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Abstract— Advancements in neuroscience and artifi-
cial intelligence are propelling rapid progress in brain–
computer interfaces (BCIs). These developments hold
significant potential for decoding motion intentions from
brain signals, enabling direct control commands without
reliance on conventional neural pathways. Growing interest
exists in decoding bimanual motor tasks, crucial for activ-
ities of daily living. This stems from the need to restore
motor function, especially in individuals with deficits. This
review aims to summarize neurological advancements in
bimanual BCIs, encompassing neuroimaging techniques,
experimental paradigms, and analysis algorithms. Thirty-
six articles were reviewed, adhering to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. The literature search result revealed
diverse experimental paradigms, protocols, and research
directions, including enhancing the decoding accuracy,
advancing versatile prosthesis robots, and enabling real-
time applications. Notably, within BCI studies on bimanual
movement coordination, a shared objective is to achieve
naturalistic movement and practical applications with neu-
rorehabilitation potential.

Index Terms— Brain–computer interface, bimanual coor-
dination, neuroscience, machine learning.

I. INTRODUCTION

BRAIN–COMPUTER interface (BCI) systems capture and
translate brain activity into artificial commands, enabling

users to control peripheral devices. BCI applications address
physical impairments by restoring motor functions through
brain signal-controlled prostheses or orthosis, promoting neu-
roplasticity crucial for motor rehabilitation [1], [2]. However,
most studies have focused on decoding motor tasks involving
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different limbs, which activate distinct cortical regions [3].
Consequently, the available control signals remain limited.
Numerous studies have decoded various motor tasks, including
hand movements [4], [5], [6], finger movements [7], and reach-
and-grasp actions [8], [9] to address this challenge.

Activities of daily living (ADL) necessitate coordinated and
synchronized movements involving both hands, i.e., bimanual
motor control, for effective completion. Furthermore, biman-
ual motor training enhances both bimanual and unimanual
performance [10], [11]. Notably, bimanual coordination train-
ing strengthens interhemispheric communication pathways,
promoting symmetrical brain functions through coordinated
interactions between hemispheres [12], [13]. Consequently,
numerous studies have investigated bimanual training, includ-
ing inter-subject variability [12], optimizing task design for
maximum efficiency [14], and comparing its efficacy to
other training paradigms [15], [16], [17], [18]. Moreover,
researchers have developed bimanual training devices such
as robot-assisted tools and VR-integrated systems to enhance
subject performance [19], [20].

Despite the widespread use of bimanual training in neu-
rorehabilitation over several decades, research on BCI-based
bimanual training remains limited. Integrating neuroimaging
techniques into bimanual coordination training allows for
progress monitoring and provides valuable insights into brain
activation and neurological perspectives. Desrochers et al. [21]
explored the impact of visuomotor perturbation on bimanual
motor control by analyzing electroencephalography (EEG)
spectral power across both high and low beta bands. Phun-
ruangsakao et al. [13] investigated changes in alpha band
EEG connectivity during unimanual and bimanual motor
imagery, comparing measurements taken before and after
bimanual training. In addition, brain activation differences
were investigated using functional near-infrared spectroscopy
(fNIRS) across varying complexities of unimanual and biman-
ual tasks [22]. These studies reveal brain activation differences
during unimanual and bimanual tasks of varying complexities.
Although these studies offered valuable insights into neural
correlates of bimanual coordination, they did not satisfy the
primary goal of BCI, which is to utilize neural signals to
control peripheral devices.

Despite limited research on BCI-based bimanual training,
existing studies have explored diverse directions and objec-
tives. One of the most noticeable trends is the studies aiming
for the highest classification accuracy of bimanual predefined
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class, including leftward, rightward, and midward hand
motions [23]. These research directions highlight impactful
neurological features interpreted via high-performance classi-
fication models. Specifically, deep-learning models can benefit
from comprehensive feature visualization using explainable
artificial intelligence (xAI), enhancing the understanding of
neural correlates [24], [25]. However, the practical implemen-
tation of these studies is limited by the predefined tasks within
the paradigm. Hence, researchers have explored more flexible
decoding systems. Instead of decoding predefined classes,
some studies have focused on decoding position, velocity, and
force trajectories [25], [26], [27], [28], [29], [30]. Addition-
ally, a few investigations have extended motion analysis to
3-dimensional space, aiming for higher degrees of freedom
(DOF) [31], [32], [33]. In addition to decoding bimanual tasks,
relevant studies exploring bimanual training-related findings
were identified. King et al. [34] investigated the impact of
bimanual visual feedback on unimanual task performance.
Additionally, another study assessed motor-imagery skills in
pianist and non-pianist subject groups, representing varying
levels of bimanual dexterity [35].

The primary objective of this systematic review was to
consolidate knowledge on bimanual training in BCI, com-
pare diverse approaches, and facilitate cross-study knowledge
transfer. However, inherent biases make direct compar-
isons challenging, especially when contrasting experiments
involving non-disabled individuals, patients, and non-human
primates. Even when recruiting participants with similar
criteria, differences in neuroimaging techniques must be con-
sidered, as different techniques capture different aspects of
neural activities. Task paradigms, including motor execution,
motor imagery, motor attempt, and task complexity, must
also be carefully considered, as they activate distinct but
overlapping cortical regions. Therefore, concluding which
decoding model outperforms others based solely on accuracy
comparisons is inappropriate. This review contributes to the
scientific literature by addressing these challenges as follows:

• It provides an overview of the recent research trends and
the state-of-the-art paradigms in bimanual training within
the BCI field.

• It classifies and summarizes study details, encompass-
ing participants, neuroimaging techniques, task designs,
experimental paradigms, model inputs, feature extraction
techniques, and decoders.

• It summarizes important neurological findings, evaluates
their transferability and explores potential synergies with
corresponding conclusions.

• It examines challenges and proposes future research
directions within this context.

The remaining sections of this study are structured as
follows: Section II outlines the procedures for identifying
relevant references, covering search databases, conducting the
screening process, and applying inclusion and exclusion crite-
ria. Section III provides an in-depth analysis of the literature
search results, organized by key topics such as study pop-
ulations, neuroimaging techniques, experimental tasks, input
and feature extraction methods, and decoding algorithms.
Section IV discusses key findings, current challenges, and

areas for future research. Finally, Section V concludes the
study.

II. METHODS

The identification of relevant references adhered to widely
recognized Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [36], which set the
standards for reporting systematic reviews within the scientific
community. Figure 1 provides an overview of the guidelines.
The search spanned several databases, including PubMed,
IEEE Xplore, Scopus, and ISI Web of Science. It specifically
targeted article titles, abstracts, and keyword sections of arti-
cles up to the search date of November 5, 2024.

During the identification phase, 1999 records from selected
databases and three registers were initially included. These
records underwent the automatic elimination of 998 duplicate
records with exact matches using Zotero (version 7.0.9),
a reference management software. Consequently, 1001 unique
records remained for further screening.

