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Automatic Reconstruction of Deep Brain
Stimulation Lead Trajectories From CT Images

Using Tracking and Morphological Analysis
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Abstract— Deep brain stimulation (DBS) is an effec-
tive treatment for neurological disorders, and accurately
reconstructing the DBS lead trajectories is crucial for
MRI compatibility assessment and surgical planning. This
paper presents a novel fully automated framework for
reconstructing DBS lead trajectories from postoperative CT
images. The leads were first segmented by thresholding,
but would be fused together somewhere. Mean curvature
analysis of multi-layer CT number isosurfaces was intro-
duced to effectively address lead fusion, due to the different
topological characteristics of the isosurfaces in and out
of the fusion regions. The position of electrode contacts
was determined through morphological analysis to get the
starting point and the initial direction for trajectory track-
ing. The next trajectory point was derived by calculating
the weighted average coordinates of the candidate points,
using the distance from the current estimated trajectory
and the CT number as weights. This method has demon-
strated high accuracy and efficiency, successfully and
automatically reconstructing complex bilateral trajectories
for 13 patient cases in less than 10 minutes with errors
less than 1 mm. This work overcomes the limitations of
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existing semi-automatic techniques that require extensive
manual intervention. It paves the way for optimizing DBS
lead trajectory to reduce tissue heating and image artifacts,
which will contribute to neuroimaging studies and improve
clinical outcomes. Code for our proposed algorithm is pub-
licly available on Github.

Index Terms— CT number, deep brain stimulation, mean
curvature, trajectory tracking.

I. INTRODUCTION

DEEP brain stimulation (DBS) is a neuromodulation
technology that has gained significant recognition for

its effectiveness in treating drug-resistant neurological and
psychiatric disorders [1]. The number of patients who have
undergone DBS worldwide exceeds 160,000 and is increasing
yearly [2]. It’s estimated that 66-75% of these patients will
need an MRI within 10 years after implantation [3]. However,
radiofrequency (RF) pulses during MRI may induce high
currents in DBS electrode leads and extension cables [4]. This
can induce local tissue heating [5], and also cause artifacts
that reduce the quality of MRI images [6]. These effects not
only increase the risk of patient injury, but also interfere with
electrode localization and lesion diagnosis.

Studies have shown that optimizing the DBS lead trajectory
can significantly reduce tissue heating [7], [8], [9] and image
artifacts [10] during 1.5 T and 3 T MRI, providing a new
strategy to enhance both the MRI safety and image quality of
DBS patients. The precise reconstruction and assessment of
the realistic DBS lead trajectories are essential for applying
these research findings to clinical practice.

The DBS leads can be segmented by thresholding computed
tomography (CT) images of patients, since the leads are
mainly composed of metal. Golestanirad et al. [11] used a
skeletonization algorithm followed by a smooth curve-fitting
algorithm to estimate the centerline of the lead, and then
adjusted the intersecting segments of the centerline manually
to eliminate self-intersections. Guerin et al. [12] proposed an
automatic topology correction algorithm aimed at removing
self-intersections and curvature violations. But this algorithm
required manual connection of centerline segments to form
a preliminary trajectory, still relying on human judgment of
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Fig. 1. The process for automatic reconstruction of the DBS lead trajectory from CT images. Step 1: Perform a spiral CT scan of the DBS
implantation region. Step 2: Segment the leads based on density and volume ratio. Step 3: Apply mean curvature analysis to the CT number
isosurface for anti-fusion of neighboring leads. Step 4: Reconstruct the trajectory of the leads through point-by-point tracking.

orientation and connectivity. Golestanirad et al. [13], [14]
switched to directly manually extracting trajectory lines in
CAD software in their subsequent studies, which was difficult
to operate and ensure accuracy.

The immediate reason why these studies failed to automat-
ically reconstruct the trajectories is that the segmented leads
cannot correctly reflect the topology. The DBS lead trajectories
involve a large number of intersecting and overlapping loops,
especially in the extracranial region. Unfortunately, the CT
numbers of the lead are not globally uniform in CT images.
Thus, A high threshold for segmentation results in discon-
nected leads, while a low threshold results in blurred leads
and fusion of neighboring electrodes leads. In addition, the
diameter of the wires in the lead is only 1.5 times the CT
resolution which makes the problem more difficult.

