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Abstract— The loss of speech function following a
laryngectomy usually leads to severe physiological and
psychological distress for laryngectomees. In clinical
practice, most laryngectomees retain intact upper tract
articulatory organs, emphasizing the significance of
speech rehabilitation that utilizes articulatory motion
information to effectively restore speech. This study
proposed a deep learning-based end-to-end method for
speech reconstruction using ultrasound tongue images.
Initially, ultrasound tongue images and speech data were
collected simultaneously with a designed Mandarin corpus.
Subsequently, a speech reconstruction model was built
based on adversarial neural networks. The model includes
a pretrained feature extractor to process ultrasound
images, an upsampling block to generate speech, and
discriminators to ensure the similarity and fidelity of the
reconstructed speech. Finally, both objective and sub-
jective evaluations were conducted for the reconstructed
speech. The reconstructed speech demonstrated high
intelligibility in both Mandarin phonemes and tones. The
character error rate of phonemes in automatic speech
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recognition was 0.2605, and tone error rate obtained from
dictation tests was 0.1784, respectively. Objective results
showed high similarity between the reconstructed and
ground truth speech. Subjective perception results also
indicated an acceptable level of naturalness. The proposed
method demonstrates its capability to reconstruct tonal
Mandarin speech from ultrasound tongue images. However,
future research should concentrate on specific conditions
of laryngectomees, aiming to enhance and optimize model
performance. This will be achieved by enlarging training
datasets, investigating the impact of ultrasound tongue
imaging parameters, and further refining this method.

Index Terms— Ultrasound tongue image, speech recon-
struction, end-to-end, generative adversarial networks
(GANs), Mandarin speech.

I. INTRODUCTION

THE vocal cords are the most crucial organ in human
speaking, serving as the source of speech production.

However, most patients with laryngeal cancer have to undergo
total laryngectomy, permanently losing their vocal cords
and the ability to produce speech [1], resulting in severe
physiological and psychological distress [2], [3]. In order to
restore the ability to produce speech for such individuals with
voice disabilities, many researchers have devoted significant
efforts.

Laryngectomy primarily results in the loss of the voice
source, prompting researchers to initially focus on methods
to compensate for its loss and restore voice. Currently,
three common methods of voice rehabilitation for laryn-
gectomees are esophageal speech, tracheoesophageal speech,
and electrolarynx (EL) speech [4]. In esophageal speech,
phonation relies on an airflow from the stomach, often
resulting in discontinuous voice due to the inadequate
airflow. Tracheoesophageal speech addresses this issue by
creating a fistula between the trachea and esophagus via
tracheoesophageal puncture (TEP) and inserting a voice
prosthesis. However, this method requires a two-step surgery
and maintenance can be challenging. EL speech involves using
an external vibrating device to produce speech. However, the
speech generated by EL is often robotic, monotonic, and

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0002-0426-7223
https://orcid.org/0000-0002-7358-5033
https://orcid.org/0009-0002-6564-4571
https://orcid.org/0000-0001-8708-040X
https://orcid.org/0000-0002-7783-3073
https://orcid.org/0000-0001-8146-1279
https://orcid.org/0000-0001-8891-6846


LI et al.: END-TO-END MANDARIN SPEECH RECONSTRUCTION BASED ON ULTRASOUND TONGUE IMAGES 141

lacks pitch modulation, which is particularly detrimental for
tonal languages, leading to significantly poorer speech quality
compared to natural speech [5].