Further screening focused exclusively on titles and
abstracts. Studies not employing neuroimaging techniques
were excluded. Additionally, studies centered on unimanual or
lower limb tasks were omitted from this study. Furthermore,
other non-bimanual tasks, such as linguistic, somatosensory
attention, and navigation, were also excluded due to their
lack of simultaneous usage of both hands. Moreover, unre-
lated studies, including those related to sensor development,
supernumerary limbs, and teleoperation, were excluded. This
screening process resulted in the removal of 868 records,
including one without access, leaving only 133 records for
subsequent analysis.

During eligibility assessment, full-text articles were
accessed to identify relevant studies for reviewing the state of
the art. The inclusion criteria during full-text screening encom-
passed studies involving participants performing upper-limb
bimanual tasks that necessitated synchronization of both limbs
and experimental paradigms designed to investigate the impact
of bimanual training (e.g., bimanual feedback) and discuss
neurological findings that may be beneficial for improving
bimanual BCI systems. Exclusion criteria included studies
that extracted features unrelated to neuroimaging techniques
and those that did not entail decoding, classification, or the
application of brain signals to external devices.

Finally, in the systematic review, 36 articles met the eligibil-
ity criteria. Figure 2 illustrates the distribution of these articles,
with 30 from journal publications and six from conference
proceedings. Table I summarizes key aspects of the eligible
studies.

A. Other Studies on Bimanual BCI
During the eligibility stage, 28 bimanual BCI studies were

excluded due to the absence of neurological findings or discus-
sions related to bimanual movements. These studies primarily
focused on enhancing classification performance through
advanced feature extraction or decoding methods, using
bimanual movements to control external devices, or comparing
the impact of multimodal signal acquisition on decoding
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Fig. 1. Crafted search terms for diverse databases, accompanied by the PRISMA [36] flowchart depicting article inclusion and exclusion criteria.
The asterisk (*) denotes a wildcard search term.

performance. Although excluded from further review, these
studies may still provide valuable insights for researchers in
the field. A list of these studies is compiled in Table II, briefly
summarizing their objectives, sensors used, tasks performed,
and paradigms applied.

B. Existing Review
During the search, two review papers investigating bimanual

coordination in BCI systems were identified. One of these
papers [37], published in 2022, explores bimanual coordi-
nation within the context of motor imagery. It encompasses
studies utilizing bimanual tasks with motor imagery to control

BCI systems and those focusing on cognitive, behavioral, and
neurophysiological analysis underlying imagined bimanual
tasks.

Another paper [3], published in 2023, discusses EEG-based
motor BCIs for upper-limb movement, covering both uniman-
ual and bimanual tasks. It provides a comprehensive overview
of BCI system, including experimental paradigm design, data
collection, signal preprocessing, neural activity correlation,
feature extraction, movement intention decoding, and online
or real application model testing.

The primary distinction between this review and existing
literature lies in its comprehensive scope. Unlike prior reviews,
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TABLE I
STUDIES ON BIMANUAL COORDINATION IN BRAIN-COMPUTER INTERFACE IDENTIFIED BY PRISMA PIPELINE

the examination of bimanual coordination in BCI is unre-
stricted by specific BCI paradigms (such as motor imagery,
motor execution, motor attempt, and action observation) or

neuroimaging techniques. Additionally, recent advancements
are summarized, challenges are identified, and future research
directions are proposed. This is particularly significant given
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TABLE I
(Continued.) STUDIES ON BIMANUAL COORDINATION IN BRAIN-COMPUTER INTERFACE IDENTIFIED BY PRISMA PIPELINE

the emerging trend of bimanual coordination in BCI, necessi-
tating a thorough exploration of its complexities.

III. SYNTHESIS OF RESULTS

This section is organized into six subsections, each explor-
ing variations in studies across different stages of the BCI

pipeline. As illustrated in Fig. 3, the general BCI frame-
work consists of two main components: signal acquisition
and signal analysis. Participants—whether healthy individuals,
patients, or non-human primates—perform specially designed
bimanual motor tasks, while their brain signals are recorded
using non-invasive (e.g., EEG, MEG, fNIRS, and fMRI) or
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TABLE II
STUDIES ON BIMANUAL COORDINATION IN BRAIN-COMPUTER INTERFACES EXCLUDED FROM FINAL REVIEW FOR LACK OF NEUROLOGICAL

INSIGHTS OR DISCUSSION ON KEY FEATURES IN DECODING BIMANUAL MOVEMENTS
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TABLE II
(Continued.) STUDIES ON BIMANUAL COORDINATION IN BRAIN-COMPUTER INTERFACES EXCLUDED FROM FINAL REVIEW FOR LACK OF

NEUROLOGICAL INSIGHTS OR DISCUSSION ON KEY FEATURES IN DECODING BIMANUAL MOVEMENTS

invasive (e.g., ECoG and MEA) neuroimaging techniques.
The acquired signals are processed using various decoding
strategies. Decoding may occur simultaneously with signal
collection (on-line decoding) or after the complete dataset has
been acquired (off-line decoding). Depending on the approach,
traditional algorithms, machine learning models, or deep learn-
ing techniques are employed to interpret the signal. The
decoded outputs can then be utilized to provide real-time
feedback—such as visual cues—or to control external devices,
including robots and actuators.

A. Study Population
Figure 4a illustrates the distribution of the study popula-

tion. Thirty-two studies included human participants, with
23 focusing on healthy participants. Notably, this review did
not define healthy participants based on demographic factors

such as age or sex. Instead, they were defined as individuals
without known neurological or psychiatric diseases, without
motor deficits, and with normal or corrected-to-normal eye-
sight. The activation of brain networks and interhemispheric
interactions necessary for bimanual movements is influenced
by non-pathological factors, including handedness and motor
skills [12], [42]. However, interpreting and generalizing these
findings poses challenges due to limited reporting of hand
dominance in numerous studies. Specifically, while some
studies exclusively recruited right-handed participants [23],
[25], [26], [30], [31], [34], [35], [41], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], only stud-
ies [55], [56] included both right-handed and left-handed
individuals. Furthermore, Riquelme et al. [35] compared BCI
control performance between right-handed participants with
high bimanual dexterity (pianists) and control participants
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Fig. 2. Visualization of eligible articles by publication type (pie chart)
and year (bar graph).

(non-pianists). In contrast, Edelman et al. [29] recruited par-
ticipants with varying BCI experience, including both right-
and left-handed individuals.

Several studies recruited patients exhibiting motor deficits
due to spinal cord injury (SCI) or spinocerebellar degeneration
(SCD). These conditions often result in permanent changes
in strength, sensation, and other bodily functions below the
affected site. Four studies focused on patients with SCI [30],
[31], [38], [50], except for [53], which included both SCI and
SCD patients. The study [39] involved a tetraplegic patient
but did not specify the type of disease or injury. In addition,
the study described in [51] recruited stroke patients and
healthy participants, with the healthy group further divided
into older and younger subgroups, to evaluate the effects
of age and stroke on neuroplasticity during BCI feedback
sessions involving muscle stimulation. A study detailed in [55]
compared BCI performance between individuals diagnosed
with SCI and healthy control participants, while [57] examined
EEG features and classification methods in both healthy indi-
viduals and patients with disorders of consciousness (DOC),
including patients with a minimally conscious state (MCS),
and those with unresponsive wakefulness syndrome (UWS).
Furthermore, four studies incorporated non-human primates
(NHPs) [24], [58], [59], [60].

