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Abstract— In recent years, there has been a surge in
interest regarding the intricate physiological interplay be-
tween the brain and the heart, particularly during emotional
processing. This has led to the development of various
signal processing techniques aimed at investigating Brain-
Heart Interactions (BHI), reflecting a growing appreciation
for their bidirectional communication and influence on each
other. Our study contributes to this burgeoning field by
adopting a network physiology approach, employing time-
delay stability as a quantifiable metric to discern and mea-
sure the coupling strength between the brain and the heart,
specifically during visual emotional elicitation. We extract
and transform features from EEG and ECG signals into
a 1 Hz format, facilitating the calculation of BHI coupling
strength through stability analysis on their maximal cross-
correlation. Notably, our investigation sheds light on the
critical role played by low-frequency components in EEG,
particularly in the δ, θ, and α bands, as essential mediators
of information transmission during the complex processing
of emotion-related stimuli by the brain. Furthermore, our
analysis highlights the pivotal involvement of frontal pole
regions, emphasizing the significance of δ-θ coupling in
mediating emotional responses. Additionally, we observe
significant arousal-dependent changes in the θ frequency
band across different emotional states, particularly evident
in the prefrontal cortex. By offering novel insights into the
synchronized dynamics of cortical and heartbeat activities
during emotional elicitation, our research enriches the ex-
panding knowledge base in the field of neurophysiology
and emotion research.

Index Terms— Brain-Heart Interaction, EEG Oscillations,
Emotion Elicitation, Network Physiology, Time Delay Stabil-
ity
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EMOTION is a reflection of human subjective feelings and
emotional experiences, typically triggered by external

stimuli. Emotions are pivotal in daily life, influencing our
learning efficiency, decision-making processes, social relation-
ships, and overall happiness. However, our understanding of
emotions still needs further depth to effectively manage and
regulate emotions, ultimately enhancing our quality of life and
psychological well-being.

The human brain’s neural networks are crucial for process-
ing emotions, with the amygdala evaluating stimuli’s emo-
tional significance and the insular cortex regulating emotions.
Electroencephalography (EEG) helps explore emotional pro-
cessing through different frequency bands and brain regions
[1]–[3]. Studies have reported hemispheric θ power asymmetry
reflects emotional valence [4], and distraction doesn’t affect θ
power initially but reduces later activity [5]. Moderate exercise
improves negative emotions, reflected in β power changes [6].
In addition, variability in frontal and parietal EEG activity,
including α, β, θ/β, and σ/β ratios, relates to individual
differences in emotion regulation [7]. Moreover, EEG γ band
activity correlates closely with emotional status [8], higher in
generalized anxiety disorder patients during worry [9]. Positive
emotions activate β and γ bands in the lateral temporal
region, neutral emotions elicit higher α in parietal and occipital
areas, while negative emotions show elevated δ in parietal and
occipital regions and increased γ in prefrontal regions [10].

Emotional changes impact the autonomic nervous system,
influencing heart rhythm and ECG features as indicators of
emotional status [11]. Heart rate fluctuations correlate pos-
itively with empathy, particularly in individuals with con-
sistent response patterns [12]. Heart rate variability (HRV)
can reflect emotional responses: high-frequency oscillations
are vagally regulated, while low-frequency involve both vagal
and sympathetic activities [13]. Maternal emotional status
during pregnancy influences fetal HRV, suggesting effects on
fetal nervous system development [14]. Furthermore, elevated
HRV enhances emotional well-being, likely due to high-
amplitude oscillations impacting brain network dynamics [15].
Heart rate responses differ across emotions: fear induces
pronounced heart rate fluctuations, sadness increases signal
complexity, and happiness alters sympathetic-parasympathetic
balance [16].

Over the past decade, scholarly interest has surged in
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exploring the dynamic interactions between the central ner-
vous system and the peripheral cardiovascular system. The
brain’s autonomic nervous system, including the amygdala and
insular cortex, regulates heartbeat rhythm during emotional
processing [17]. Conversely, cardiac afferent input shapes
brain functions related to perception, cognition, and emotions,
involving regions like the amygdala and hypothalamus [18].
Insular cortex damage post-stroke can lead to cardiovascular
instability and autonomic nervous system alterations [19].
Moreover, psychological stress impacts the prefrontal cortex,
contributing to severe arrhythmias [20]. Unpleasant music
reduces heart rate with increased frontal midline θ power
[21]. Negative emotions correlate EEG θ activity with the
right prefrontal cortex, aligning with sympathetic response
[22]. Meditation shows a positive correlation between HRV
high-frequency power and EEG frontal midline θ power [23].
band power correlates with HRV complexity during relaxation,
while β band power links with HRV powers during affective
picture viewing and physical stress [13], [24]. While existing
studies have probed the impact of emotions and emotional
responses on the brain-heart connection, a comprehensive
understanding of emotions’ neural mechanisms necessitates
further exploration of brain regions and their interconnections.