In clinical practice, for most laryngectomees, despite
the removal of the vocal cords, the articulatory organs
responsible for phonation in the upper vocal tract remain
intact. Exploring the possibility of utilizing neurophysiological
signals and articulatory motion information to reconstruct
high-quality speech has been concerned by scholars [6].
Some researchers have collected neurophysiological signals to
conduct study related to speech, such as synthesizing speech
from electromyography (EMG) [7] or electroencephalography
(EEG) [8]. The research by Anumanchipalli et al. [9] on
reconstructing high-quality speech using electrocorticography
(ECoG) has gained considerable attention in recent years. They
have explored the mechanism of neural activity associated
with articulatory motion and synthesized speech based on it.
Besides, some researchers have collected articulatory motion
to reconstruct speech, with particular emphasis on capturing
tongue motion. The tongue, as the most important articulatory
organ, exhibits versatile and flexible movements that convey
a wealth of articulatory information. The significant role of
tongue in speech production has been extensively discussed
by researchers such as Stone et al. [10], Hiiemae et al. [11],
Badin et al. [12], and Chen et al. [13]. To date, researchers
have explored various methods to record tongue motion:
magnetic resonance imaging (MRI) [14] provides clear tongue
image, but has long imaging time, making it difficult to capture
rapid tongue movements in real-time; computed tomography
(CT) [15] can record tongue movements clearly and rapidly,
but it exposes the body to radiation, making it difficult
to collect data for an extended period; electropalatography
(EPG) [16] and electromagnetic articulography (EMA) [17]
can accurately capture tongue movements, but sensors need to
be placed inside the mouth during data collection, interfering
with speech production movements.

Instead of the above-described approaches, ultrasound
imaging [18], which boasts real-time, rapid, non-invasive
and radiation-free attributes, is gradually becoming the
preferred choice for many researchers due to its capability to
accurately acquire tongue motion. Two decades ago, Denby
and Stone were pioneers in utilizing a multilayer perceptron
for mapping the features of ultrasound tongue images to vocal
tract parameters [19]. Subsequently, researchers continuously
explored to establish the relationship between dynamic
ultrasound tongue images and speech by combining statistical
methods or machine learning techniques. Hueber et al.
proposed using a Hidden Markov Model (HMM) to establish
the relationship between tongue image features and mel-
frequency cepstral coefficients (MFCC) [20]. Csapó et al.
used a ResNet model to map ultrasound images to mel-
generalized cepstrum-based line spectral pair (MGC-LSP)
[21]. Vocoders were further employed to synthesize speech
after obtaining converted speech features. However, the main
limitation of these works is solely using vocal tract parameters
without exploring the fundamental frequency (F0) in tongue
motion, resulting in a lack of naturalness in the reconstructed
speech. To address this issue, Grósz et al. proposed a DNN

model to predict F0 from ultrasound tongue images and
utilized both the converted vocal tract parameters and F0 for
speech reconstruction. Results of this study indicated that the
predicted F0 contributes to enhancing the naturalness of the
reconstructed speech [22].

Towards the improvement of the generated speech quality,
researchers have investigated the methods for estimating mel-
spectrogram, which contains sufficient vocal tract and F0
information, from ultrasound tongue images. For instance,
Kimura et al. utilized convolutional neural networks (CNN)
[23], while Tóth et al. utilized Spatial Transformer Net-
works [24], to establish the relationship between ultrasound
tongue images and mel-spectrogram. One typical work
proposed by Csapó et al. employed CNNs to convert
ultrasound tongue images into mel-spectrograms and fed
them into the WaveGlow vocoder for speech synthesis [25].
The results suggested that this approach obviates the need
for separately reconstructing vocal tract parameters and F0,
yielding reconstructed speech with naturalness. However, there
still exists obvious disparity between reconstructed speech and
real speech, particularly in terms of F0. For tonal languages
characterized by intricate F0 variations, such as Mandarin
Chinese, the quality and intelligibility of it are notably
sensitive to F0 nuances [26]. Therefore, exploring how to
reconstruct tonal Mandarin speech directly form ultrasound
tongue images emerges as a highly worthy and thought-
provoking research question.

It is obvious that previous works have avoided recon-
structing audio waveforms, and have focused on generating
intermediate representations which are used for reconstructing
speech. To the best of our knowledge, there has been no
research work on directly reconstructing Mandarin speech
from tongue ultrasound images. End-to-End speech synthesis
is an emerging technique in the field of speech synthesis
that directly maps the input of the model to speech
waveforms without intermediate steps [27]. This technology
has been widely applied in the fields such as text-to-
speech conversion, human-computer interface, and real-time
translation in recent years. Unlike traditional methods based
on phoneme concatenation or parameter-based synthesis,
this approach simplifies the synthesis process and reduces
the accumulation of errors [28], [29]. Numerous studies
have demonstrated that employing this technique significantly
enhances the quality and naturalness of synthesized speech,
enabling better preservation of speech characteristics such as
pronunciation style and prosodic rhythm [30].