This paper proposes a novel framework for trajectory
reconstruction, whose key components are anti-fusion of
neighboring leads and trajectory tracking. The convexity and
concavity derived from the mean curvature of the CT number
isosurface can help to solve the topology mistakes of the
segmented leads. After that, the whole trajectory starts from
the electrode contact, and then the next trajectory point is
calculated by the weighted average of the CT numbers and
whether it belongs to the lead or not.

The proposed method exhibits several significant advantages
over existing techniques. It is fully automated and highly
efficient, capable of reconstructing a trajectory within five
minutes. It also has a high accuracy and success rate, success-
fully extracting trajectories for all 13 patients with bilateral
implants, with errors of less than 1 mm. This method lays the
foundation for optimizing DBS trajectories, enhancing MRI
safety, and reducing MRI image artifacts.

II. METHOD

Fig. 1 illustrates the process of automatically reconstruct-
ing DBS trajectories from CT images. First, A spiral CT
scan was performed (Step 1), followed by the segmentation
of the DBS leads (Step 2). Subsequently, mean curvature
analysis was applied to the CT number isosurface to facil-
itate the separation of adjacent leads (Step 3). The final

step (Step 4) involved trajectory tracking, initiating from
the electrode contacts and tracing the trajectory point by
point. The code is available at https://github.com/Wanxuan-
Sang/DBS_lead_trajectory_from_CT.

A. CT Scan and Lead Segmentation
Thirteen patients with bilateral deep brain stimulators

implanted were selected as study subjects, and they all
provided informed consent. This study was approved by
Tsinghua University Science and Technology Ethics Commit-
tee (Medicine) under Application THU01-20230188, Medical
Ethics Committee of Beijing Tsinghua Changgung Hospi-
tal under Application No. 22491-4-01, Ethics Committee of
Peking Union Medical College Hospital, Chinese Academy
of Medical Sciences under Application No. K4055, and
Ethics Committees of Tiantan Hospital, Peking Union Med-
ical College Hospital, and Qilu Hospital under Application
NCT02937727. Spiral CT scan was performed using either the
United Imaging uCT 760 CT scanner or the GE Revolution
CT scanner with the Extended HU mode on. The scanning
range extended from the top of the skull to the inferior border
of the implanted stimulator, using a 120 kV tube voltage
at 180-450 mA tube current modulation. The source image
was reconstructed using the bone kernel algorithm with a
slice thickness of 0.625 mm, slice spacing equal to the slice
thickness and a matrix size of 512 × 512.

The CT image is composed of multiple layers of slices,
each of which is a square matrix. Each element of the matrix
represents a voxel and contains a CT number that reflects
the density information [15], [16]. The DBS lead consists
mainly of a polyurethane tubing containing four spiral wound
platinum/iridium wires [17], whose CT numbers are quite
higher than that of body tissues. As the 0.9 mm wire diameter
is only 1.5 times the voxel size, the CT image was up-sampled
by a factor of 2 along all dimensions through linear inter-
polation. Then, a threshold of 5000 was set to segment the
voxels of metal. Among them, the voxels of the leads were
always separated from those of screws and implantable pulse
generators. Due to the slender geometry of the lead, the
volumetric ratio of connected voxels to their bounding box
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Fig. 2. Fusion and anti-fusion of neighboring leads. (a) CT numbers in the cross-section and on the centerline of the cross-section of an
electrode lead. (b) CT numbers in the cross-section and on the centerline of the cross-section of two adjacent leads. (c) The cross-sections
of two adjacent leads after thresholding segmentation. (d) The mean curvature of the cross-sections isosurface for two adjacent leads. (e) The
principle for determining the fusion regions by mean curvature analysis of multi-layer isosurfaces.

is quite low. As a result, the voxels of leads can be preserved
based on this ratio. These voxels were also converted into a
point cloud that stored their original coordinates.

B. Anti-Fusion of Neighboring Leads
During DBS implantation, the excess extracranial DBS

leads were looped under the patient’s scalp, often in close
proximity to each other. Fig. 2 (a) and 2(b) show the CT
numbers of an electrode lead (L301C, Beijing PINS Medical
Co., Ltd., China) and two adjacent leads in the cross-section
and on the centerline of the cross-section. These leads were
collinear with the CT rotation axis and the CT images were
reconstructed with the minimum field of view.