The quantification of functional BHI presents methodologi-
cal challenges due to its intrinsic multimodal and multivariate
nature, diffuse distribution over the central nervous system,
and directionality issues. Additionally, the non-stationarity,
nonlinearity, complexity, and multi-scaling of BHI need to be
considered when applying classical signal processing tools.
To date, various techniques have been developed to measure
or model these interactions, such as correlation coefficients,
maximum information coefficients (MIC), phase-locking val-
ues (PLV) or phase lags indexes (PLI), Granger Causality
(GC), transfer entropy (TE) and time-delay stability (TDS)
[13], [25]. The Pearson correlation coefficient is an undirected
measure to describe the degree of association between two
continuous variables. It has been used extensively in studies
exploring the heart-brain coupling relationship, because of
its simplicity of calculation and ease of manipulation [26].
MIC can measure both linear and nonlinear coupling between
two dynamical systems based on the calculation of mutual
information [13]. As another undirected measure, TDS is
a network-based approach used to study the dynamics of
multiple interconnected systems as they transition from one
physiological status to another [27]. GC is a directed measure
for determining whether one signal can be used to predict the
value of another signal, with the statistical assumption that the
data has a normal distribution with uniform variance, but it
is less efficient in detecting specific nonlinear causal relation-
ships [28]. TE is a non-parametric measure of how information
is transferred between two signals. It is particularly useful
when evaluating nonlinear couplings without the need for a
priori information [29]. CCM is a time-invariant method to
quantify directional nonlinear interactions between dynamical
systems, and has been successfully exploited to characterize
temporal lobe epilepsy [30] and schizophrenia [25].

Despite comprehensive descriptions of psycho-
physiological changes from both single-system and cross-

system perspectives, the mechanisms governing transitions
between emotional status and their impact on the strength of
physiological interactions and the topology of physiological
networks are still under investigation.

In this paper, a network-based strategy involving TDS was
adopted to measure the coupling strength among physiological
systems, and the alterations in physiologic network topology
were investigated to signify transitions between different emo-
tional statuses. The interactions among brain rhythms across
and within cortical locations were investigated. In addition,
the dynamic interactions between the brain and heart during
emotion elicitation were quantified. Furthermore, we tested the
statistical significance of the results using various surrogates
that build on different null hypotheses.

II. METHOD

A. Data

The DEAP database is a multi-modal database designed for
studying human emotions. It includes physiological signals
collected from 32 participants (50% male, 50% female) with
an average age of 26.9 years. The experiment started with a 2-
minute base recording, then participants watched 40 different
1-minute videos, with each video eliciting emotions recorded
through 32-channel EEG and 8-channel peripheral physiologi-
cal signals. The data were segmented into 63-second intervals,
with the first 3 seconds serving as a pre-trial base. In this study,
to prevent data contamination by varying emotional status,
particularly with longer video stimuli, only the physiological
recordings from the final 60 seconds of each film clip were
selected for subsequent analysis.

The 32-channel EEG were recorded using a Biosemi Ac-
tiveTwo system according to the international 10-20 sys-
tem, along with 8-channel peripheral physiological signals: 2
ophthalmic signals, 1 skin electrical signal, 2 EMG signals,
1 respiratory record, 1 plethysmography, and 1 temperature
record. All the signals were measured at 512 Hz sampling
frequency. In this study, only 14 EEG channels (AF3, F7,
F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4)
were used, and all the signals were resampled to 1 kHz to
ensure the accuracy of HRV calculations. The decision to
exclude 18 channels and focus on 14 electrodes was based
on prior studies [31], [32], which emphasized the importance
of selecting specific channels relevant to emotional activity
to improve classification accuracy. Practical considerations,
including equipment limitations and the use of devices like
the Emotive Epoc headset with its 14 channels, also influenced
this choice. After each experiment, participants were instructed
to rate their emotional experiences using the Self-Assessment
Manikin (SAM) scale, providing arousal, valence, liking, and
dominance ratings on a scale of 1-9.