Considering the aforementioned challenges, we propose
an end-to-end method for reconstructing Mandarin speech
based on ultrasound tongue images. This approach eliminates
the need for converting speech features, thereby preserving
the information directly from ultrasound tongue image.
We employ image autoencoder and neural vocoder techniques
and construct the model based on Generative Adversarial
Networks (GANs). The model integrates pre-trained feature
extractors and feature upsampling modules, and includes
discriminators to ensure the similarity and fidelity of the
reconstructed speech. The speech reconstruction model in
this work builds upon our previous research [31]. However,
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Fig. 1. Experimental system for audio and ultrasound tongue image
acquisition and image preprocessing. The green line represents the
acquisition process of ultrasound tongue images, while the blue line
represents the audio acquisition process. Image preprocessing is
depicted within the black frame.

the previous work did not use an end-to-end framework.
In this paper, we reframe and deeply investigate the method
for directly reconstructing Mandarin speech from ultrasound
tongue images. To validate our proposed method, we collected
synchronized data of ultrasound tongue images and speech,
enabling the direct conversion of these images into fluent
Mandarin speech. We then evaluated and analyzed the
effectiveness of the reconstructed speech.

II. MATERIALS AND METHODS

A. Experimental System
As shown in Fig. 1, the experimental system contains

ultrasound tongue image and audio waveform acquisition.
Ultrasound tongue images were obtained using Clover Medical
B-mode ultrasound system with C5-1 curved transducer
(Wisonic, China) and the GC573 video capture card
(AverMedia, China). To stabilize the ultrasound transducer
under the chin of the speaker to avoid deviations in
measurement data, an Ultrafit headset (Articulate Instrument,
UK) was used. Speech waveforms were captured using
an ECM8000 microphone (Behringer, Germany) and a
Quad-capture sound capture card (Roland, Japan). The
synchronization of ultrasound video and audio signals was
achieved through time-triggered coordination.

B. Data Acquisition
We built a corpus consisting of 1240 short sentences based

on common Chinese daily expressions [32], with an average
sentence length of 6 characters and a standard deviation of

3 characters. The entire corpus comprises 6858 Chinese char-
acters. The data acquisition process involved a participation of
a healthy native Mandarin speaker with no speech or hearing
impairments. This participant signed written informed consent
and the study was approved by Beihang University Ethics
Committee (BM20230267). The entire experiment occurred
in a soundproof recording studio. Throughout the process,
the transducer was under the chin in a fixed position. The
operating frequency of ultrasound transducer was 4.5 MHz.
The ultrasound video stream was captured with 1080p (1920×

1080 pixels) at a frame rate of 100 fps (frames per second),
and the audio sampling frequency was set at 44.1 kHz.
1240 sentences were randomly presented on the screen, and
speaker read the content with the display prompts.

C. Data Preparation
The collected data underwent preprocessing, which involved

the following steps. After the separation of synchronized
ultrasound video and audio, frames of the video were extracted
to sequential images. Instead of using the full size of the
image, we cropped the effective region with the central
800 × 800 pixels, excluding the surrounding black blank as
depicted in Fig. 1. This process resulted in a dataset consisting
of individual speech audio files matched with corresponding
ultrasound tongue images. The dataset comprised a total of
1240 audio files and 422089 ultrasound tongue images.

D. Proposed Speech Reconstruction Architecture
The model for reconstructing speech based on ultrasound

tongue images is illustrated in Fig. 2. Our model drew
inspiration from advanced GAN-based vocoders, such as HiFi-
GAN [33], MelGAN [34], and LSGAN [35], to construct a
model for directly generating speech from features extracted
from tongue motion ultrasound images. The ultrasound tongue
images input into the model undergo feature extractor,
encoding block, and upsampling modules to achieve end-to-
end speech reconstruction. Specifically, the feature extractor
is pretrained in a separately designed image autoencoder and
then fine-tuned within the training process. Two independent
discriminators are employed during the training of the
generator to ensure the quality of the reconstructed speech.