B. Neuroimaging Techniques
In this review, six neuroimaging techniques were identified

and categorized, as shown in Fig. 4b. These included
non-invasive methods such as electroencephalography (EEG),
magnetoencephalography (MEG), functional near-infrared

spectroscopy (fNIRS), and functional magnetic resonance
imaging (fMRI). Additionally, invasive techniques, namely
electrocorticography (ECoG) and microelectrode array
(MEA), were considered. Each method provides distinct
insights into brain function [2], [61], [62]. Among the
studies analyzed, 26 employed non-invasive techniques, while
10 utilized invasive methods.

1) Non-Invasive Neuroimaging: Non-invasive brain record-
ing involves monitoring and measuring brain activity without
surgical intervention or skull penetration. EEG captures elec-
trical signals via scalp electrodes, providing high temporal
resolution but limited spatial resolution. MEG detects mag-
netic fields generated by neuronal activity, offering high
temporal and spatial resolution despite cost and accessibility
challenges. fNIRS assesses blood oxygenation level-dependent
(BOLD) signals using near-infrared light, providing moderate
temporal resolution with spatial constraints. fMRI excels in
spatial resolution and detailed brain activity mapping by
observing BOLD signals, although it sacrifices temporal res-
olution.

Among studies employing non-invasive neuroimaging tech-
niques, EEG emerged as the most frequently utilized method,
featured in 20 studies [23], [25], [34], [35], [41], [43], [45],
[46], [47], [48], [49], [51], [52], [54], [55], [57], [63], [64],
[65], [66]. Additionally, MEG was employed in three stud-
ies [40], [56], [67], and fNIRS was utilized in one study [44].

Moreover, two studies utilized multimodal non-invasive
techniques. EEG and fNIRS signals were jointly employed
to decode bimanual isometric contraction tasks and evaluated
the efficacy of using either or both methods [26]. In a separate
investigation [29], fMRI estimated cortical activity sources and
improved EEG signal quality by mitigating volume conduction
effects.

2) Invasive Neuroimaging: ECoG records cerebral cor-
tex electrical activity by placing electrodes directly on the
brain surface, yielding high spatial resolution compared to
non-invasive methods such as EEG. In contrast, MEA achieves
high spatial resolution by simultaneously recording multiple
neurons, often inserted into brain tissue. ECoG, conversely,
captures neural signals with high fidelity and is suitable
for mapping cortical activity related to specific functions.
Meanwhile, MEA enables the study of neuronal populations
and synaptic connectivity within the brain.

All invasive studies were conducted on either NHPs
or patients. Specifically, three studies employed ECoG in
NHP research [24], [59], [60], while one study focused on
patients [31]. Additionally, one study utilized MEA in NHP
research [28], [58], and five studies involved patients [30],
[38], [39], [50], [53].

Studies [30], [39] have highlighted the use of both
invasive and non-invasive methods. However, data from non-
invasive techniques, such as fMRI and MEG, were exclusively
employed for surgical guidance or electrode placement and
were not analyzed.

C. Experimental Task and Paradigm
Bimanual coordination tasks exhibit varying difficulty lev-

els based on the degree of hand symmetry. Both discrete
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Fig. 3. Generalized BCI pipeline of bimanual motor coordination studies included in this review paper.

and continuous bimanual coordination patterns present chal-
lenges when limbs are assigned distinct movement directions,
velocities, or amplitudes. In such scenarios, individuals must
coordinate their movements across both hands, necessitating
precise timing and control. These variations in movement
parameters increase task complexity, demanding heightened
cognitive and motor control for effective bimanual coor-
dination. This review identified several studies that have
incorporated various unimanual and bimanual tasks. These
tasks range from simple unimanual left/right-hand (L/R) move-
ments to more complex activities, such as bimanual tapping
and tracking.

The experimental tasks employed in these studies encom-
passed paradigms, such as motor execution (ME), motor
imagery (MI), motor attempt (MA), and action observation
(AO), as shown in Fig. 4c. Although these paradigms repre-
sent different cognitive tasks, the brain activation elicited by
each paradigm shares some similarities [68], [69], [70], [71].
Figure 5 presents examples of bimanual motor tasks, with the
illustrations adapted from the experimental paradigms of the
studies included in this review paper.

1) Motor Execution Paradigm: ME involves overt inten-
tional bodily movements, enabling researchers to study natural
brain activity and measure factors such as muscle activa-
tion, movement trajectory, and force [72], [73]. Nevertheless,
ME paradigms do not apply to patients lacking residual
movement.

Sato et al. [44] instructed participants to perform a biman-
ual ball-grasping task. Kajal et al. [67] utilized a bimanual
finger-tapping task with real-time neurofeedback to observe
the changes in interhemispheric functional coupling and their

impact on motor performance. Additionally, in a study by
Ortega et al. [26], noninvasive BCI techniques were employed
to decode bimanual grip force. An isometric grip-force
tracking task (Fig. 5, upper right) was introduced, allowing
continuous monitoring and evaluation of force-related brain
signals to assess decoding performance.

The reaching task has also received extensive attention.
In this task, participants are required to move their hands
from one point to another point in space. Zhang et al. [23]
decoding reaching direction in one-dimensional space, while
Chen et al. [25] focused on reconstructing reaching trajecto-
ries, including position and velocity. The researchers in [45]
and [48] focused on classifying hand movement directions in a
two-dimensional space where the movements are orthogonal.
Wang et al. [49] investigated the neural correlates and move-
ment decoding associated with simultaneous and sequential
bimanual reaching.

In typical daily scenarios, reaching movements are often
combined with other actions to achieve specific goals. Previous
research has investigated reach-and-press tasks in NHP studies,
where NHPs extended their hands to press buttons [24], [59],
[60]. Additionally, Schwarz et al. [41] focused on decoding
reach-and-grasp tasks, which involved unimanual lateral or
palmar grasp, and bimanual combinations of palmar and lateral
grasps or double lateral grasps (Fig. 5, lower right).

2) Motor Imagery Paradigm: MI is a cognitive process dur-
ing which an individual internally rehearses or simulates a
given action within their working memory, without movement
execution. This practice involves no external motor action or
output. The MI paradigm is commonly categorized into two
types: kinesthetic MI and visual MI. Kinesthetic MI entails
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Fig. 4. (a) Distribution of participants across studies, including healthy
individuals (23 studies), patients (6 studies), and non-human primates
(4 studies). Three studies recruited both healthy participants and
patients. (b) Types of neuroimaging techniques utilized across studies,
with most employing non-invasive techniques. (c) Studies employed
experimental paradigms, predominantly utilizing motor execution (ME)
or motor imagery (MI), followed by motor attempt (MA) and action obser-
vation (AO). Additionally, some studies explored multimodal paradigms.

participants mentally simulating muscle activities and move-
ments from a first-person viewpoint. In contrast, visual MI
involves imagining movement from a third-person perspective,
emphasizing action visualization over muscle sensation [69].
All the studies included in this section utilized kinesthetic MI
as their approach.