This study focuses on examining the dynamic interactions
between the brain and heart in response to emotion elicitation,
particularly emphasizing the arousal dimension. Emotional
status is classified as high arousal (HA) and low arousal
(LA), with the status preceding elicitation (Base) considered
for comparative analysis. Distinctions are made based on
participants’ subjective ratings, with a threshold set at 5.
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Fig. 1. Schematic of TDS method and its application in brain rhythms coupling strength representation. (a) Sequential segments of EEG spectral
power (Sδ and Sθ) of the δ and θ band shown for consecutive 20 s windows. (b) Cross-correlation (Cδθ) of Sδ and Sθ within each window across
the lags between two signals, and the time lag τ0 corresponding to the maximum represents the time delay. (c) Time delay τ0 between Sδ and
Sθ for consecutive 20 s windows moving with 1 s overlapping. (d) %TDS matrix representing the coupling strength between T7 channel and AF3
channel at different physiologically relevant EEG frequency bands (δ, θ, α, σ, β). (e) %TDS block-matrix representing the average coupling of all
brain rhythms across each pair of EEG channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4). Each block along the diagonal
corresponds to the coupling within different frequency bands of the same EEG channel, while each off-diagonal block represents the coupling
between specific pairs of EEG channels.

B. Physiologic Network Interactions
1) Featured Waveform Extraction: The purpose of this paper

is to study the brain-heart coupling in different emotional
statuses, 14-channel EEG and lead-II ECG signals from the
DEAP database were used in this study. To compare these very
different signals with each other and to study the interrelations
between them, all time series are converted to the same time
resolution of 1 s before the analysis.

For EEG signals, the independent component analysis (ICA)
of the EEGLB toolbox is used. Preprocessing was performed
in EEGLAB, and EEG signals were high-pass filtered at 1
Hz using the pop eegfiltnew function. Next, bad channels are
identified and removed with the pop select function based
on visual inspection. After preprocessing, the pop runica
function, using the default infomax algorithm with the rec-
ommended ‘extended’ option enabled, is employed to perform
ICA on the EEG data. ICA decomposes the EEG signals
into independent components, some of which represent noise
or artifacts such as eye blinks, muscle activity, or electrical
interference. These components are then inspected visually
using the pop selectcomps function, allowing for the identi-
fication of noise-related components. Once identified, these
components are removed from the data using the pop subcomp
function. Finally, the cleaned EEG data is used for following
process. Subsequently, the Hanning window is applied, and
the sliding window method is employed to segment the signal
into multiple time windows, each of which is L in duration
with s window shift. Within each time window, the Short-
Time Fourier Transform is utilized to convert the time-domain
signal into the frequency-domain signal, thereby capturing the
frequency components of the signal within the current time
window. Let x(t) be the EEG signal in the time domain, the
frequency components of the signal within the current time
window at f frequency band P(f, t) is

P(f, t) =

∫ ∞

−∞
x(τ, s) · ω(τ − t) · e−j2πfτ dτ (1)

where ω(t) is the Hanning window function, and s repre-
sents the window shift.

Finally, similar as in [27], the spectral power S(f) of five
frequency bands (δ waves (0.5 – 3.5 Hz), θ waves (4 – 7.5
Hz), α waves (8 – 11.5 Hz), σ waves (12 – 15.5 Hz) and β
waves (16 – 19.5 Hz)) is computed by squaring the magnitude
of the signal in the frequency domain.

S(f, t) = |P(f, t)|2 (2)

For the ECG signal y(t), the QRS locations of each heart-
beat are detected using an R peak detector, which employs
stationary wavelet transforms for real-time beat detection from
single-lead ECG signals with the Daubechies 3 (‘db3’) wavelet
as the mother wavelet [33]. Following this peak detection,
the RR interval sequence is derived by computing the time
intervals between successive QRS peaks. Subsequently, the
heart rate, expressed in beats per minute, is calculated. To
ensure compatibility and standardization, the heart rate values
are inverted, and resampling is applied to transform the heart
rate into a discrete 1 Hz (1 s bins) format for further analysis
and interpretation.

2) BHI Coupling Strength Calculation: To investigate the
interaction between two physiological systems X and Y , their
respective output featured waveforms X and Y are partitioned
as X = {Xi}NL−1

i=1 ∈ RNL×L and Y = {Yi}NL−1
i=1 ∈ RNL×L

with a window shift of s, where NL = |X| = |Y| denotes
the number of segments and L denotes the time span of
each segment, as shown in Fig. 1 (a). To get enough R-
waves in the ECG, these segments have an equal length of
L = 20 s, with a window shift of s. Consequently, the
NL =

(
N − L

)
/s + 1, where N is the length of featured

waveforms. Thereafter, the segmented featured waveforms
undergo individual normalization to attain zero mean and unit
standard deviation. This procedure eliminates constant data
trends, renders the signals dimensionless, and ensures that
the estimated coupling between featured waveforms X and
Y remains uninfluenced by their relative amplitudes.
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Then, the cross-correlation function between two physio-
logical systems is calculated as CXY by applying periodic
boundary conditions, where τ is the lag. For each segment i,
the position corresponds to the maximum in the absolute value
of Ci

XY(τ) is defined as the time delay τ i0 (Fig. 1 (b)).

