown that
gait parameters such as stride length, stride velocity, stride
time, swing time, and double support time are correlated with
an increased risk of falls [9]. Additionally, the stride-to-stride
fluctuations, called gait variability, in these gait parameters
might represent a more robust indicator of falling than average
gait metrics [10], [11]. Increased stride variability can be
viewed as gait instability or poor balance [9], [11], and there-
fore results in more likelihood of falling. For these reasons,
a simple and effective fall risk prediction system typically
includes two parts: 1) an accurate gait parameters estimation
system and 2) an accurate fall risk prediction model based on
gait data [12].

Fall risk prediction systems typically employ three cate-
gories of sensor technologies: camera sensors [13], infrared
sensors [14], and wearable sensors [12] to measure gait
parameters. However, camera sensors and infrared sensors
tend to be costly and come with privacy concerns due to
their audiovisual recording capabilities and the requirement
for users to be within range of the stationary system [15].
To address these limitations, wearable sensor-based systems
for fall risk prediction have emerged as a cost-effective and
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portable alternative. Notably, among these wearable sensors,
instrumented footwear equipped with pressure sensors [16]–
[18] and inertial sensors [19], [20] are particularly favored
for prolonged monitoring, given their unobtrusive nature and
ergonomic design. Gait events, including initial contact, mid-
stance, and last contact, can be accurately identified through
the data collected by inertial sensors [21] or pressure sensors
[22]. Subsequently, temporal gait parameters such as stride
time, swing time, and double support time can be directly
computed utilizing these precisely detected gait events. On
the other hand, spatial gait parameters like stride length are
determined by initially eliminating the influence of gravity
from the accelerometer readings of the inertial sensor. This
process is then followed by a double integration performed
between successive mid-stance phases, commonly known as
the ‘foot displacement method’ in the literature [21], [23]. In
order to obtain drift-free gait parameters, zero velocity update
and velocity drift compensation are typically included in the
implementation [21], [23].

After obtaining accurate gait parameters, the next step is
to create a fall risk prediction model. Leveraging the power
of machine learning, many scholars have proposed effective
models based on gait data [24]–[26]. For instance, Greene
et al. [27] developed logistic regression models to predict
fall risk among older adults, achieving a mean accuracy
of 76.8%. However, this method required additional input
information, including ’Return time’ from the TUG test, as
well as the participant’s height and weight. The logistic re-
gression classifier was also investigated in [16], where a series
of candidate classifiers, such as support vector machine, k-
nearest neighbor, decision tree, random forest, and AdaBoost,
were tested. Notably, AdaBoost achieved the best results
with an accuracy of 87.5% solely utilizing plantar pressure
information. It is important to note, however, that the fall
risk in this study relied on clinical test scores rather than
actual recorded instances of historical falls. The utilization of
random forest was also reported in [28], employing a wearable
sensor attached to the sternum for assessing fall risk. However,
the model’s performance evaluation did not incorporate cross-
validation, introducing uncertainty regarding its generalization
capabilities. This limitation was also observed in [29], where
Long Short-Term Memory (LSTM) neural networks were pro-
posed. Most importantly, these models were validated only on
retrospective fall history, not on prospective fall occurrences.

The two primary limitations of retrospective assessments
are potential memory inaccuracies regarding past falls and
alterations in gait resulting from previous falls [30]. To address
these limitations, Paterson et al. [19] and Schwesig et al. [20]
implemented logistic regression models to predict prospective
fall risk in older adults. Nonetheless, the performance of
these models was modest, achieving prediction success rates
of 67% and 66%, respectively. Furthermore, Howcroft et al.
[31] explored the use of neural networks, naı̈ve Bayesian, and
support vector machine classifiers for predicting fall risk, but
the highest accuracy achieved was only 57%. Additionally,
Ye et al. developed and validated an XGBoost-based fall risk
prediction model using electronic health records from older
adults, predicting 58.01% of falls within the first 30 days and

Fig. 1: The instrumented footwear (i.e., SoleSound) used in
this study [34]. (A) The logic unit is attached to the heel,
and the ultrasonic sensor is mounted on the medial side of
the footwear, although it was not used in this study. (B) The
locations of the four piezoresistive force sensors and the 9-
DOF IMU.

54.93% of falls between 30–60 days in the following year
[32]. Dormosh et al. explored the use of unstructured clinical
notes alongside structured data to predict falls in older adults,
employing natural language processing and machine learning.
Their combined model, which integrated both structured vari-
ables and topics from unstructured notes, achieved an AUC
of 0.718, demonstrating the potential of unstructured notes in
enhancing fall prediction models [33]