Two studies utilized unimanual MI tasks. King et al. [34]
instructed participants to perform unimanual hand-rotation
tasks to investigate changes in brain connectivity and
MI performance under various neurofeedback conditions,
including bimanual rotation neurofeedback. Additionally,
Riquelme et al. [35] employed a task involving unimanual
finger drumming with swinging wrists to compare MI perfor-
mance between pianist and non-pianist groups.

The EEG Motor Movement/Imagery Dataset V1.0.0
(MMIDB) [74], [75], [76] comprises recordings of unimanual,

bimanual, and foot movements performed under both ME and
MI conditions. Kim et al. [63] exclusively utilized the MI data
from this dataset to evaluate the classification performance of
various task combinations. Similarly, studies such as [47], [52],
[64], and [65] employed the same set of tasks, whereas [43],
[46] extended their analyses to include resting-state (Re) data,
though these studies collected their own datasets.

Additionally, Lin et al. [38] and Wan et al. [39] investigated
unimanual and bimanual elbow/wrist flexion from neurons,
specifically in the left primary motor cortex (Fig. 5, upper
left). Lai et al. [50] captured neural signals from the patient’s
left motor cortex during center-out reaching tasks, quantifying
the representational interaction between arms by analyzing
the tuning parameters of individual neurons. A study by [56]
aimed to map and decode bimanual hands and feet MI
movements, as well as mental arithmetic (SUB) and silent
word generation tasks (WORD). Additionally, participants
were instructed to perform MI involving both hand movements
as well as the act of holding both hands still in the study [57].
Edelman et al. [29] employed EEG signals with neurofeedback
to facilitate participants in executing target-reaching tasks via
a virtual cursor and real-time control of a robotic arm.

3) Motor Attempt Paradigm: MA denotes the endeavor to
move a paralyzed hand with minimal or no actual movement,
typically observed in patients with motor disabilities. This
review identified one study that exclusively focused on MA
in bimanual BCI. A study in [30] demonstrated the capacity
of neural network decoders to enable patients to simultane-
ously control two computer cursors by attempting bimanual
movements.

4) Action Observation Paradigm: AO entails actively observ-
ing actions with the intent to imitate. This process can activate
mirror neurons, a distinct class that fires during observation
and execution of similar motor actions [77], [78]. While none
of the reviewed studies specifically addressed AO, studies [51],
[53], [58] included AO as part of their multimodal paradigms,
as discussed in the subsequent section.

5) Multimodal Paradigm: Several studies have also incorpo-
rated more than one paradigm to compare the performance of
the proposed algorithms and neural correlates under different
experimental conditions. By including multiple paradigms,
researchers can assess the influences of variations in task
demands, cognitive processes, and neural activity patterns on
the effectiveness of their methods.

In their research, Belkacem et al. [40] focused on decoding
neuromagnetic activities within the sensorimotor cortex during
MI and ME tasks involving symmetric and asymmetric hand
movements (Fig. 5, lower left). Their objective was to enhance
real-time control of humanoid robots using BCI systems.
Conversely, Moaveninejad et al. [66] evaluated their proposed
classification algorithms using both ME and MI data from
MMIDB. Additionally, Vuckovic et al. [54] aimed to classify
unimanual and bimanual hand-waving tasks and investigate
the specific brain activity associated with each task during MI
and ME.

The experiment detailed in [31] directed patients to per-
form MI or MA without explicit instructions. These actions
were subsequently harnessed to control both an exoskeleton
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Fig. 5. Bimanual experimental tasks illustrated based on the paradigm explanations of the included studies. Upper left : adapted from [38], [39];
lower left : adapted from [40]; upper right : adapted from [26]; lower right : adapted from [41].

Fig. 6. Input and feature for decoding bimanual motor tasks included review papers. Upper left : ERD/ERS (IEEE image credit: [23]); lower left :
neuron firing rate (Nature image credit: [30]); upper right : MRCP (IEEE image credit: [41]); lower right : fNIRS (IOP image credit: [26]).

and its virtual counterpart. The tasks involved bimanual
three-dimensional reaching and hand rotation, resulting in
an eight-dimensional control space. In contrast, the study
described in [55] instructed patients and healthy participants to

execute reach-and-grasp tasks for the MA and ME paradigms,
respectively. The researchers then analyzed movement-related
cortical potentials (MRCP) and compared decoding perfor-
mance between the two groups. Kumari et al. [51] recruited
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subacute stroke patients, older healthy adults, and younger
healthy adults to perform MA or ME combined with AO of
wrist extension and flexion. The study aimed to investigate
neuroplasticity in bimanual BCI with functional electrical
stimulation (FES) feedback. Downey et al. [53] instructed
participants to perform MA while observing (AO) a computer
executing the same task. The study focused on motor cor-
tical activity associated with unimanual reaching, alternating
L/R-hand reach-and-grasp tasks, and bimanual reaching move-
ments.

In their study, Ifft et al. [58] trained NHPs to operate
a bimanual BCI without overt movements, utilizing MA.
To ensure this, the NHPs’ arms were restrained and concealed
with an opaque material. This study devised a setup to repli-
cate the real-world challenges faced by paralyzed individuals
learning to operate BCIs without overt upper limb movements.
The classifiers were trained either through manual control
of two joysticks (ME) by the NHPs or by observing avatar
arm movements (AO). Additionally, the study investigated
neuroplasticity during the NHPs’ training with the bimanual
BCI.

D. Input and Feature Extraction
Recent advances in deep learning facilitate direct raw data

analysis and automatic learning of discriminative representa-
tions, reducing reliance on manual feature extraction. EEG
studies [23], [25] and the MEA study [30] employed deep
learning models without relying on handcrafted feature extrac-
tion. In contrast, the EEG-fNIRS study [26] utilized raw fNIRS
data (Fig. 6, lower right) while incorporating handcrafted
feature extraction for EEG signals. In contrast, the EEG study
by Abdalsalam et al. [47] utilized an autoregressive model
to calculate the frequency spectrum from Laplacian-filtered
signals, which was then used to provide visual feedback during
MI training.

Nonetheless, many reviewed studies relied on manual
feature extraction methods. Moreover, given the diverse
aspects of different neuroimaging techniques, the employed
feature extraction methods exhibit variation. Brain signals
typically encode temporal, spatial, and spectral information
relevant to movements. Therefore, feature extraction is cru-
cial for identifying and characterizing these distinct neural
aspects.