Ci
XY(τ) =

1

L

L∑
l=1

Xi
l+(i−1)·s ·Y

i
l+(i−1)·s+τ (3)

τ i0 = argmaxτ |Ci
XY(τ)| (4)

Two physiological systems are identified as linked if consid-
ered interconnected when their corresponding featured wave-
forms display a consistent time delay that does not change
by more than ±1 s across multiple consecutive time windows.
According to [27], for each τ0 in time series τ i0, the segments
are considered as stable when for at least 0.8*H out of H
consecutive segments the time delay remains in the interval
[τ0-1, τ0+1]. Mathematically, this can be expressed as:

Stability(τ0) =

N−L+1∑
i=1

I(|τ i0 − τ0)| ≤ 1) ≥ 4 (5)

where I(·) is the indicator function.
The process of identifying intervals with stable time delays

is iterated using a sliding time window with a step size of one
along the entire series τ i0.

Subsequently, the coupling strength of two physiological
systems is determined as the fraction (%TDS) of stable points
in the time series τ i0, as shown in Fig. 1 (d)-(e). Thus, longer
periods of TDS between two systems’ featured waveforms
indicate more stable interaction and stronger coupling, with
link strength in physiological networks determined by %TDS.

%TDS =
Number of Stable Points

N − L+ 1
(6)

III. EXPERIMENTS AND RESULTS

A. Parameters Selection for Physiologic Network
Construction

1) Window Shift for Signal Segmentation: In the process
of physiologic network construction, window shift s is an
important parameter. It affects the degree of overlap between
consecutive windows (N−s) and the final number of windows
(NL =

(
N −L

)
/s+1) obtained. To assess the influence of s

on BHI, we compared the effects of different s values ranging
from 1 to 9 with a step size of 1 on the average link strength
(ALS) (Fig. 2 (a)). The number of consecutive windows H
is set to 5. The ALS, measured in %TDS, represents the
mean of all elements in the TDS matrix for each emotional
status. It reflects the average strength of all links in a network
across subjects and film clips. This comprehensive analysis
provides insights into the evolving dynamics of brain rhythm
interactions in response to varying emotional status. It can
be seen that the average strength of network links exhibit
variations with transitions in emotional status, with the Base
displaying significantly stronger network links compared to
HA and LA. In addition, the ALS of constructed physiologic
network increases with s grows among all three emotional
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Fig. 2. Parameters selection for physiologic network construction. (a)
Comparison of different s on average link strength, (b) the effect of
consecutive windows numbers H on stability determination.

statuses (expect s=7 and s=8 in LA). When the s reached 9,
the ALS is almost 1 in Base status, with ALS > 0.9 in the other
two statuses. It means that all the EEGs among brain rhythms
across cortical areas are coupled with the heart. Considering
the consistent trend of ALS across different s values and
the requirement for an adequate number of H for stability
calculations, we selected s=1 for our subsequent experiments.

2) Window Length for Stability Determination: The stability
of two physiological systems is related to the number of
consecutive segments H in the time delay. Therefore, we
evaluated the effects of different H ranging from 5 to 23 with a
step of 3 on ALS (Fig. 2 (b)). The consequent stable segments
(0.8*H) for each H are 4, 6, 9, 11, 14, 16, and 19, respectively.
Similar to the influence of s on ALS among three emotional
statuses, the ALS presents a descending trend from Base to
LA. Conversely, regardless of the emotional status, the ALS
decreases with the increase of H . It indicates that with a larger
H and a fixed stability ratio (0.8), it is difficult to maintain
stability between two systems, resulting in lower ALS. To
improve computational efficiency and ensure sufficient link
strength, we chose H=5 as the parameter for our subsequent
analysis.