In this study, the instrumented footwear named SoleSound,
a pair of sandals equipped with piezo-resistive sensors, inertial
measurement units (IMU), and ultrasonic sensors, is used to
predict fall risk. This fully portable system can measure a
rich set of gait parameters, including cadence, stride time,
swing time, single/double support time, symmetry ratios, stride
length, stride velocity, stride width, foot-ground clearance, foot
trajectory, and ankle plantar-dorsiflexion angle. The accuracy
and precision of these gait parameters have been validated
against ground truth in both young, healthy adults [34] and
institutionalized older adults [35]. In our previous work, we
have extensively focused on developing regression models to
accurately estimate spatiotemporal gait parameters [36]–[40],
center of pressure trajectories [41], [42], dynamic margin of
stability [43], and hip joint angle [44]. In this study, our
goal is to leverage AdaBoost to enhance the accuracy and
performance of the instrumented footwear in predicting fall
risk. A total of N=95 older adults are classified into fallers
and non-fallers using three distinct criteria: retrospective fall
history, prospective fall occurrence, and a combination of both
retrospective and prospective data. To the best of the authors’
knowledge, this study represents a pioneering effort in the field
of fall risk prediction using wearable sensors by integrating
both retrospective fall history and prospective fall occurrence.
The main contributions of this paper include 1) identification
of effective gait parameters for fall risk prediction; 2) devel-
opment of an AdaBoost-based fall risk prediction model; 3)
validation of the proposed models both on retrospective and
prospective fall data.

II. MATERIAL AND METHODS
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TABLE I: Subject Information (SD = Standard Deviation)

Type I (retrospective fall history) Type II (prospective fall occurrence) Type III (Type I ∨ Type II)
Faller (N=16) Non-Faller (N=79) Faller (N=15) Non-Faller (N=80) Faller (N=21) Non-Faller (N=74)

Age, years (mean ± SD) 83.9 ± 7.8 84.6 ± 8.1 85.1 ± 6.7 84.3 ± 8.3 84.4 ± 6.9 84.5 ± 8.4
Female,% 14, 87.5% 53, 67.1% 11, 73.3% 56, 70.0% 17, 81.0% 50, 67.6%
Weight, kg (mean ± SD) 64.4 ± 17.8 68.3 ± 16.9 60.2 ± 17.8 69.1 ± 16.6 64.4 ± 18.6 68.6 ± 16.5
Height, cm (mean ± SD) 161.6 ± 8.3 164.2 ± 9.3 162.6 ± 9.3 163.9 ± 9.2 162.7 ± 8.2 164.0 ± 9.4
TUG, s (mean ± SD) 24.3 ± 12.4 21.4 ± 13.7 24.4 ± 14.5 21.4 ± 13.3 24.9 ± 14.0 21.0 ± 13.3
6MWT, m (mean ± SD) 206.6 ± 87.9 229.2 ± 85.7 204.3 ± 89.0 229.3 ± 85.5 206.3 ± 95.0 230.8 ± 83.2
FTSST, s (mean ± SD) 21.0 ± 11.3 18.9 ± 13.2 21.1 ± 9.8 18.9 ± 13.4 21.4 ± 11.1 18.6 ± 13.3

A. System Description
SoleSound [34], a fully portable instrumented footwear

system (Figure 1), was developed at the Columbia University
Robotics and Rehabilitation Laboratory. SoleSound includes
two foot modules and a data logger. Each foot module consists
of four piezoresistive force sensors, a nine-degrees-of-freedom
(9-DOF) IMU (Yost Labs Inc., Portsmouth, OH), and a logic
unit. The foot module also includes an ultrasonic sensor
attached to the medial side of the footwear, though it was not
used in this study, as shown in Figure 1-A. The force sensors
are strategically positioned beneath the distal phalanx, the head
of the first metatarsal, the head of the fifth metatarsal, and the
calcaneus. The IMU is centrally embedded along the midline
of the foot module, below the tarsometatarsal articulations, as
shown in Figure 1-B.

The foot module collects foot pressure and kinematic data
through a microcontroller (32-bit ARM Cortex-M4) powered
by a compact 400 mAh Li-Po battery. Both the microcontroller
and battery are housed in a custom plastic enclosure attached
to the heel. The collected data is sampled at a rate of 500 Hz
and wirelessly transmitted via UDP over a local IEEE 802.11n
WLAN to a single-board computer running the data logger
software. Simultaneously, the data is sent to a graphical user
interface implemented in Matlab (The MathWorks, Natick,
MA, USA) at a frequency of 50 Hz for visualization purposes.

B. Experimental Protocol
Ninety-five institutionalized older adults wearing appropri-

ate sizes of SoleSound volunteered for the TUG, FTSST, and
6MWT in their living places under the supervision of a phys-
ical therapist. The older adults were recruited from five long-
term care facilities in the New York metropolitan area. The
Columbia University Institutional Review Board approved the
experimental protocol and all participants provided informed
consent. Gait parameters were simultaneously collected by the
SoleSound and a validated electronic walkway, a 6-meter-long
instrumented walkway (Zeno Walkway, Protokinetics LLC,
Havertown, PA, USA). The instrumented walkway was located
in the middle of a 25-meter-long course. A custom-made
wireless board operating at 500 Hz was used to synchronize
the two systems.

Research has shown that a history of falls is one of the
strongest predictors of future falls [45], especially for older
adults who have sustained an injurious fall [46]. Therefore,
participants were categorized as fallers1 if they had expe-

1Similar to [30], this study labels fallers as having fall risk and non-fallers
as having no fall risk.

rienced at least one fall in the six months preceding the
tests (Type I), reported at least one fall during the six-
month following the tests (Type II), or experienced at least
one fall extending from the previous six months into the
six-month follow-up period (Type III). Their information is
reported in Table I. Participants’ fall histories were checked
by their primary care doctors, who had access to their medical
records. These data were periodically reviewed and updated
for accuracy up to six months after the end of the test.