EEG, MEG, and ECoG studies investigate neural correlates
of movements, including movement-related cortical potentials
(MRCP) (Fig. 6, upper right) and event-related desynchro-
nization/synchronization (ERDS) (Fig. 6, upper left). MRCP,
referring to low-frequency potentials below 10 Hz, is asso-
ciated with motor planning and execution processes in the
brain [79], [80]. These potentials typically appear approxi-
mately 1-2 seconds before voluntary movement onset, enabling
the classification of movement intention before its actual
execution. In their study, Wang et al. [45] extracted temporal
and spectral features from MRCP amplitudes and power sum,
respectively. Conversely, studies in [41], [49], and [55] solely
utilized MRCP amplitudes feature for their decoding scheme.

ERDS, however, involves time-locked changes in relative
power during motor tasks [81]. This analysis typically focuses

on the alpha (7–13 Hz) and beta (13–30 Hz) frequency
bands, but it may also encompass other frequencies, such
as delta (<4 Hz), theta (4-7 Hz), and gamma (>30 Hz).
Spatial features were extracted using variations of the com-
mon spatial pattern (CSP) algorithm in several studies [34],
[35], [43], [46], [52], [54], [63], [64], while spectral features
were derived using the Hilbert transform in the work by
Ortega et al. [26]. Moaveninejad et al. [66] extracted tem-
poral and spectral features by estimating fractal dimension
and calculating EEG relative power across different bands.
Wang et al. [48] described a study where they extracted
spectral features from both MRCP and ERDS using wavelet
transform. Edelman et al. [29] introduced a co-adaptive BCI to
enhance user engagement and improve the spatial resolution of
noninvasive neural data. They achieved this through a contin-
uous tracking task that utilized the weighted power density
of the EEG alpha band for real-time robotic arm control.
Additionally, their training approach aimed to enhance spatial
resolution using a novel EEG source imaging technique called
frequency-domain electrical source imaging. Kumari et al. [51]
employed fast Fourier Transform (FFT) to calculate power in
specific frequency bands for providing FES feedback. In con-
trast, Mohamed et al. [65] proposed leveraging subject-specific
regions of interest (ROIs) combined with intrinsic time-scale
decomposition (ITD) to improve classification performance.
The study in [57] compared features extracted using various
methods, including Hjorth parameters, Brainrate, Wackermann
features, Hurst exponent, FFT, coherence, Granger causal-
ity (GC), partial directed coherence (PDC), directed transfer
function (DTF), approximate entropy, Shannon entropy, Bhat-
tacharyya distance, and correlation entropy.

In a study by Belkacem et al. [40], MEG amplitudes
were extracted from the event-related magnetic field (ERF).
To reduce feature dimensionality, they calculated the mean
amplitude of single trials for each MEG sensor around the
sensorimotor area. A linear kernel was employed to calculate
the group cross-similarity of task-related beta-decrements in
ERF, which were then used as input features in the study by
Youssofzadeh et al. [56]. In another study by Kajal et al. [67],
neurofeedback training utilized the ERF magnitude-squared
coherence of sensorimotor rhythm between hemispheres. All
ECoG studies employed similar feature extraction methods,
specifically wavelet transform, to capture spatial-spectral-
temporal features of ECoG signals [24], [31], [59], [60].

Sato et al. [44] introduced the general linear model (GLM)
to extract features and mitigate scalp hemodynamic artifacts
in fNIRS signals, comparing its performance with several
alternative methods Conversely, the majority of MEA studies
have employed peri-event time histograms or neuron firing
rates (Fig. 6, lower left) [30], [39], [50], [53], [58]. However,
in a specific MEA study [38], the average power signal of
local field potentials was used as a feature.

E. Decoding Algorithm
1) Non-Machine Learning Algorithm: Kajal et al. [67]

explored the causal relationship between interhemispheric
functional coupling and bimanual performance using
neurofeedback. Neurofeedback was determined based on
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dynamically updated neural coherence, calculated over the
preceding trials. In a study by Edelman et al. [29], the
instantaneous control signal was computed as the weighted
sum of alpha powers from a subset of electrodes. In the study
by Kumari et al. [51], tactile feedback was controlled using
a simple threshold switch, where the power in the selected
frequency band needed to stay below the power threshold for
a specific duration. Additionally, Ifft et al. [58] utilized an
unscented Kalman filter (UKF) to extract motor commands
from brain activity. This approach captures both reaching
parameters, such as position and velocity, and their nonlinear
relationships with neuronal rates.

2) Machine Learning Algorithm: Various machine learning
classifiers have been employed in bimanual BCI research,
including variations of the Support Vector Machine (SVM)
[39], [40], [44], [45], [46], [50], [52], [55], [56], [57], [64],
[66], Linear Discriminant Analysis (LDA) [34], [35], [41],
[45], [49], [54], [55], [57], [63], Gaussian Process Classifica-
tion (GPC) [56], and Relevance Vector Machine (RVM) [64].
Additionally, Random Forest (RF) [38], [55], [66], the Naive
Bayes Classifier (NBC) [55], and k-Nearest Neighbors (kNN)
[57], [58], [66] have been utilized.

Choi et al. [59] devised a two-stage decoder that combines
an effector classifier using LDA and a movement trajec-
tory predictor using Partial Least Squares (PLS) regression.
Moaveninejad et al. [66] assessed their feature extraction
algorithm by employing SVM, kNN, RF, and a Gradient
Boosting classifier (GB) to explore diverse model combina-
tions via soft and hard voting techniques.

In a recent study by Moly et al. [31], novel algorithms
were introduced, including Recursive Exponentially Weighted
Multisource Linear Modeling (REW-MSLM) and Recursive
Exponentially Weighted N-way Partial Least Squares (REW-
NPLS). REW-MSLM, an online tensor-based fully adaptive
mixture of multilinear expert algorithms, integrates a recur-
sive model parameter identification procedure inspired by
the REW-NPLS method [82] and inherits the structure of a
Mixture of Linear Modeling (MSLM) [83]. Lindig-Leon and
Bougrain [43] employed stepwise regression for classification,
calculating CSP and training the model separately for each
contralateral movement. In contrast, Abdalsalam et al. [47]
used an autoregressive filter to compute the frequency spec-
trum for controlling cursor movement.

Moreover, Downey et al. [53] employed the Indirect Opti-
mal Linear Estimation (OLE) technique, incorporating ridge
regression [84], to create a neural decoder based on an encod-
ing model. This decoder establishes the relationship between
neural unit firing rates and unilateral arm velocity, leveraging
data from observation trials.

3) Deep Learning Algorithm: Deep learning methods are
widely used for decoding neural signal movements. Notably,
Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs) emerge as favored options. CNNs
excel at extracting spatial-spectral-temporal features from
brain signals, while RNNs capture temporal dependencies
and dynamics, facilitating efficient representation learning and
classification of mental states or motor intentions [85].