1) Pretrained Feature Extraction: We designed the image
autoencoder as shown in Fig. 2, comprising a feature extractor
and a decoder. The autoencoder was used to extract efficient
latent space representations of input in an unsupervised
manner, and trained to restore the input images at the
output layer. This forced the feature extractor to create
compact representations. The feature extractor consists of
four 2D convolution layers, each followed by rectified linear
unit (ReLU) activation and 2D pooling. Meanwhile, the
decoder consists of six 2D transposed convolution layers.
Mean squared error (MSE) is used as a loss function.
After training the autoencoder, the feature extractor acquired
prior knowledge of extracting image features. By integrating
the feature extractor into speech reconstruction model for
fine-tuning, the prior knowledge from feature extractor was
transferred into the speech reconstruction model training,
resulting in enhanced performance.
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Fig. 2. The architecture of proposed method. (a) Feature extractor pretraining. (b) Speech waveform reconstruction.

Fig. 3. The detailed architecture of generator consists of feature extractor, Encoding block, and Upsampling block.

2) Waveform Generator: Given that we aim to directly
reconstruct speech from ultrasound tongue images, our
generator accomplishes two sequential tasks: 1) decoding
the temporal sequence of image features, and 2) upsam-
pling the features into audio waveform. The specific structure
of the generator is described in details in Fig. 3. First, the
images are decoded into the latent space representations by
feature extractor. Next, the representations undergo dimension
adjustment before being fed into the encoding module, which
consist of three 1D convolution layers, each followed with
a batch normalization layer and ReLU activation. After this,
the upsampling block performs upsampling until the length
of the output sequence matches the temporal resolution of
raw waveform. The upsampling block is primarily achieved by
four layers of 1D transposed convolution layers, each followed
by a multi-receptive field fusion (MRF) module [32]. The
MRF utilizes a residual structure alternating between different
convolutional kernels and dilation rates to enhance the
upsampling performance. Some parameters in the generator

are adjustable: kernel sizes kf of the feature extractor, kernel
sizes ke of the encoding block, kernel sizes ku of the 1D
transposed convolution in upsampling block.

3) Waveform Discriminators: We use two discriminators:
1) The multi-scale discriminator (MSD) [34] consisting of
three scale discriminators, designed to operate on original,
×2 average-pooled, and ×4 average-pooled audio. Each of
the sub-discriminators in MSD is a stack of 1D convolutional
layers with leaky ReLU activation, focusing on the features
across different frequency ranges in audios; 2) The multi-
period discriminator (MPD) [33] consists of five period
discriminators. Each sub-discriminator is a stack of 2D
convolutional layers with leaky ReLU activation, processing
reshaped and padded audio with period (2, 3, 5, 7, 11),
focusing on periodicity features in audios.

4) Training Loss: The loss function comprises three compo-
nents: GAN Loss, feature matching loss, and mel-spectrogram
loss. The discriminator is trained to classify ground truth
samples to 1, and the samples output from generator to 0.
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Fig. 4. Confusion matrix of types of mandarin pinyin results (ASR). (a) Confusion matrix of types of initials. (b) Confusion matrix of types of finals.

Fig. 5. Confusion matrix of mandarin tone results (Dictated). (a) Confusion matrix of ground truth. (b) Confusion matrix of reconstructed.

The generator is trained to fake the discriminator by updating
the output quality to be classified to a value equal to 1. The
GAN loss utilizes the least squares loss function, for generator
and discriminator are defined as

LAdv(G; D) = Es

[
(D(G(u)) − 1)2

]
(1)

LAdv(D; G) = E(x,s)

[
(D(x) − 1)2

+ (D(G(u)))2
]

(2)

where Gdonates the generator, D donates the discriminator,
x donates ground truth audio, and u donates the input of
the ultrasound image. The feature matching loss quantifies
the L1 distance between the output feature of each layer
in the discriminator for ground truth audio and generated
audio, assessing the similarity between them from a feature

perspective. It is defined as

LF M (G; D) = E(x,s)

[ T∑
i=1

1
Ni

∥∥∥ Di (x) − Di (G(u))

∥∥∥
1

]
(3)

where T donates the number of layers in the discriminator,
Di and N i donate the features and the number of features
in the i-th layers of the discriminators, respectively. The mel-
spectrogram loss calculates the L1 distance between the mel-
spectrograms of generated and original waveform, positively
influencing the efficiency of the generator and the fidelity of
the generated waveform.