C. Fall Risk Prediction Using AdaBoost

In our research, we collected data from three different
sources: timed mobility tests (i.e., TUG, FTSST, and 6MWT),
gait data collected from the instrumented walkway during the
6MWT, and gait data collected from the instrumented footwear
during the 6MWT. It is important to note that while the
walkway data are confined to the length of the 6-meter mat, the
instrumented footwear captures detailed gait data across the
full 25-meter course, providing a richer and more extensive
dataset. We first analyzed the importance of each type of
data and selected the optimal features using a brute-force
search method [47] (i.e., by testing all possible combinations).
AUC, which refers to the area under the Receiver Operating
Characteristic (ROC) curve, was selected to compare different
classifiers [47]. The AUC value ranges from 0 to 1, where an
AUC of 0.5 indicates that the model’s predictive ability is no
better than random guessing, while an AUC closer to 1 signi-
fies that the model effectively distinguishes between positive
and negative classes. After obtaining the optimal features, we
constructed AdaBoost models for fall risk prediction under the
three defined conditions (i.e., Type I, Type II, and Type III),
Figure 2.

1) Feature Extraction: The set of candidate input features
for the fall risk prediction model encompasses outcomes from
traditional mobility tests (i.e., TUG, 6MWT, and FTSST).
Additionally, it includes the mean and coefficient of variation
(CV) for stride length (SL), stride velocity (SV), swing time
(SW), double support time (DS), and stride time (ST) during
the 6MWT [35].

2) Feature Selection: The feature selection process is de-
picted in Figure 3, and can also be summarized as follows:

(1) Split the dataset into training set and test set.
(2) Define an empty feature combination list to store all

possible feature combinations. For each possible feature com-
bination size (from 1 to N, where N is the total number
of features), use an iterative method to generate all possible
feature combinations.
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Fig. 2: The flowchart of the system. The electronic walkway
incorporates a grid of pressure sensors, uniformly spaced at
1.27 cm intervals and embedded within a thin mat, enabling
precise estimation of spatial and temporal gait parameters.

(3) For each feature combination, train a classifier model
on the training dataset, then evaluate its performance by
calculating the AUC value on the test dataset.

(4) During each iteration, compare the AUC value with the
current best AUC value. If the new AUC value is higher,
update the best AUC value and record the current feature
combination.

if AUC ≥ AUC Best: AUC Best = AUC
(5) Select the feature combination with the best AUC value

among all feature combinations as the final selection.
3) AdaBoost Classifier: The AdaBoost (Adaptive Boosting)

classifier is a popular machine learning algorithm used for
binary classification problems [47]. It is an ensemble method
that combines multiple weak classifiers to create a strong
classifier. Studies have shown that AdaBoost offers significant
advantages in handling imbalanced data, enhancing model
robustness, and improving classification performance [47],
[48]. AdaBoost has also been reported to outperform other
machine learning models, such as support vector machines,
k-nearest neighbors, decision trees, and random forests in fall
risk prediction [16]. Therefore, we selected AdaBoost to build
the prediction model in this study.

We developed three models named Adacon, Adawalk, and
Adafootwear, using different sources of gait data. Adacon
utilized conventional features derived from the outcomes of
the TUG, 6MWT, and FTSST. Adawalk was based on gait fea-
tures obtained from the 6-meter-long instrumented walkway.
Notably, Adafootwear used comprehensive gait data collected
from the instrumented footwear, which covered the entire
course of the 6MWT, not just the limited 6-meter walkway.

Fig. 3: The flowchart of feature selection. The dataset is split
into a training set and a test set. A brute-force search method
is then used to evaluate every possible feature combination.
For each combination, the classifier is trained on the training
set and its performance is assessed on the test set, measured
by the AUC value. The feature combination that yields the
highest AUC is selected as the optimal set, thereby ensuring
maximum predictive accuracy.

D. Model Training and Evaluation

Leave-one-out cross-validation (LOOCV) was used to eval-
uate the unbiased performance of the proposed models [49].
LOOCV involves training the model on all but one sample
and testing it on the left-out sample. This process is repeated
for each sample in the dataset. LOOCV helps assess how
well the model generalizes to unseen data. To assess the
statistical significance of performance differences among the
three models (i.e., Adacon, Adawalk, and Adafootwear), we
also conducted 10-fold cross-validation. In this process, we
performed a single 10-fold cross-validation. For each of the 10
folds, we used nine folds to train all three models (i.e., Adacon,
Adawalk, and Adafootwear), and the remaining fold was used
to test their performance. This process was repeated 10 times,
once for each fold being the test set. The results from each
fold were then aggregated to provide a robust comparison of
the models’ performances and to assess statistical significance.