Lim et al. [24] adopted DenseNet [86] to classify NHP
arm movements. Meanwhile, Choi et al. [60] extended the
DenseNet model to classify three-dimensional ECoG data
related to arm movement by incorporating temporal, spectral,
and spatial information domains. Similarly, Deo et al. [30]
employed Gated Recurrent Unit (GRU), a type of RNN, for
movement decoding.

Chen et al. [25] and Zhang et al. [23] combined
a well-known CNN architecture, EEGNet, with Long
Short-Term Memory (LSTM) for trajectory fitting and decod-
ing, respectively. Additionally, Wang et al. [48] incorporated
an attention-based channel-weighting module and CNN to
propose ME-NET, which enhances temporal-spectral-spatial
feature extraction for movement decoding. In a comprehensive
study, Ortega et al. [26] employed CNNs with attention
to decoding bimanual force using raw EEG, EEG Hilbert
features, and fNIRS. The model was further extended to incor-
porate diverse architectures, including CNNs with LSTMs,
mixture density networks (MDNs), and residual modules with
self-attention.

Furthermore, Mohamed et al. [65] employed a simple
feedforward neural network (FNN) as their decoding model.
In contrast, Tang et al. [64] utilized a spiking neural network
(SNN), which closely emulates the structure and function of
natural neural networks.

IV. DISCUSSION

A. Toward Practical Bimanual BCI Implementation
Bimanual BCI research aims to enhance movement range

and enable complex simultaneous actions, ultimately facilitat-
ing patients to perform ADL with greater ease. Consequently,
numerous studies have prioritized improving the robustness
and real-time performance of the movement decoder.

The key themes in bimanual studies center on achieving
high accuracy in movement classification. This pursuit estab-
lishes a robust foundation for investigating influential features
and models in bimanual decoding and comprehending brain
activation during bimanual BCI tasks. However, the limitation
of a predefined set of classes may restrict real-world appli-
cations. To address this limitation, The decoders providing
precise position and velocity trajectories for bimanual move-
ment, and bimanual-controlled cursor trajectory were proposed
in studies [25], [30], [58]. Another notable advancement is
the continuous decoder developed by Ortega et al. [26] that
provides force trajectory information and further enhances the
pursuit of a realistic decoder. Moly et al. [31] introduced a
highly robust bimanual movement scheme using a Mixture
of Expert (MoE) technique. This technique integrates five
specialized experts, each responsible for distinct movement
tasks: hand translation, hand rotation, and idle movements.
These experts collaborate through a gating mechanism akin
to a classifier. By applying MoE to this approach, subjects
achieve approximately 75% accuracy in controlling virtual
avatars and exoskeletons, even in online decoding.

Real-time functionality is pivotal in practical implementa-
tion. Belkecem et al. [40] effectively controlled a humanoid
robot to execute contralateral and ipsilateral bimanual tasks,
achieving average real-time accuracies of 61.25% and 63.5%,
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respectively, which is deemed acceptable for online decoding.
However, when aiming to broaden movement constraints by
developing real-time continuous decoders, the performances
of these decoders were slightly lower due to the wider
movement range. For instance, in studies [31], [53], [58],
real-time decoders for virtual avatar and exoskeleton control
achieved modest ground-truth correlations. Notably, Handel-
man et al. [32] introduced an online discrete decoder that
enables continuous control via a shared control strategy,
mapping subject gestures to specific robot-arm movements.
This approach enabled participants to perform real-time self-
feeding tasks despite the relatively lower accuracy of the
decoder. Furthermore, Deo et al. [30] applied the cursor trajec-
tory decoder in a real-time context. Even though it effectively
decoded alternating bimanual task, it struggled to achieve the
same performance in simultaneous tasks due to the suppressed
left-hand representation in bimanual simultaneous movement.
Nonetheless, the efficacy of real-time implementation may
vary due to factors such as intersubject variability, fatigue,
and emotional state [87].

The main challenge is that most studies focus on either
discrete actions or continuous limb translation, which limits
generalizability across datasets and populations. This presents
an opportunity for future research to integrate both movement
types, enabling more naturalistic control in bimanual BCI sys-
tems. While collecting large datasets for training decoders is
ideal, it is often time-consuming and costly. Adopting transfer
learning to generalize motor task variability and address both
intrasubject and intersubject non-stationarity may offer a more
efficient solution, requiring minimal data collection and model
retraining [88], [89]. This approach streamlines development
and improves generalization across diverse populations and
experimental conditions.

B. Motor Function Restoration in Paralyzed Patient

BCI therapy for post-stroke upper limb paralysis is moder-
ately recommended, with medium evidence support, according
to the 2021 Japanese Guidelines for the Management of Stroke
by The Japan Stroke Society [90]. This recognition highlights
BCI-based therapies’ increasing interest and potential in neu-
rorehabilitation. However, most bimanual BCI studies have
exclusively focused on SCI patients. Nevertheless, there exists
a substantial body of research employing BCI technology
for various other conditions that result in motor function
impairment, including stroke, cerebral palsy, Parkinson’s dis-
ease, and multiple sclerosis. Although conclusive evidence of
neuroplasticity during bimanual training is lacking, numerous
studies have aimed to expand the movement range of para-
lyzed patients by developing decoding techniques for bimanual
tasks. The robust classification accuracies observed in prede-
fined bimanual tasks classification validate the feasibility of
simultaneous movement decoding in patients with SCIs [38],
[39], [50], [55]. Additionally, advanced continuous bimanual
decoders enabled SCI patients to perform target-reaching
tasks by controlling virtual avatars, exoskeletons, and cur-
sors, enhancing the potential for motor function restoration
[30], [53].

The delta-alpha ratio (DAR) and brain symmetry index
(BSI) are commonly used metrics for assessing recovery
levels after neurorehabilitation, with lower values indicating
stroke recovery [91], [92], [93]. In the study by [51], these
indices were used to evaluate the short-term priming effects
of unimanual and bimanual BCI-FES feedback across three
groups: subacute stroke patients, older healthy adults, and
younger healthy adults. However, significant changes in DAR
and BSI were observed only in the healthy groups. The authors
suggest that injured brains may require longer sessions to
induce short-term changes or that gradual improvements could
emerge through cumulative effects in long-term studies. They
further recommend bimanual BCI-FES as a viable alternative
to unimanual BCI-FES.

The inclusion of NHPs, patients, and non-disabled partic-
ipants in existing bimanual BCI studies presents challenges
for transferring domain knowledge across participant cat-
egories. Comparing brain activation across patients with
different diseases is inherently biased, and even within the
same disease, the neurological injury level should be consid-
ered. Furthermore, bimanual BCI studies cited in this review
likely conform to distinct injury level standards. Neverthe-
less, interhemispheric interaction, critical for neural activation
during bimanual movement, can be influenced by age and
sex, as demonstrated by Takeuchi et al. [12]. Similarly,
Pfurtscheller et al. [94] observe that ERD strength and lat-
eralization in SCI patients may vary with the recovery course.
Chronic complete SCI patients tend to exhibit weaker ERD
compared to subacute incomplete SCI patients, leading to
inferior BCI performance.