LMel(G) = E(x,s)
[
∥φ(x) − φ(G(u))∥ 1

]
(4)

where φ donates the function that extract mel-spectrogram
from waveform. Finally, the loss of generator and discrimina-
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Fig. 6. Spectrograms and F0 contours for an example “ ” under different evaluation conditions: (a) Ground truth, (b) vocoded,
(c) E2E-Base, (d) E2E-Pre, and (e) E2E-Pre-FT.

tor are as

LG =

K∑
k=1

[
LAdv(G; D) + λF MLF M (G; D)

]
+ λMelLMel(G) (5)

LD =

K∑
k=1

LAdv(Dm; G) (6)

where K donates the number of discriminators, Dk donates the
m-th sub-discriminator, and λF M and λMel denote the weights
assigned to feature matching loss and mel-spectrogram loss,
set to 2 and 45, respectively.

5) Training Details: configured the model as follows: we set
k f = [7, 5, 3, 3] in feature extractor, ke = [11, 9,7] in encoding
block, and ku = [20, 12, 4, 4] in upsampling block. The
model was trained using AdamW optimizer with optimizer
parameters β1 = 0.8, β2 = 0.99, and weight decay of 0.01. The
learning rate was starting from 0.0002 with decay by a factor
of 0.999 in each epoch. The model training was conducted on
a single GPU (NVIDIA RTX 3090) and CPU (AMD EPYC
7302) with a batch size of 16.

Additionally, to assess the significance and effectiveness of
pretraining the feature extractor, we also trained models with
feature extractors that were trained from scratch, as well as
models where the feature extractor was pretrained but not
fine-tuned. The structures and parameter settings were same
with the speech reconstruction model containing a pretrained
feature extractor.

E. Evaluation Metrics
Data were randomly divided into training set (1100),

validation set (100), and test set (40). To evaluate the

model’s generalization performance, a modified three-fold
cross-validation was employed. In each fold, the test set and
validation set were distinct and non-overlapping, with each
sample used once as part of the test set and once as part of the
validation set. The training set remained fixed at 1100 samples
across all folds. Objective and subjective evaluations were then
performed, as described in the following sections.

1) Objective Measurements: We evaluated our speech
reconstruction model using three kinds of objective metrics
which capture different properties of the audio: 1) speech
recognition accuracy, 2) spectrogram similarity parameter, and
3) F0 similarity parameter.

To objectively evaluate the intelligibility of the recon-
structed speech, a pretrained automatic speech recognition
(ASR) model was employed to transcribe both the recon-
structed speech and the original speech samples [36]. Given
that Mandarin syllables are primarily composed of initials
(consonants) and finals (vowels), an in-depth analysis of
the performance of the reconstructed speech was conducted
by calculating the character error rate (CER) of mandarin
syllables based on ASR results. Additionally, since this study
focuses on speech reconstruction base on articulatory motions,
different articulatory gestures and phonetic positions were
analyzed, Mandarin syllables were categorized as shown in
Table I. Mandarin initials were categorized into seven types:
bilabial, labio-dental, dental, alveolar, retroflex, palatal, and
velar. Mandarin finals were categorized into six types: labial,
dental, retroflex, palatal, compound, and nasal. Analyzing
such results can provide insights into the performance of
reconstructed speech across various articulatory gestures and
phonetic positions.