The true positive rate (TPR), false positive rate (FPR), ROC
curve, and AUC were selected as error metrics [47]. TPR, also
referred to as sensitivity or recall, measures the proportion
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of actual positives correctly identified by the model. It is
calculated as the ratio of true positives (TP, where an older
adult is correctly classified as a faller when they are indeed
a faller) to the sum of TP and false negatives (FN, where an
older adult is incorrectly classified as a non-faller when they
are actually a faller). The formula is as follows:

TPR =
TP

TP + FN
(1)

FPR represents the proportion of actual negatives that were
incorrectly classified as positives. It is calculated as the ratio
of false positives (FP, where an older adult is incorrectly
classified as a faller when they are actually a non-faller) to
the sum of FP and true negatives (TN, where an older adult
is correctly classified as a non-faller when they are indeed a
non-faller). The formula is as follows:

FPR =
FP

FP + TN
(2)

The ROC curve plots TPR against FPR at various classification
thresholds, making it a widely used tool for evaluating binary
classifiers.

E. Statistical Analysis
Two-way repeated-measures ANOVA was used to identify

significant effects of the data source (Adacon, Adawalk, and
Adafootwear) and classification criteria (Type I, Type II, and
Type III), as well as potential interactions between these two
factors. The AUC value was chosen as the dependent variable,
as it is commonly used to compare classifiers [47]. When
significant effects were found (α < 0.05), post-hoc compar-
isons were conducted using the Bonferroni-Holm correction,
as appropriate. All statistical analysis was carried out in SPSS
v28 (IBM Corporation, Armonk, NY).

III. RESULTS

The mean and CV for ST, SW, DS, SL, and SV measured
by the instrumented walkway (i.e., Reference) and the in-
strumented footwear (i.e., SoleSound) during the 6MWT are
reported in Table II.

A. Feature Selection
Utilizing the feature selection methodology outlined in

Section-II, models were constructed based on traditional mea-
surement methods. The feature selection process involved
evaluating the importance and relevance of various features for
fall risk prediction. The resulting scores for the Top-5 selected
features are presented in Table III.

These AUC values highlight the significance of each feature
selected for the fall risk prediction models, which are based
on traditional measurement methods. Higher scores denote
a stronger link between the feature and fall risk, leading
to a more precise and efficient prediction process, thereby
enhancing the clinical utility of the models. It is important to
note that the specific features and their scores listed in Table
III are derived from the feature selection algorithm used in this

TABLE II: Comparison of gait features measured by the
instrumented walkway (i.e., Reference) and the instrumented
footwear (i.e., SoleSound). The walkway data are confined to
the length of the 6-meter mat, whereas the SoleSound collects
data across the full 25-meter course throughout the entire
6MWT.

Type I Faller (N=16) Non-faller (N=79)
Reference SoleSound Reference SoleSound

ST, s 1.30 ± 0.26 1.31 ± 0.26 1.27 ± 0.23 1.27 ± 0.22
SW, s 0.38 ± 0.04 0.38 ± 0.05 0.39 ± 0.06 0.40 ± 0.07
DS, s 0.27 ± 0.11 0.27 ± 0.10 0.24 ± 0.08 0.23 ± 0.06
SL, m 0.79 ± 0.23 0.82 ± 0.22 0.86 ± 0.25 0.91 ± 0.26
SV, m/s 0.65 ± 0.27 0.67 ± 0.25 0.70 ± 0.25 0.74 ± 0.26
CVST % 6.61 ± 3.22 7.26 ± 2.78 5.82 ± 2.37 6.54 ± 3.04
CVSW % 10.20 ± 4.42 11.45 ± 4.31 11.04 ± 6.08 11.78 ± 7.55
CVDS% 13.45 ± 3.59 14.19 ± 5.87 14.14 ± 4.88 14.58 ± 8.12
CVSL% 9.11 ± 4.13 12.51 ± 4.14 9.28 ± 4.75 13.07 ± 6.04
CVSV % 10.76 ± 3.75 14.21 ± 4.54 11.28 ± 4.93 14.51 ± 6.13
Type II Faller (N=15) Non-faller (N=80)
ST, s 1.22 ± 0.21 1.24 ± 0.22 1.29 ± 0.23 1.29 ± 0.23
SW, s 0.37 ± 0.06 0.38 ± 0.06 0.39 ± 0.06 0.40 ± 0.06
DS, s 0.24 ± 0.07 0.23 ± 0.06 0.25 ± 0.09 0.24 ± 0.07
SL, m 0.76 ± 0.26 0.80 ± 0.25 0.87 ± 0.24 0.91 ± 0.25
SV, m/s 0.64 ± 0.27 0.67 ± 0.26 0.70 ± 0.25 0.74 ± 0.26
CVST % 7.46 ± 3.87 8.99 ± 4.98 5.67 ± 2.11 6.22 ± 2.25
CVSW % 11.88 ± 6.13 15.33 ±12.80 10.72 ± 5.79 11.05 ± 5.28
CVDS% 14.01 ± 3.86 14.39 ± 5.92 14.03 ± 4.83 14.54 ± 8.09
CVSL% 11.25 ± 6.23 15.22 ± 6.55 8.87 ± 4.21 12.56 ± 5.53
CVSV % 12.65 ± 5.63 16.33 ± 5.90 10.92 ± 4.54 14.10 ± 5.83
Type III Faller (N=21) Non-faller (N=74)
ST, s 1.26 ± 0.25 1.27 ± 0.26 1.28 ± 0.23 1.28 ± 0.22
SW, s 0.37 ± 0.06 0.38 ± 0.06 0.40 ± 0.06 0.40 ± 0.07
DS, s 0.26 ± 0.10 0.25 ± 0.09 0.24 ± 0.08 0.24 ± 0.06
SL, m 0.77 ± 0.25 0.81 ± 0.25 0.87 ± 0.24 0.92 ± 0.25
SV, m/s 0.65 ± 0.29 0.67 ± 0.27 0.71 ± 0.24 0.74 ± 0.25
CVST % 6.98 ± 3.42 8.99 ± 4.42 5.66 ± 2.16 6.20 ± 2.29
CVSW % 10.87 ± 5.43 15.33 ±11.13 10.91 ± 5.97 11.07 ± 5.37
CVDS% 13.69 ± 3.47 14.39 ± 5.46 14.12 ± 4.98 14.56 ± 8.33
CVSL% 10.26 ± 5.65 15.22 ± 6.09 8.96 ± 4.30 12.68 ± 5.66
CVSV % 12.03 ± 5.15 16.33 ± 5.59 10.96 ± 4.62 14.19 ± 5.95