B. Brain-Brain Networks
1) Inter-channel Brain Interactions: To gain a comprehensive

understanding of the influence of same-frequency interactions
across brain areas and their responsiveness to changes in
emotional status, we present chord diagram representations
of frequency-specific networks in Fig. 3 (a). These diagrams
depict the ensemble of inter-channel links connecting a spe-
cific frequency band at different brain locations (network
nodes). Our findings reveal that brain interactions mediated by
specific frequency bands in a given physiological status exhibit
distinct network structures and patterns during transitions
between emotional status. Comparison of specific frequency
networks under the same physiological status reveals signifi-
cant variations in network connectivity and link strength across
different frequency bands. In the Base status, preceding visual
emotional elicitation, nearly all brain rhythms participate in
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(a) (b)

Fig. 3. Brain-Brain interaction among and across brain rhythms. (a) Chord diagram representation of frequency-specific network interactions across
brain areas between emotional status. The various colored arcs within the circles represent different EEG channels, and the connections between
them indicate their respective coupling strengths. (b) network presentation of the %TDS matrices at 14 cortical locations for different emotional
stages (only links with %TDS≥ 0.45 are shown).

mediating inter-channel interactions except for the β band.
During HA and LA status, the networks involving δ, θ, and
σ bands dominate inter-channel brain wave communications,
with higher coupling strengths observed in HA compared to
LA. Furthermore, with increasing frequency of brain rhythms,
the left and left posterior brain regions gradually diminish in
their involvement in inter-channel brain wave communications.
This is evident in the near absence of contributions from
almost the entire left brain region (AF3, F7, FC5, T7, P7,
O1) to inter-channel interactions.

2) Intra-channel Brain Interactions: To better understand the
inherent dynamics of brain activity within specific regions,
we delved into intra-channel networks, which illustrate the
coordination of brain activation across frequency bands within
the same location (i.e., the same EEG channel), as shown in
Fig. 3 (b). Notably, lower-frequency brain rhythms, such as
δ with θ, exhibit stronger coupling, particularly observed in
frontal brain areas (AF3, F7, F3, FC5, FC6, F4, F8, AF4).
Additionally, the transition between emotional status induces
a significant reorganization in both link strength and topology
for all local networks of brain rhythm interactions. During
the Base status, robust connections within local networks of
brain rhythm interactions are observed, with high intra-channel
brain network connectivity across all EEG channel locations.
However, following visual stimulation, whether in a HA or
LA status, link connectivity and connection strength diminish
in both central and occipital areas, except the O1 channel.
Generally, the local network of brain rhythm interactions in
HA exhibits stronger connections than those in LA, especially
for the F8 channel.

C. Brain-Heart Networks

1) Surrogate Analysis and Statistical Assessment: A time-
shift surrogate analysis was conducted to examine the cross-
correlation strength Cmax (the global maximum of the cross-
correlation function) (see Fig. 4 (a)). To generate ”shift surro-
gate data”, one dataset was temporally shifted relative to the
other, with surplus values wrapped around to the beginning of
the dataset. This method preserves the statistical structure of
the original time series while disrupting correlations between
them. Three hundred random time shift lags were selected,
ensuring that time shifts exceeded 20 seconds. The results
indicate that the surrogate test applied to traditional cross-
correlation analysis does not reveal any discernible difference
between the rank distributions obtained from surrogate and real
data. Analysis of the time-shift surrogate data reveals consis-
tent trends: Cmax is consistently lower than real data during
LA, higher during HA, and highest during Base. However, the
surrogate tests do not demonstrate any statistical difference
between the surrogate and original rank distributions of Cmax.
These findings suggest that, in this context, cross-correlations
do not provide physiologically relevant information regarding
the interaction between systems.

To assess the efficacy of the TDS method in capturing
physiologically relevant information concerning endogenous
interactions between systems, an inter-subject surrogate test
was conducted. This involved pairing physiological signals
from different subjects to eliminate physiological coupling.
As illustrated in Fig. 4 (b), rank distributions corresponding
to different emotional statuses demonstrate varying strengths
of network links measured in %TDS. Notably, the rank distri-
bution associated with LA shows a pronounced shift towards
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Fig. 4. Surrogate analysis for the validation of BHI. (a) Rank distribution of the maximal cross-correlation (Cmax) for time-shift surrogate analysis,
(b) rank distribution of the network link strength (%TDS) for inter-subject surrogate analysis, (c) significant threshold level determination for %TDS.

lower values for network link strength, whereas the distribution
for Base consistently exhibits higher values for all links
compared to HA. The inter-subject surrogate test, employing
TDS analysis to eliminate endogenous physiological coupling,
yields significantly reduced link strength p-value<10−3 and
nearly uniform rank distributions across different emotion
statuses. This suggests that the TDS method effectively reveals
physiologically relevant information.