Speech quality was evaluated by spectrogram similarity
parameter and F0 similarity parameters. Mel-cepstral distance
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TABLE I
MANDARIN PINYIN INITIAL-FINAL MAP TABLE WITH INTERNATIONAL PHONETIC ALPHABET (IPA)

(MCD) is designed to evaluate speech quality based on
cepstrum distance on mel-scale [37]. F0 contours of the
source speech signals were automatically extracted using a
robust algorithm for pitch tracking [38]. The F0 logarithmic
root mean square error (Log F0 RMSE), F0 correlation
coefficient (F0 CORR), and F0 voiced/unvoiced accuracy (F0
V/U) are used to measure the consistency and accuracy of
the F0. In practice, they work quite reliably in measuring
quality in reconstructed speech compared to ground truth
speech.

2) Subjective Listening Tests: We conducted listening tests
to obtain evaluations of the speech, which comprised Mean
Opinion Score (MOS) tests and Mandarin tone dictation tests.

In the MOS tests, listeners were instructed to rate the
naturalness of both the ground truth and reconstructed
utterances without prior knowledge of the sources. Ratings
range from 1 to 5, following the criteria: 5 - Excellent, 4 -
Good, 3 - Fair, 2 - Bad, 1 - Poor. Before the tests, listeners
were provided with details written explanation of these ratings,
covering aspects such as speech quality, clarity, the presence
of mechanical noises or discontinuity, and whether the audio
is perceived as speech.

The Mandarin tone dictation tests evaluate the performance
of tone in the reconstructed speech. Mandarin tones can be
categorized into five types: high (Tone 1), rising (Tone 2),
dipping (Tone 3), falling (Tone 4), and neutral (Tone 0). During
this test, participants listened to utterances and transcribed the
tones they heard.

F. Evaluation Conditions
We prepared three training settings: 1) “E2E-Base” used

a randomly initialized feature extractor in the speech
reconstruction model, serving as baseline of our method.
2) “E2E-Pre” utilized a pretrained feature extractor in the
model without fine-tuning, aimed at investigating the effect
of fine-tuning. 3) “E2E-Pre-FT” represents the complete
method proposed in this paper, where the feature extractor
was pretrained and fine-tuned in the model. Addition-
ally, we included the following methods for reference:
“Ground Truth” represents real and natural speech, and
“Vocoded” refers to the speech reconstructed using HiFi-
GAN vocoder from mel-spectrogram of ground truth
speech.

TABLE II
RESULTS OF CER BY ASR (MEAN ± STANDARD DEVIATION

ACROSS CROSS-VALIDATION)

TABLE III
RESULTS OF TER BY DICTATION TESTS

III. RESULTS

A. Intelligibility Evaluation

The evaluation of Mandarin speech intelligibility contains
both phoneme and tone recognition accuracy. Phoneme-level
result was obtained by transcribed Mandarin pinyin through
ASR. Tone result was obtained through subjective dictation
test.

1) Results of Phoneme by ASR: Initially, the Baidu AI ASR
system was employed to transcribe both the reconstructed and
original speech into Mandarin Pinyin. Then we calculated the
CER as shown in Table II. Among the results, E2E-Pre-FT
method proposed in this paper achieved the best at 0.2544. The
result of E2E-Pre method without fine-tuning closed to E2E-
Pre-FT. Both of these significantly outperformed the E2E-Base
method.

To assess the accuracy of reconstructed speech across
various articulatory gestures and phonetic positions, results of
E2E-Pre-FT method were analyzed. Based on the accuracy of

Mandarin initials and finals and Table I, we designed
confusion matrixes as shown in Fig. 4. Sub figures (a) and (b)
illustrate the specific accuracy performance of initials and
finals, respectively, where the color depth on the diagonal
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TABLE IV
RESULTS OF MCD AND F0 PARAMETERS (MEAN ± STANDARD

DEVIATION ACROSS CROSS-VALIDATION)

TABLE V
RESULTS OF MOS TEST WITH 95% CONFIDENCE INTERVAL

indicates the recognition accuracy of each phoneme, and the
remaining areas illustrate instances of phoneme confusion.

2) Results of Tones by Dictation: Thirty healthy Mandarin-
speaking listeners participated in the dictation tests. Based
on the dictation results, the tone error rate was calculated
as shown in Table III. The proposed E2E-Pre-FT method
achieved a tone error rate (TER) of 0.1784. The confusion
matrix is designed and presented in Fig. 5.