study (i.e., Section-II-C). By testing all feature combinations,
Table III reveals that solely including the FTSST outcome
results in AUC values of 0.53, 0.47, and 0.53 under three
different conditions, respectively. Subsequently, FTSST was
incorporated into the development of the ”Adacon” prediction
model, emphasizing its role in assessing mobility and balance.

Furthermore, employing the same feature selection method-
ology, models were constructed based on gait measurements
from an instrumented walkway. The AUC scores for the Top-
5 selected features are presented in Table IV. Our analysis
reveals distinct optimal feature combinations for each condi-
tion: the combination of CVDS and CVSV yields the best
result (AUC=0.69) for Type I; CVDS , CVSW , and ST for
Type II (AUC=0.66); and CVDS , CVSW , SW, and ST for
Type III (AUC=0.77). Consequently, the ’Adawalk’ model,
specifically designed to evaluate gait dynamics on an instru-
mented walkway, incorporates these tailored gait metrics under
each distinct type condition, thereby enhancing its predictive
capacity for fall risk.

Applying the same feature selection methodology, addi-
tional models were developed based on gait measurements
from instrumented footwear, as detailed in Table V. Our
results reveal that for Type I conditions, the optimal fea-
ture combination—CVDS , CVST , CVSL, CVSV , SW, and
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TABLE III: The feature selection result of conventional measurements

Features AUC Features AUC Features AUC
FTSST 0.53 FTSST 0.47 FTSST 0.53
TUG 0.47 TUG 0.47 FTSST, TUG 0.51

Type I FTSST, TUG 0.43 Type II 6MWT 0.39 Type III TUG 0.47
FTSST, 6MWT 0.38 FTSST, 6MWT 0.34 FTSST, TUG, 6MWT 0.40
TUG, 6MWT 0.37 FTSST, TUG 0.34 TUG, 6MWT 0.39

TABLE IV: The feature selection result of gait measurements
from the walkway

Features AUC
CVDS , CVSV 0.69

CVDS , CVSV , ST 0.68
Type I CVDS , CVST , ST, SW 0.68

CVSW , CVSV , CVST , SW 0.68
DS, ST, SW 0.68

CVDS , CVSW , ST 0.66
CVDS , CVSW 0.63

Type II CVDS 0.62
CVDS , CVSL 0.61

CVDS , CVSW , CVST , SL 0.61
CVDS , CVSW , SW, ST 0.77

CVDS , CVSW , SW, ST, SV 0.75
Type III CVDS , CVSW , CVSV , SW, ST, DS 0.74

CVDS , CVSW , SW, ST, DS 0.73
CVDS , CVSW , CVST , SW, ST 0.73

TABLE V: The feature selection result of gait measurements
from the instrumented footwear

Features AUC
CVDS , CVST , CVSL, CVSV , SW, SV 0.81

CVST , CVSL, SW, SV, SL 0.78
Type I CVDS , CVST , CVSL, SW, SV 0.78

CVST , CVSL, CVSV , SW, SV 0.77
CVSL, SW, ST, SV 0.76

CVST , CVSW , CVSL, CVSV , SL, SV 0.80
CVST , CVSL, CVSV , SV 0.76

Type II CVST , CVSL, CVSV , SL 0.76
CVST , CVSL, CVSV , ST, SL, SV 0.76

CVST , CVSL, CVSV 0.75
CVST , CVSL, SW, ST, SL, SV 0.77

CVST , CVSL, SW, ST, SL, SV, DS 0.73
Type III CVST , CVSL, CVSV , SW, ST, SL 0.71

CVST , CVSL, SW, SL, SV, DS 0.71
CVST , CVSL, CVSW , SW, SL, SV 0.71

SV—achieves an AUC of 0.81; for Type II, the combination of
CVST , CVSW , CVSL, CVSV , SL, and SV (AUC=0.80); and
for Type III, CVST , CVSL, SW, ST, SL, and SV (AUC=0.77).
Thus, the ‘Adafootwear’ model, specifically designed for as-
sessing gait dynamics via instrumented footwear, incorporates
these tailored gait metrics for each distinct condition, further
enhancing its predictive capability for fall risk.