Additionally, to compare interactions between physiological
systems with varying strengths and changes across different
physiological states (e.g., transitions across emotional stages),
we establish the significance threshold as the percentage of
%TDS at which all links in the physiological network are
deemed statistically significant. This determination involves
comparing the distribution of original %TDS values with that
of %TDS values obtained from 300 surrogates. A Student’s
t-test is then conducted to ascertain the statistical significance
between these distributions for each pair of systems (links)
in the network. Network links are deemed significant when
the t-test p-value is less than 10−3. The significance threshold
level for %TDS is consequently defined as the value above
which all network links are statistically significant, indicating
endogenous interactions between physiological systems. We
find that a threshold of approximately 14 %TDS is necessary
to identify networks of statistically significant links across all
emotional statuses (Fig. 4 (c)).

2) Dynamics of Brain-Heart Interactions: To elucidate the
neurophysiological interactions between the brain and heart
during visual emotional elicitation, we investigated to iden-
tify and quantify the networks of interactions between these
systems. The intricate communications and their modulation
with emotional status are visually depicted using radar charts
(Fig. 5 (a)). The BHI network exhibits a relatively symmetric
distribution of ALS across different brain areas, with a slight
prevalence in strength observed for links between the heart and
temporal brain areas (T7 and T8). A systematic examination of
BHI link strength across all five frequency bands and various
emotional statuses reveals that the ALS for the entire brain-
heart interaction network is highest during the base status,
lower during HA, and lowest during LA. This finding suggests
that the strength of all links in the brain-heart network, irre-

spective of brain areas or frequency bands, follows a similar
modulation pattern during transitions across emotional status.

To illustrate the change patterns of BHI link strengths
across EEG channels during different emotional statuses, the
averaged %TDS were projected to the scalp (Fig. 5 (b)).
The change patterns of BHI link strengths among different
emotional statuses exhibit similarities in some EEG channels.
In the δ frequency band, the frontal regions present lower
BHI coupling, while exhibiting higher link strength at FC6,
P7, and F3 channels. In the α band, BHI showed strong
coupling in the right frontal lobe but weak coupling in the
occipital lobe. Inversely, BHIs at the σ frequency band exhibit
significant differences among different emotional statuses,
regardless of EEG channels. Moreover, in the β band, BHIs
have an obvious bipolar distribution in the central region at
HA and Base status. Most obviously, the θ frequency band
exhibit significant arousal-dependent changes among different
statuses, especially in prefrontal cortex.

Furthermore, the correlations of BHI between brain rhythms
and locations under different emotional statuses are quantified
by the Kendall rank correlation coefficient. The p-values are
listed in Fig. 6. Significant correlations (p-value<0.05) are de-
noted with green color, and extremely significant correlations
(p-value<0.001) are marked with red color. The interactions
between the brain and heart show extremely significant corre-
lations among more than half of the EEG channels at the β, θ
and δ frequency bands. BHI is less relevant with the α band, as
the p-value<0.001 is observed at only three EEG channels. All
statistical analyses were conducted using MATLAB (R2023a)
on a PC with an Intel® Core™ i7-7700 3.6 GHz processor
and 32 GB RAM.

IV. DISCUSSION

A TDS-based method was adopted to identify and quantify
the coupling of physiological systems during visual emotional
elicitation in this paper. We investigated the interactions among
brain rhythms across and within cortical locations (cross-brain-
wave interactions at the same locations and same-brain-wave
coordination across brain areas), and their relation to neural
plasticity in response to changes in autonomic regulation
underlying different emotional statuses. We also studied the
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Fig. 5. Brain-heart interactions during different emotional statuses. (a) Network representation of coupling strength between heart and different EEG
channels across brain rhythms. Radar charts, centered within hexagons, illustrate the contribution of brain control from distinct brain areas to network
link strength across various emotional statuses. Each segment’s length along the radius in the radar charts reflects the TDS coupling strength
between the heart and each frequency band at respective EEG channel locations. These segments are color-coded to match the corresponding
EEG frequency nodes, providing a visual representation of how different brain regions influence network links throughout different emotional
statuses. (b) Topographical maps of the averaged BHI in the five canonical frequency bands. For each subfigure, from top to bottom: HA, Base, and
LA emotions; from left to right: δ, θ, α, σ, and β bands. For each frequency band, we normalized the averaged BHI to range from 0 to 1 across the
three emotional states and four stimulus patterns.
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Fig. 6. Kendall rank correlation coefficient for BHI between brain
rhythms and locations under different emotional status. Significant cor-
relations (p-value<0.05) are denoted with green color, and extremely
significant correlations (p-value<0.001) are marked with red color.

dynamical features of brain-heart networks to establish an
association of network structure and dynamics with emotional
status and physiologic function.