B. Speech Quality Evaluation
1) Results of MCD and F0: After dynamic time warping

(DTW), the similarity parameters of the spectrogram and
fundamental frequency between the reconstructed and original
speech were calculated separately, with the results presented
in Table IV. The E2E-Pre-FT method achieved an MCD, Log
F0 RMSE, F0 CORR, and F0 V/U of 7.56, 0.35, 0.77, and
0.82, respectively. These values are close to those obtained
with E2E-Pre method and significantly better than those with
the E2E-Base method.

Additionally, for visualizing performance evaluation of
MCD and F0, spectrogram and F0 contour for speech were
plotted. Examples of one speech sample under all conditions
are as shown in Fig. 6. It can be observed that the speech
reconstructed by our proposed methods closely resembles
the original and vocoded speech in both spectral and F0.
Particularly, clear harmonic structures are visible in the low-
frequency region, and the positions of resonance peaks and
segmentation of F0 are consistent. In contrast, the E2E-Base
method exhibits the poorest performance in both spectral and
F0 contours, showing more significant differences.

2) Results of MOS Scores: Thirty healthy Mandarin-
speaking listeners participated in the subjective listening tests.
They listened to totaling 80 of natural and reconstructed
speech utterances and rated them accordingly. The MOS test
results are presented in Table V. The average MOS result
for the original speech was 4.98 ± 0.01, while that for the
reconstructed speech was 3.30 ± 0.13.

IV. DISCUSSION

Since the last century, scholars have been exploring speech-
related research based on ultrasound tongue images [39],

[40], [41]. In recent years, with the advancement of new
digital signal processing and learning techniques, more and
more researchers have explored the feasibility and methods
of reconstructing speech from ultrasound tongue images [42].
In these studies, speech reconstruction based on ultrasound
tongue images involves two separate steps: 1) the conversion
from image to speech features (such as MGC-LSP, Formant,
MFCC, and Mel-spectrogram), and 2) the use of a vocoder
to convert speech features to speech waveforms. These two
independent steps lead to the loss of information from the
image during the entire process of speech reconstruction,
and the separate models cannot achieve unified optimization
during training, thereby increasing the complexity of the
system. To address this issue, this paper explores the feasibility
of directly reconstructing speech from ultrasound tongue
images. The end-to-end based model can directly convert
images into speech, thereby enabling more comprehensive
utilization of the information contained in ultrasound tongue
images. Moreover, the end-to-end model can achieve more
consistent and unified optimization of the entire reconstruction
process during training to minimize adverse effects of error
propagation on the final performance [43], and can also
simplify the speech reconstruction process, reducing the
complexity and computational overhead of the system [27].

The development of neural vocoders has facilitated the
emergence of high-performance vocoders such as Mel-GAN,
HiFi-GAN etc., which can deeply consider the complex
structure of dynamic changes of speech during the training
process, thereby improving the quality of reconstructed
speech [44]. In this paper, we were inspired by advanced GAN
vocoders, and established the speech reconstruction model
based on GANs. In the generator, the convolutional layers
in the encoding block can effectively capture the features
of input, providing additional information for upsampling.
Meanwhile, the MRF in the upsampling block contributed
to observing patterns of various lengths in parallel. For
discriminators, MSD and MPD focused on different frequency
ranges and periodic features in the audio. All these aspects of
model help in reconstructing Mandarin speech with diverse F0
variations.

We designed and trained an autoencoder for the pretrained
feature extractor. Autoencoder method are commonly used
for feature extraction in images [45], [46], with the aim
of accurately restore the input images at the output layer
to force the feature extractor to create latent features that
present sufficient information in an unsupervised way. For our
method, the feature extractor had already learned the prior
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knowledge of extracting ultrasound tongue image features
during the pretraining. After integrating it into the generator
for fine-tuning, the model improved its ability to understand
and analyze ultrasound image data by leveraging the prior
knowledge, thereby enhancing the overall performance of
the model. This aspect also validated by the results: the
model with pretrained feature extractor performed better in all
results compared to using the model with unpretrained feature
extractor. Additionally, the fine-tuning of the feature extractor
slightly improved the results, although the enhancement was
not significant.