TABLE VI: AUC values for Adacon, Adawalk, and
Adafootwear using 10-fold cross-validation

Model Type I Type II Type III
Adacon 0.57 0.56 0.54
Adawalk 0.61 0.57 0.71

Adafootwear 0.70 0.70 0.76

TABLE VII: p-values of the two-way repeated-measures
ANOVA (DS = data source, CC = classification criteria, ns
= not significant)

DS CC DS∗CC
AUC < 0.05 ns ns

TABLE VIII: Adjusted p-values from the post-hoc analyses fol-
lowing one-way repeated-measures ANOVA. The Bonferroni-
Holm method was used to adjust for multiple pairwise com-
parisons across the different AdaBoost classifiers.

Adacon/ Adacon/ Adawalk/
Adawalk Adafootwear Adafootwear

AUC ns < 0.05 ns

B. Performance Evaluation

The AUC values for Adacon, Adawalk, and Adafootwear
using 10-fold cross-validation are presented in Table VI.
The results of the repeated-measures ANOVA are shown in
Table VII, and the post-hoc analyses are reported in Table VIII.
In summary, there was no interaction between the data source
and the classification criteria. Although no significant effect
was observed for the classification criteria, AUC values im-
proved notably when combining past fall data with future fall
data for both Adawalk (from 0.57 to 0.71) and Adafootwear
(from 0.70 to 0.76), as shown in Table VI. Additionally, the
data source significantly influenced the predictive ability of the
AdaBoost classifiers. A separate one-way repeated-measures
ANOVA (Table VIII) indicated that Adafootwear significantly
outperformed Adacon, but not Adawalk. This might be due to
the unbalanced nature of our dataset.

The ROC curves for Adacon, Adawalk, and Adafootwear
under three type conditions using LOOCV are shown in Figure
4, Figure 5, and Figure 6, respectively. The confusion matrices
using LOOCV for Adacon, Adawalk, and Adafootwear are
shown in Figure 7, Figure 8, and Figure 9, respectively. In
summary, the ROC curves obtained from the Adafootwear
were closer to the top left corner for all three conditions
(i.e., Type I, II, and III) compared to Adacon and Adawalk,
indicating a lower FPR at higher sensitivity. The performance
of models trained using gait data was better than those trained
on traditional timed mobility test outcomes. Adafootwear
demonstrated superior performance compared to Adawalk,
indicating that models trained with data from the instrumented
footwear outperformed those based on data from the instru-
mented walkway. Moreover, the sensitivity (i.e., TPR) of the
models increases when they are trained using both past and
future falls data, rather than relying solely on past or future
falls data.
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Fig. 4: ROC curves for Adacon, Adawalk, and Adafootwear
under Type I condition using LOOCV (TPR = true positive
rate, FPR = false positive rate).

Fig. 5: ROC curves for Adacon, Adawalk, and Adafootwear
under Type II condition using LOOCV.

IV. DISCUSSION

While wearable sensors are widely used to assess fall risk in
older adults, most studies rely on retrospective fall history [8],
[30]. A significant limitation of these studies is the alteration
in gait due to past falls [30]. Older adults, often influenced
by an inherent fear of falling, typically exhibit reduced stride
velocity, decreased stride length, and extended double support
duration [10]. While these gait alterations significantly impact
the models predicting fall risk, their correlation with future
falls remains uncertain [10], [30]. Our results highlight this
limitation: when the fall risk prediction model, trained solely
on retrospective fall data, is applied to a cohort of older
adults at risk of future falls but without prior fall history (six
participants in our study), its predictive accuracy drops to zero.
Unlike models trained only on prospective fall data [19], [20],
[31], to the best of the authors’ knowledge, this study is the
first to integrate both types of data in constructing a fall risk

Fig. 6: ROC curves for Adacon, Adawalk, and Adafootwear
under Type III condition using LOOCV.

prediction model using wearable sensors. This approach has
led to an improvement in the model’s sensitivity.

Traditionally, fall risk prediction has relied on timed mo-
bility tests, such as FTSST, TUG, and 6MWT. However, their
efficacy in predicting fall risk is limited, with AUC values not
exceeding 0.53, which is nearly equivalent to a random guess.
This limitation is corroborated by prior research [7] indicating
that TUG scores do not significantly predict fall occurrences.
Additionally, the determination of a precise cutoff value for
the TUG score presents a persistent challenge, with proposed
thresholds ranging from greater than 12 seconds [1] to over 15
seconds [50]. Remarkably, in our study, the average TUG score
for individuals who did not fall was 21 seconds, substantially
above the often-recommended cutoff of 15 seconds.

Unlike the reference system, a 6-meter-long instrumented
walkway, our instrumented footwear allows for a detailed
gait evaluation across a larger number of strides. Particularly
in the case of the 6MWT, usually conducted on a 25m
or 30m straight-line course much larger than 6m [6], [35],
using instrumented walkway results in collecting only a small
portion of strides (in our study, this value is 24%), leaving a
large number of strides unused. For this reason, the mean and
variability of gait parameters estimated by the instrumented
footwear are more trustworthy than those derived from the
instrumented walkway. Therefore, the Adafootwear model
demonstrated superior performance compared to the adawalk
model in predicting fall risk in older adults.