A. Brain-Brain Networks

The examination of inter-channel brain networks across
distinct emotional statuses reveals a notable observation con-
cerning the configuration of the network of brain wave interac-
tions. Particularly, the most substantial transformations occur
within the links representing interactions between brain waves
of different frequencies (see Fig. 2). This remarkable reor-
ganization in network connectivity and link strength among

diverse brain waves signifies a noteworthy degree of neural
plasticity, suggesting the modulation of global cooperative
behavior in brain wave interactions to effectively accommodate
physiological functions during various status. Consequently,
these findings underscore the intricate mechanisms underlying
the adaptability of the brain. The analysis of Fig. 5 reveals the
presence of denser network linkages within the δ and θ bands.
This observation suggests that low-frequency components in
the EEG may facilitate information transmission during the
brain’s focused processing of emotion-related information.
Notably, these findings diverge from Lindquist’s research,
which predominantly associates high-frequency bands with
emotion processing, particularly highlighting negative emo-
tional processing [34]. However, our results align with their
findings indicating a lack of sensitivity to emotional stimulus
variations in low-frequency activity. Additionally, the study
conducted by Schubring et al. [35] discovered a correlation
between high-arousing pictures and spectral power in the α
and lower β frequency bands, which correspond to the α,
δ, and β bands as examined in our research. Notably, the
α band-related brain network connection density was found
to be lower in the status of HA compared to both LA status
and Base status. This observation is in line with the prevailing
notion that α power reflects cortical inhibition or idle status
of the cortex, thereby exhibiting an inverse relationship with
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cortical activation-–lower α power indicating greater activation
[36]. One possible explanation for this observation is that the
activity in the medial prefrontal regions of the brain within
the β band displayed distinct patterns associated with positive
emotions [37].

The network of brain rhythm interactions within 14 cor-
tical regions was meticulously examined to investigate the
coordination of brain activation across frequency bands at
identical locations. Our inquiry revealed that distinct brain
regions exhibit varying degrees of cross-frequency coupling
within the same emotional status. Specifically, frontal areas
demonstrated highly connected networks, indicative of robust
interactions across all frequency bands. In contrast, central
areas exhibited lower connectivity, while occipital areas dis-
played the lowest level of connectivity. This pattern of cross-
frequency coupling is attributed to the generation of different
brain rhythms by neuronal populations in the 14 cortical
layers, subsequently projecting onto the scalp. Consequently,
this naturally gives rise to cross-frequency coupling at the
same anatomical location, reflecting the synchronous activi-
ties of neuronal populations and quantifying the inter-layer
coordination among cortical neurons. This result aligns with
previous research, suggesting that the frontal cortex is an
integration area, facilitating the integration of multi-modal
sensory information and emotional reactions, and playing a
vital role in social cognition and emotional evaluation [38].
The δ-θ coupling at frontal pole areas exhibited the greatest
strength among the 14 cortical regions, a phenomenon substan-
tiated to have significant implications for semantic cognition
[39]. Furthermore, the coupling related to the α frequency
band displayed variations contingent upon emotional status,
providing empirical support for the current understanding of
the impact of cognitive and emotional tasks on α-waves [40].
Observations also indicated that the δ-α-σ couplings in most
channels manifested divergences across distinct emotional
status, suggesting that the cross-frequency coupling of brain
oscillations could enhance our comprehension of the neural
mechanisms underlying emotions [41].

B. Brain-Heart Networks

To validate the statistical significance of observed data and
discern genuine patterns from random fluctuations, surrogate
analyses were employed, comparing original data with ran-
domized surrogate data. Based on the results of the time-shift
surrogate test (Fig. 4 (a)), it can be inferred that the TDS
method exhibits greater reliability in identifying physiological
coupling when contrasted with traditional cross-correlation
analyses. This conclusion is rooted in the observation that
cross-correlation analyses are ill-suited for heterogeneous and
non-stationary signals, and are susceptible to the influence of
auto-correlations within these signals [27]. Additionally, upon
applying the TDS method to inter-subject surrogate data, we
observed nearly uniform rank distributions with decreased link
strength, as illustrated in Fig. 4 (b). This decline indicates
the absence of physiological interactions. Moreover, all sur-
rogate distributions exhibited a consistent pattern, indicating
that the stratification of emotion status observed in real data

corresponds to alterations in physiological coupling associated
with transitions in emotion status. The rank plots derived from
the inter-subject surrogate test further reveal that link strength
consistently diminishes during LA, increases during HA, and
peaks during Base. This trend may be linked to the gradual
augmentation of auto-correlations within the signal output of
physiological systems [42].