Hence, conducting experiments comparing diverse subject
types is essential to explore the transferability of domain
knowledge. Currently, only two studies investigate the dif-
ference between healthy participants and patients during
bimanual activation [51], [55], while another examines an SCI
patient and an SCD patient [53]. The scarcity of research in
this area invites further exploration, potentially yielding valu-
able insights into bimanual BCI across various populations.

C. Bimanual Training on BCI Performance and
Neuroplasticity

Bimanual motor training has been demonstrated to modulate
interhemispheric interactions, promoting symmetrical brain
function and enhancing the efficiency of connections between
both hemispheres [12]. This facilitates temporally and spatially
coordinated movement of both hands. This may be attributed
to intermanual transfer, where motor learning in one hand
improves performance of the other hand. Amemiya et al. [95]
showed that intermanual transfer can occur during both ME
and MI tasks. Moreover, both bimanual and unimanual move-
ments benefit from bimanual training, and vice versa [10].
However, the transfer of learning may be limited depending
on the type of movement [96].

Riquelme et al. [35] conducted a groundbreaking com-
parative study on pianists who attained advanced bimanual
dexterity through rigorous training, alongside a control group,
during MI tasks. They discovered a statistically significant
higher BCI performance and lower activation of the bilateral
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motor cortex in the pianist group during MI. Using brain
connectivity analysis, King et al. [34] detected mutual infor-
mation transfer between prefrontal areas, signifying improved
motor preparation and bimanual coordination during bimanual
rotational feedback. Additionally, parietal-to-bilateral frontal
cortex communication implies that feedback conveys essential
spatial location information, critical for motor planning. Study
in [31] observed lower bimanual BCI performance in virtual
avatar control compared to exoskeleton control, which may be
attributed to differences in feedback and perception. Exoskele-
ton control provides more enriched and realistic feedback,
potentially enhancing BCI performance.

The study conducted by Ifft et al. [58] observed perfor-
mance enhancements in NHPs during real-time BCI control
of bimanual movements. Initially, heightened correlated neural
activity was observed, likely attributed to the learning process.
However, after this initial phase, NHPs consistently exhibited
a reduction in correlated neural activity across various cortical
areas in both hemispheres as they acquired independent control
over both arms. Kajal et al. [67] investigated the causal link
between interhemispheric functional coupling and bimanual
performance using an out-of-phase bimanual finger-tapping
task with neurofeedback. Their findings suggest that stronger
functional coupling adversely affects bimanual performance.

Additionally, Edelman et al. [29] compared participant
performance in two distinct tasks: discrete center-out cursor
control (DT) and continuous pursuit task (CP), both guided
by EEG signals during MI. Their findings revealed that CP
training outperformed DT, with participants demonstrating
superior neural control over both cursor and robotic devices
for discrete and continuous target-tracking tasks. Furthermore,
higher engagement was demonstrated during training sessions.
Moreover, the study investigated the impact of source and sen-
sor neurofeedback on CP training, revealing nearly identical
learning effects for both feedback types.

Studies have shown that bimanual BCIs can induce neuro-
plasticity, but the extent of these changes varies widely among
individuals due to factors such as sex, brain disease, and
age [12], [97], which poses challenges for achieving consis-
tent neurorehabilitation outcomes. Additionally, different types
of activity-based rehabilitation can result in varying levels
of brain changes. Personalizing rehabilitation strategies may
therefore lead to better outcomes. The brain criticality hypoth-
esis suggests that optimal brain function occurs at or near
a critical point between order and disorder, with deviations
potentially causing dysfunction [98]. A recent study [99] found
that lower brain criticality during resting-state EEG was linked
to improved BCI performance in a locked-in patient, while
Rocha et al. [100] proposed that personalized brain dynamic
models poised near criticality could predict stroke recovery.
Future research could potentially employ brain criticality as a
metric to tailor bimanual BCI neurorehabilitation, potentially
optimizing patient outcomes.

D. Unilateral Cortex Encodes Unimanual and Bimanual
Movements

In this review, multiple studies have explored the decoding
and neural representation of bimanual movements in the

unilateral motor cortex [30], [38], [39], [50], [53], [58].
A consistent finding across these investigations leads to a
general inference: neurons within the unilateral motor cor-
tex independently encode both contralateral and ipsilateral
movements. Additionally, a significant correlation exists in
the representation of movement direction between contralat-
eral and ipsilateral actions. Moreover, their representations
exhibit nonlinear changes between unimanual and bimanual
movements. The encoding patterns for bimanual movements
show a stronger correlation with contralateral movements
than ipsilateral movements. Most studies suggest that brain
activation patterns during bimanual movements are not sim-
ply a superposition of unimanual movements. The observed
changes in representations may stem from variations in tuning
parameters, such as modulation depths and directional prefer-
ences. However, this review found a contradictory finding by
Linding et al. [43], who demonstrated effective performance
using a stepwise classification strategy, showing that bimanual
movements generate similar activity in each brain hemisphere
to that produced by simple unimanual motor imagery on the
contralateral side.

Notably, Downey et al. [53] observed a correlation in grasp-
ing representations between both hands while also identifying
distinct representations for hand and arm movements. Previous
research [39], [50] identified distinct neural representations for
wrist and elbow movements, as well as movement directions.
Furthermore, the investigation of unilateral local field poten-
tials revealed distinct representations for bilateral MI, based on
average energy across the full array and single-channel power
levels [38]. Moreover, considering variations in representations
across unimanual, bimanual, and different limb movements
within the unilateral motor cortex, it becomes feasible to
decode movement types and directions.

Although these studies confirm the involvement of the
unilateral cortex in encoding both unimanual and bimanual
movements, the underlying mechanisms remain to be fully
understood. In unimanual tasks, the ipsilateral hemisphere
encodes information distinct from that of the contralateral
hemisphere, suggesting its role in both the planning and
execution of movements [101]. Potential explanations include
balancing interhemispheric inhibition, maintaining an efferent
copy of the ipsilateral limb to facilitate bimanual control,
and driving proximal muscle activity for posture stabilization.
While this remains a topic of debate, investigating the role
of both hemispheres in executing unimanual and biman-
ual movements—especially under task- and time-specific
conditions—could significantly enhance the understanding of
human motor control mechanisms. This knowledge carries
important implications for developing novel rehabilitation
strategies for individuals with motor impairments.

E. Important Features for Decoding Bimanual
Movements

Studies employing MRCP signals have revealed significant
findings. Specifically, they demonstrate a larger negative peak
and lateralization of MRCP around movement onset in biman-
ual movements compared to unimanual movements [23], [45],
[48]. Furthermore, a correlation exists between the negative
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offset maximum of MRCP and torque level, with higher torque
tasks exhibiting greater negative offset maximums than lower
torque tasks [102]. For example, Wang et al. [45] argued that
upward hand movement against gravity yielded the largest
negative amplitudes. Kirchhoff et al. [55] also observed a
stronger MRCP rebound during bimanual tasks compared
to unimanual tasks. Additionally, they identified an optimal
decoding time window approximately 0.75 seconds before
movement onset. Furthermore, Schwarz et al. [41] reported
slower response times for bimanual movements, potentially
indicating the additional planning and cognitive effort required
for coordinated bimanual tasks. Wang et al. [49] demonstrated
that simultaneous bimanual movements exhibited symmetric
activations in both hemispheres, whereas sequential bimanual
movements showed asymmetric activations with predominant
contralateral effects.