Due to AdaBoost’s superior robustness and ability to han-
dle non-linear relationships compared to logistic regression,
our Adafootwear model demonstrated enhanced performance
when compared to previous studies utilizing logistic regression
models [19], [20]. As the primary objective of this study is to
establish the potential utility of instrumented footwear for pre-
dicting fall risk in the everyday environments of older adults,
we intentionally excluded outcomes from the TUG, 6MWT,
and FTSST as input features for our prediction model. Despite
evidence suggesting the potential benefits of incorporating
TUG scores into logistic regression models [27], our focus
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(a) Type I (b) Type II (c) Type III

Fig. 7: Confusion matrices for Adacon.

(a) Type I (b) Type II (c) Type III

Fig. 8: Confusion matrices for Adawalk

(a) Type I (b) Type II (c) Type III

Fig. 9: Confusion matrices for Adafoowear.

was on evaluating the standalone effectiveness of instrumented
footwear. Benefiting from the extensive stride data collected
in this study, our Adafootwear model demonstrated superior
performance compared to classical machine learning models,
such as neural networks, naive Bayesian, and SVM, even
when incorporating additional inertial information from the
head and pelvis [31]. This suggests that relying solely on gait

information calculated from a 7.62-meter course [31] may not
be sufficient. Notably, Tunca et al. [29] introduced a deep
learning risk prediction model that achieved an impressive
accuracy of 92.1%. However, the evaluation of the model’s
performance did not include cross-validation, casting doubts
on its generalization capabilities. Furthermore, the validation
of these models was exclusively based on retrospective data,
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which does not confirm their predictive reliability in real-world
scenarios where prospective data is crucial. This limitation
significantly restricts their practical applicability in predicting
future events based on new, unseen data. Most importantly,
the proposed AdaFootwear achieved an AUC of 0.80, outper-
forming the XGBoost model [32] and the natural language
processing approach [33], both of which rely on electronic
health records. This further demonstrates that gait data are
highly correlated with future falls.

Despite the promising performance of our model, there are
some limitations to consider. The inclusion of prospective falls
data introduces considerable complexity, as the characteristics
of prospective falls differ from those of retrospective falls.
The features needed to predict prospective falls may not be
fully recognized or utilized by the model, and the increased
data volume and uncertainty make it more challenging to
accurately predict ’no fall’ cases. While this added complexity
is essential for improving fall risk prediction, it may reduce
the model’s generalization performance in certain scenarios.
Future research could focus on optimizing the balance be-
tween model complexity and predictive accuracy, particu-
larly in handling both future and historical fall data more
effectively. Additionally, this study predominantly utilized the
AdaBoost algorithm for constructing predictive models. Future
investigations will expand the methodological approach by
comparing AdaBoost with other machine learning algorithms,
such as support vector machines and artificial neural networks.
Furthermore, the potential application of deep learning models
will be explored to assess their efficacy in enhancing the
accuracy of the instrumented footwear designed for fall risk
prediction.

V. CONCLUSION

This study presented a novel approach using instrumented
footwear for fall risk prediction in institutionalized older
adults. The findings highlight the importance of gait data
in identifying potential fall risks. The performance of the
model developed based on the gait data collected from the
instrumented footwear was better than those of models using
traditional data and data from the instrumented walkway. By
integrating both retrospective fall history and prospective fall
occurrence, the sensitivity of the model increases.

This research contributes to the field of fall risk assessment
in the elderly, providing valuable insights for fall prevention
and care. However, further enhancements are needed to op-
timize the predictive accuracy of fall risk prediction models
by exploring more advanced feature extraction techniques and
machine learning algorithms. Future studies may also explore
the integration of multiple models to further improve the
accuracy and reliability of fall risk prediction systems.
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K. Aminian, “3d gait assessment in young and elderly subjects using
foot-worn inertial sensors,” Journal of biomechanics, vol. 43, no. 15,
pp. 2999–3006, 2010.

[24] A. Ramachandran and A. Karuppiah, “A survey on recent advances in
wearable fall detection systems,” BioMed research international, vol.
2020, no. 1, p. 2167160, 2020.

[25] S. Usmani, A. Saboor, M. Haris, M. A. Khan, and H. Park, “Latest
research trends in fall detection and prevention using machine learning:
A systematic review,” Sensors, vol. 21, no. 15, p. 5134, 2021.

[26] X. Wang, J. Ellul, and G. Azzopardi, “Elderly fall detection systems: A
literature survey,” Frontiers in Robotics and AI, vol. 7, p. 71, 2020.

[27] B. R. Greene, A. O’Donovan, R. Romero-Ortuno, L. Cogan, C. N.
Scanaill, and R. A. Kenny, “Quantitative falls risk assessment using the
timed up and go test,” IEEE Transactions on biomedical Engineering,
vol. 57, no. 12, pp. 2918–2926, 2010.

[28] T. E. Lockhart, R. Soangra, H. Yoon, T. Wu, C. W. Frames, R. Weaver,
and K. A. Roberto, “Prediction of fall risk among community-dwelling
older adults using a wearable system,” Scientific reports, vol. 11, no. 1,
p. 20976, 2021.