The results from the cross-validation demonstrated the
stability and reliability of the proposed model. The low
standard deviations across key metrics indicated that the model
consistently performs well across different data folds.

In terms of the intelligibility of the reconstructed speech,
our method achieved a Pinyin CER of 0.2605 through ASR
assessment, indicating that our approach can generate easily
understandable speech. The results of phoneme revealed that
the accuracy of phonemes was closely related to tongue
motion and phonetic positions, such as “retroflex”, “palatal”,
and “velar”, exceeded 80% for Mandarin Initials and Finals.
However, the accuracy for phonemes related to the tongue
tip, such as “labial”, “labio-dental” and “alveolar”, was less
satisfactory, possibly due to potential information loss about
the tongue tip in ultrasound tongue imaging [47]. This also
indicates that the phonemes of the reconstructed speech are
influenced by the limited view of ultrasound tongue image
acquisition.

Regarding the performance of Mandarin tone in the
reconstructed speech, the TER obtained from dictation tests
was 0.1784, indicating that our method can achieve a
varied and accurate reconstruction of tones, even better than
phonemes with CER of 0.2605. Indeed, many researchers
believe that the F0 of speech is mainly related to vocal
fold vibration, but studies have also shown a connection
between articulatory motion and F0. Chen et al. found a
positive correlation between tongue activity and F0 [13], and
recent studies such as Zhao et al. [48] and Grósz et al. [22]
have also indicated that F0 can be obtained from ultrasound
tongue images. Therefore, it is reasonable to achieve tone
reconstruction through our method. Additionally, in the results
of tone dictation, the TER in the original speech was 0.0959,
relatively higher than that of phoneme. We believe this is
mainly because Mandarin tones exhibit tone sandhi, such as,
phonological rule that changes the first of two “dipping” tones
to a “rising” tone [49], there is also considerable controversy
over the recognition of “neutral” tone [50]. In Fig. 5, it can
also be observed that there is a significant confusion between
the “rising” tone and “dipping” tone, as well as between the
“neutral” tone and other tones in the confusion matrix.

In terms of the speech quality, the results of MCD
and F0 indicate a high degree of similarity between the
reconstructed speech and the original speech. The MCD value
of the reconstructed speech is less than 8, indicating that
the quality of the reconstructed speech is acceptable [51].
Concerning the F0 parameters, the difference between the
reconstructed speech and the ground truth speech is small,

which also provides another perspective to verify the high-
quality tone reconstruction. Additionally, the observation of
spectrogram and F0 contours further validates the quality
of the reconstructed speech. In Fig. 6, it can be observed
that the spectrogram of the reconstructed speech closely
resembles that of the ground truth speech, with no significant
differences in harmonic shapes, resonance peak positions,
and voiced/unvoiced segmentation. Moreover, according to
the results of the listening test, the MOS of the naturalness
of the reconstructed speech is above 3, indicating that it
is subjectively acceptable. Based on informal feedback from
listeners, most of the speech found to be very close to normal
speech in terms of tone, rhythm, and timbre.

This study primarily developed an end-to-end method
for reconstructing Mandarin speech from ultrasound tongue
images based on deep learning techniques. The preliminary
results demonstrate the feasibility of the proposed method.
These results indicate that the quality of the reconstructed
speech is deemed acceptable. However, there remains a gap
between the reconstructed speech and natural speech. Further
research should address the specific needs of laryngectomee
by expanding the dataset, tailor the model architecture, and
optimizing model hyperparameters. Currently, only data from
a single participant has been used, and the generalizability of
the method has not been extensively explored. Hence, future
work should also consider improvements for personalized
modeling. To this end, we plan to include multiple participants
in future studies, including both healthy individuals and
laryngectomee, to more comprehensively evaluate the model’s
performance across diverse speaker populations. Moreover,
factors such as tongue motion patterns and parameters
of ultrasound imaging (e.g., resolution, frame rate, and
imaging focal position) may also influence the quality of
the reconstructed speech, which warrants further exploration.
Additionally, we have updated the discussion section to
highlight the potential clinical applications of this method.
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