The analysis of the coupling between 5 brain rhythms
from 14 cortical locations and the heart was conducted to
elucidate the mechanisms governing the regulation of brain-
heart dynamics during emotional arousal. As depicted in Fig.
5 (a), during the HA status, the α band exhibited stronger
coupling to the heart, followed by β and δ bands. In the
base status, heart-brain coupling primarily depended on the
δ band, while in the LA status, β and θ bands dominated
in heart-brain coupling. Notably, Candia-Rivera found that
θ oscillations occurred during emotion elicitation, indicating
that the θ band is actively modulated by vagal inputs under
emotion elicitation [43]. The δ band, although less studied
in relation to arousal, has demonstrated potential involvement
in emotional processing [44]. The close relationship between
the θ and δ bands during emotional processing has also been
previously described [45]. Various brain regions, including
the prefrontal, frontocentral, and parietooccipital regions, have
been implicated in the interaction between the brain and the
heart during emotion processing [1]. In Fig. 5 (b), midline
frontal θ is associated with higher heat-brain coupling in HA
status, consistent with Aftanas’s report that changes in θ are
related to the perceived level of arousal [46]. Aligning with
previous studies [13], [47], significant differences in BHI dur-
ing the processing of positive and negative emotional stimuli
are linked to EEG oscillations in the θ band. Furthermore, BHI
appears associated with arousal elicitation, with a preference
for EEG oscillations in the θ band, especially over the temporal
and occipital cortices. While lateralization of brain regions
has been proposed as part of differential emotional processing
[19], major differences in arousal between the left and right
hemispheres were not observed in our study. It is speculated
that these differences may arise due to variations in elicitation
media (images vs. video) or the diverse valence/arousal levels
implemented in the two experimental setups.

C. Limitations and Future Directions

Our study acknowledges several limitations warranting at-
tention. One notable constraint is the lack of integration
with clinical laboratory results, hindering the exploration of
relationships between coupled heart-brain network features
and relevant biomarkers. Incorporating clinical laboratory data
is crucial to unveil neurooscillator-based biomarkers, shedding
light on the neurobiological underpinnings of emotional pro-
cesses. Future research should prioritize integrating clinical
laboratory data to establish robust connections between heart-
brain dynamics and specific biochemical markers associated
with distinct emotional states. Additionally, the temporal scope
of our data presents a limitation. Extending data collection
duration is essential to elucidate dynamic changes in heart-
brain coupling across various emotion generation stages. A
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more extensive investigation would yield a comprehensive
understanding of temporal evolution and variability in dynamic
functional connections during emotional processing. Further-
more, while our study employs TDS to quantify coupling
strength between mind and brain, it is essential to acknowledge
the method’s inherent limitations. TDS primarily assesses
coupling strength without addressing the directional aspects
of these connections. To overcome this limitation, future
research could refine or complement TDS with methodologies
such as Granger causality analysis or maximum information
coefficient, enhancing understanding of directional mind-brain
coupling during emotional processing. This multifaceted ana-
lytical approach would advance our understanding of the com-
plex interplay between cognitive and emotional mechanisms.

V. CONCLUSION

In summary, our study employs a network physiology
methodology, utilizing TDS as a quantifying measure for the
coupling strength between the brain and heart in response to
visual emotional elicitation. We emphasize the potential role
of low-frequency components, specifically in the δ, θ, and
α bands of the EEG, in facilitating information transmission
during the focused processing of emotion-related stimuli by
the brain. Exploring intra-channel interactions among brain
rhythms across different emotional states reveals distinct pat-
terns. Surrogate analysis demonstrates the greater reliability
of the TDS method in identifying physiological coupling
compared to traditional cross-correlation analyses. Notably,
the frontal regions, particularly in the context of δ-θ coupling,
BHI emerges as pivotal in emotional mediation compared to
the central and occipital regions. Surprisingly, our findings
indicate no significant difference in BHI between the left
and right hemispheres during emotion processing. However,
a preference for EEG oscillations, particularly in the θ band,
is evident over the prefrontal cortex. This study provides novel
insights into the synchronous dynamics between cortical and
heartbeat activities during emotional elicitation, highlighting
the necessity for nonlinear analysis approaches to comprehen-
sively characterize functional BHI.
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