[29] C. Tunca, G. Salur, and C. Ersoy, “Deep learning for fall risk assessment
with inertial sensors: Utilizing domain knowledge in spatio-temporal gait
parameters,” IEEE journal of biomedical and health informatics, vol. 24,
no. 7, pp. 1994–2005, 2019.

[30] J. Howcroft, J. Kofman, and E. D. Lemaire, “Review of fall risk
assessment in geriatric populations using inertial sensors,” Journal of
neuroengineering and rehabilitation, vol. 10, pp. 1–12, 2013.

[31] N. Eichler, S. Raz, A. Toledano-Shubi, D. Livne, I. Shimshoni, and
H. Hel-Or, “Automatic and efficient fall risk assessment based on
machine learning,” Sensors, vol. 22, no. 4, p. 1557, 2022.

[32] C. Ye, J. Li, S. Hao, M. Liu, H. Jin, L. Zheng, M. Xia, B. Jin, C. Zhu,
S. T. Alfreds et al., “Identification of elders at higher risk for fall with
statewide electronic health records and a machine learning algorithm,”
International journal of medical informatics, vol. 137, p. 104105, 2020.

[33] N. Dormosh, M. C. Schut, M. W. Heymans, O. Maarsingh, J. Bouman,
N. van der Velde, and A. Abu-Hanna, “Predicting future falls in
older people using natural language processing of general practitioners’
clinical notes,” Age and ageing, vol. 52, no. 4, p. afad046, 2023.

[34] S. Minto, D. Zanotto, E. M. Boggs, G. Rosati, and S. K. Agrawal,
“Validation of a footwear-based gait analysis system with action-related
feedback,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 24, no. 9, pp. 971–980, 2015.

[35] H. Zhang, T. T. H. Duong, A. K. Rao, P. Mazzoni, S. K. Agrawal,
Y. Guo, and D. Zanotto, “Transductive learning models for accurate
ambulatory gait analysis in elderly residents of assisted living facilities,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 30, pp. 124–134, 2022.

[36] H. Zhang, M. O. Tay, Z. Suar, M. Kurt, and D. Zanotto, “Regression
models for estimating kinematic gait parameters with instrumented
footwear.” IEEE, Conference Proceedings, pp. 1169–1174.

[37] H. Zhang, Y. Guo, and D. Zanotto, “Accurate ambulatory gait analysis
in walking and running using machine learning models,” IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 1,
pp. 191–202, 2019.

[38] H. Zhang, Z. Chen, D. Zanotto, and Y. Guo, “Robot-assisted and wear-
able sensor-mediated autonomous gait analysis §.” IEEE, Conference
Proceedings, pp. 6795–6802.

[39] T. T. H. Duong, S. Goldman, H. Zhang, R. Salazar, S. Beenders, K. M.
Cornett, J. M. Bain, J. Montes, and D. Zanotto, “Validation of insole-
based gait analysis system in young children with a neurodevelopmental
disorder and autism traits.” IEEE, Conference Proceedings, pp. 715–
720.

[40] H. Zhang, C. Wu, Y. Huang, X. Li, X. Ma, R. Song, and S. K. Agrawal,
“2d deep convolutional neural networks for estimating stride length and
velocity in institutionalized older adults,” IEEE Sensors Journal, 2024.

[41] H. Zhang, D. Zanotto, and S. K. Agrawal, “Estimating cop trajectories
and kinematic gait parameters in walking and running using instru-
mented insoles,” IEEE Robotics and Automation Letters, vol. 2, no. 4,
pp. 2159–2165, 2017.

[42] T. T. Duong, D. Uher, S. D. Young, R. Farooquee, A. Druffner, A. Paster-
nak, C. Kanner, M. Fragala-Pinkham, J. Montes, and D. Zanotto,
“Accurate cop trajectory estimation in healthy and pathological gait
using multimodal instrumented insoles and deep learning models,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 31,
pp. 4801–4811, 2023.

[43] Z. Chen, H. Zhang, A. Zaferiou, D. Zanotto, and Y. Guo, “Mobile robot
assisted gait monitoring and dynamic margin of stability estimation,”
vol. 4, no. 2, 2022, Journal Article, pp. 460–471.

[44] T. T. H. Duong, H. Zhang, T. S. Lynch, and D. Zanotto, “Improving
the accuracy of wearable sensors for human locomotion tracking using
phase-locked regression models.” IEEE, Conference Proceedings, pp.
145–150.

[45] S. Deandrea, E. Lucenteforte, F. Bravi, R. Foschi, C. La Vecchia, and
E. Negri, “Risk factors for falls in community-dwelling older people: a
systematic review and meta-analysis,” Epidemiology, vol. 21, no. 5, pp.
658–668, 2010.

[46] P. Pohl, E. Nordin, A. Lundquist, U. Bergström, and L. Lundin-Olsson,
“Community-dwelling older people with an injurious fall are likely to
sustain new injurious falls within 5 years-a prospective long-term follow-
up study,” BMC geriatrics, vol. 14, pp. 1–7, 2014.
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