For the single lead, it can be observed that the CT numbers
gradually increase towards the center of the lead (reaching
a maximum value of 31743, which corresponds to the upper
limit of the GE system), with no abrupt transition at the lead-
background interface. The lead segmented with a threshold
of 5000 corresponds to its actual diameter. For two adjacent
leads, the CT numbers around the contact area increased.
As evident from the isosurface with a CT number of 5000 in
Fig. 2(c), the leads would be fused together after threshold
segmentation, complicating the determination of the lead
direction during trajectory tracking. Although using a higher
threshold can avoid fusion, it may result in the segmented leads
becoming fragmented. This issue arises from CT numbers
in certain regions being below the normal level, which is
influenced by the angle at which the leads are tilted relative
to the CT rotation axis [18].

The mean curvature of the isosurface can help to identify
the fusion regions. As shown in Fig. 2(d), the isosurface in the
fusion regions is concave and marked as red, in contrast to the
green convex isosurface out of the fusion regions. The mean
curvature H characterizes the extrinsic measure of surface
shape [19], defined as the mean of maximum and minimum

curvatures at a given surface point. Concave surfaces satisfy
H < 0, while convex surfaces satisfy H > 0. The mean
curvature is calculated using Algebraic Point Set Surfaces
(APSS), a surface definition method that provides reliable
estimates of average curvature and robustly handles sharp
features and boundaries [20].

Multi-layer isosurfaces at CT numbers ranging
from 5000 to 15000, in intervals of 1000, were used to
identify the fusion regions, as depicted in Fig. 2(e). The
fusion regions were determined as the union of multiple
cubics, centered on points where H < 0 on the isosurfaces,
with each cube the same size as a CT voxel.

C. Trajectory Tracking
1) Start Point Determination: Trajectory tracking starts from

the contact side of the lead along the initial direction. The
position of the contact can be directly determined either by
its unique CT number [21] or by its morphology. Fig. 3(a)
presents the morphological process in three stages: the first
part shows the initial voxels of the leads, the second part shows
the voxels with simplified topology structure after dilation and
erosion, and the third part depicts the skeleton of the voxels
and marks two contacts. Specifically, dilation was used to
expand and connect adjacent sections of the leads, resulting in
a single connected geometry, and erosion was applied to refine
the structure [22], [23]. Subsequently, skeletonization was per-
formed to extract the central line of the leads, which was then
pruned to eliminate any remaining minor branches [24], [25].
Finally, three endpoints of the skeleton were identified and the
two closest endpoints among them were on the contact side.

Since the electrode leads were implanted through a straight
guide tube, the lead segments within the spheres centered on
each skeleton endpoint with radii of 5 mm and 10 mm were
straight. Thus, the point cloud centers C0 and C1 of the lead
segments were located on the center line of the lead. The
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Fig. 3. Trajectory tracking process. (a) Determine the start point on the
contact side of the lead mainly by morphology. (b) Calculate the next
trajectory point Pi+1 using a weighted averaged method based on the
point cloud in front of the current trajectory point Pi.

start point P0 was defined as C0- dmp·s0, where s0 was a unit
vector representing the direction of C0- C1 and dmp was the
maximum projection distance along -s0 between a point in the
point cloud and C0.

2) Overall Idea of Trajectory Point Calculation: The trajectory
was considered as a polyline with vertexes on the center
line of the lead. During trajectory tracking, each trajectory
point Pi and the point cloud ahead was used to calculate the
next trajectory point P i+1. The direction of P i+1 - P i was
represented by a unit vector si , and the step length l was set
to 0.5 mm, as shown in (1).

P i+1 = P i + l · si (1)

As illustrated in Fig. 3(b), a cylindrical region was taken as
the vision field vi of Pi , representing the region referenced
in the calculation of Pi+1. It was defined with a base center
at Pi , a radius equal to lead radius, a height of 2l, and an
centerline ci parallel to si−1. As long as l is short enough,
it is expected that Pi+1 should fall in vi . The lead points in
vi were denoted as Mi , each of which was denoted as Mi, j .
The coordinates of Mi, j relative to Pi were weighted averaged
with weights w j to obtain si , as shown in (2).

si =

∑
M i, j ∈M i

(M i, j − P i ) × w j∣∣∣∣∣ ∑
M i, j ∈M i

(M i, j − P i ) × w j

∣∣∣∣∣
(2)

The global minimum distance Dmin between any two seg-
ments of the patient trajectories was denoted as

Dmin = min
(

D
(

S1
m, S1

n

)
, D

(
S2

k , S2
l

)
, D

(
S1

m, S2
k

))
(3)

S1
m is segment m of the trajectory 1, and S2

n is segment
n of the trajectory 2. Indices m, n run over the number of
segments in trajectory 1, and indices k, l run over the number
of segments in trajectory 2. D is the segment–segment distance
defined as the minimum distance between any two points
belonging to these two segments as in [12].