The ERDS studies reveal key brain regions for decod-
ing, including the supplementary motor area (SMA), primary
somatosensory cortex (S1), posterior parietal cortex (PPC),
and primary motor cortex (M1). Additionally, frequency bands
such as delta, alpha, beta, and gamma were associated with
decoding motor tasks. Studies [44], [46], [47], [52], [54],
[63], [64], [65], [66] observed that during bimanual tasks,
both hemispheres are actively engaged, with ERD showing
a broader distribution over the non-dominant hemisphere,
particularly in the parietal cortex, compared to unimanual
tasks. Belkacem et al. [40] detected distinct time and frequency
distributions in the SMA across bilateral hemispheres for
diverse bimanual tasks. Additionally, bimanual movements
were associated with bilateral beta ERD in the SMA, precen-
tral/primary motor cortex, as well as in the anterior cingulate
gyri and prefrontal regions areas and the frontal pole [56].

The study in [57] compared various feature extraction and
classification methods in healthy participants and patients with
DOC performing both hands MI. The results showed that
coherence features yielded the best classification results in
healthy participants, although unexpectedly, coherence was
predominantly observed in the frontal regions. In contrast,
none of the extracted features showed significant results in
DOC patients, possibly due to the degree of disability and
neuroplasticity variations among the patients.

Moreover, NHP studies [24], [59], [60] employing class
activation mapping, a branch of xAI, have unveiled sig-
nificant weights in the ipsilateral motor and somatosensory
cortex regions. Simultaneously, gamma-band power activation
has been observed in contralateral areas during unimanual
movement, suggesting that brain signals acquired from the
motor cortex encode information about both contralateral
and ipsilateral movements. These results corroborate research
demonstrating the decodability of both unimanual and biman-
ual movements from unilateral neural signals [30], [38], [39],
[50], [53], [58]. Furthermore, the hand-movement classifica-
tion system leveraged critical temporal cues during movement
onset and offset, emphasizing its accuracy in bimanual
movement classification. Additionally, they highlighted the
substantial role of alpha and beta bands in decoding, signifying
their importance in hand or finger movement planning and exe-
cution. Ortega et al. [26] reported a distinct frontal ipsilateral
delta band pattern for the left hand, contrasting with a more

bilateral pattern observed for the right hand. This discrepancy
likely arises from the dominant cortical representation of
each hand. Additionally, they noted contralateralization of the
alpha band during bimanual tasks, accompanied by a bilateral
frontal-parietal pattern, suggesting involvement of a fine motor
control network. Conversely, Kirchhoff et al. [55] observed
that feature importance for decoding predominately centered
around the motor cortex in healthy participants, but in patients,
it shifted to the frontal cortex.

Despite successful decoding of bimanual tasks, cortical
activation patterns for different bimanual tasks lack strong
spatial distinctiveness, particularly when using non-invasive
neuroimaging techniques [41], [54]. Consequently, a signifi-
cant challenge remains in expanding the DOF or the number
of tasks that a bimanual BCI can decode. Furthermore, only
a limited number of studies in the review employed multi-
modal neuroimaging techniques. Adopting such an approach
could be advantageous, as multimodal neuroimaging provides
a more comprehensive assessment of the integrated neural
mechanisms underlying complex processes. This methodology
allows for more robust comparisons, cross-validation across
modalities, and can significantly enhance the overall under-
standing of brain function in BCI applications.

F. Future Prospects in Bimanual Coordination in BCI
While the reviewed papers offer diverse research directions,

their limitations highlight opportunities for future develop-
ment. The focus of bimanual BCI studies in this review
has primarily been on decoding motor intentions during the
execution of MI or ME, and translating these intentions into
real movements by controlling peripheral devices. However,
achieving precise and real-time control requires a deeper
understanding of motor planning—the preparatory stage pre-
ceding movements. Studies by Hanakawa et al. [103], [104]
have shown differences in the distributed motor network
during motor planning, MI, and ME. Although brain regions
involved in MI are similar to those in motor planning, dis-
cerning these distinctions is crucial for refining BCI control
algorithms. A comprehensive grasp of motor planning could
enable controllers to discern between preparation signals and
actual execution signals, enhancing the system’s responsive-
ness and accuracy. Another promising development prospect
is implementing a system capable of halting execution upon
user request. Bhattacharyya et al. [105] proposed a robot arm’s
online control scheme that utilizes the error-related potential
signal to stop the movement of individual links. Integrating
these ideas into the bimanual BCI system can pursue a more
realistic movement.

Moreover, the application of BCIs in the spinal cord is an
intriguing research topic in the BCI-based neurorehabilitation
field. Several studies [106], [107], [108], [109] have demon-
strated the potential of restoring communication pathways
in the injured spinal cord. Currently, only one study found
the potential of utilizing spinal fMRI and electromyography
signals from healthy patients to decode bimanual tasks [110].
While this study may not explicitly focus on motor function
restoration, its investigation and analysis contribute to a deeper
understanding of spinal cord mechanisms related to bimanual
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motor control. Exploring the integration of bimanual BCIs
into spinal cord applications presents an intriguing avenue for
future research.

The primary goal of most bimanual BCI applications is to
restore motor function in patients with deficits, enabling them
to regain natural movements through brain-controlled devices.
However, it is crucial to explore whether these technologies
can also augment the human body, enhancing task performance
and enabling multitasking. One promising application is the
development of supernumerary limbs, which aim to expand
motor capabilities by adding extra limbs [111], [112]. While
this offers exciting prospects for BCI, the application is
relatively new and requires further research. Specifically, it is
important to address the neural allocation problem, which
examines whether the brain can adapt to effectively provide
control signals to additional limbs without impairing the
function of existing ones [113], [114], [115]. Furthermore, the
extra limb must provide sensory feedback that complements
natural information and creates a sense of realistic embodiment
[116], [117].

V. CONCLUSION

This review investigated recent trends in bimanual coor-
dination within BCI research. It comprehensively examined
participant demographics, neuroimaging methods, experimen-
tal tasks and paradigms, and feature extraction and decoding
algorithms. Recommendations to enhance bimanual BCI
usability and support motor function rehabilitation in individ-
uals with motor deficits are suggested. The review synthesized
key neurological findings on bimanual coordination and pro-
posed future research directions. Leveraging advancements
in neurological understanding and BCI technology, it antic-
ipates progress in motor BCIs towards more natural and
practical applications. Thus, this article serves as a starting
point for designing bimanual motor coordination studies in
BCI, addressing both engineering and neurological aspects by
summarizing recent trends.
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