3) Weights: The weight w j was composed of three com-
ponents, taking into account the influence of position,
CT number, and the fusion regions:

w j = wd, j × wCT, j × wfusion, j . (4)

Fig. 4. Validation model. (a) Create a validation model from the patient
trajectories. (b) CT numbers on the centerline of the cross-section
of liquid metal gallium (Ga) and an electrode lead. (c) CT scan the
validation model and align with the origin CAD model.

Considering that the actual trajectory was a smooth curve, the
angle between si and si+1 was small, and Pi+1 was close to
the centerline ci . The closer a point was to ci , the higher the
weight wd, j was. The distance from Mi, j to ci was denoted
as d j . An inverse distance weighting function [26] was used to
define d j , which includes an upper limit to prevent divergence,
specifically:

wd, j = 1/ max(d j , 0.1). (5)

A higher weight wCT, j was assigned to the point with a higher
CT number, as the CT numbers of the lead increase toward
the center, denoted as:

wCT, j =
CT number j

5000
. (6)

Additionally, points in the fusion regions were given a weight
of 0, while others were given a weight of 1, as shown in (7).

wfusion, j =

{
0 if M j ∈ fusion regions
1 if M j /∈ fusion regions

(7)

D. Experimental Validation
Fig. 4(a) shows a validation model used to assess the

accuracy of the trajectory reconstruction method. The model
consisted of a frame and hollow tubes shaped according to the
patient trajectory Tp, and was produced by a fused deposition
modeling (FDM) 3D printer with a 0.4 mm nozzle and a
0.2 mm layer height. Liquid metal gallium (Ga) was filled
inside the tubes to represent the high-density spiral wires of
the DBS lead, thus overcoming the difficulty of inserting metal
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Fig. 5. (a) The mean curvature of isosurfaces at different CT numbers where the leads were fused together. (b) The effect of the number of
isosurfaces on the time cost of fusion regions identification and the success rate of reconstruction. (c) Trajectories reconstructed without anti-fusion,
with anti-fusion through a single-layer isosurface, and with anti-fusion through multi-layer isosurfaces. (d) Points in the fusion regions that are
assigned a weight of zero.

wires into the narrow tubes. Fig. 4(b) compares the CT number
distribution of Ga and leads. It can be seen that they are quite
similar and both follow the same pattern of increasing CT
numbers towards the center, indicating that Ga serves as a
reasonable substitute.

The validation trajectory Tv was reconstructed following
the process described above. The surface of the validation
model obtained from the CT image was aligned with the
surface of the origin CAD model using MeshLab (version
2023.12, Visual Computing Lab, ISTI-CNR, Italy), as shown
in Fig. 4(c). The align matrix was used to eliminate the rigid
transformation between Tv and Tp.

The distance D′
n between Tp and segment n of Tv was

calculated to assess the error level of the reconstruction
method, denoted as

D′
n = min

(
D

(
Sm, S′

n
))

. (8)

Sm is segment m of Tp, and S′
n is segment n of the Tv. Index

m runs over the number of segments in Tv. The maximum
distance D′

max between Tp and Tv was denoted as

D′
max = max

(
D′

n
)
, (9)

where index n runs over the number of segments in Tv.

III. RESULTS

A. Effects of Anti-Fusion
Fig. 5(a) shows the mean curvature distributions on CT

number isosurfaces at 5000, 10000, and 15000, where the

leads were fused together and trajectory tracking faces great
challenges.

As illustrated in Fig. 5(b), the number of isosurfaces at CT
numbers ranging from 5000 to 15000 affects the success rate
of reconstruction by influencing the identification of the fusion
regions. Additionally, the time cost of identification is plotted.
Without anti-fusion, the success rate of reconstruction was
only 31%. With anti-fusion through a single-layer isosurface
at 5000, the success rate improved to 54%. With anti-fusion
through multi-layer isosurfaces as mentioned above, a 100%
success rate was achieved.

Fig. 5(c) illustrates the trajectories reconstructed using those
three methods. In this case, the impact of the fusion regions
was obvious, resulting in trajectory 1 being lost at the position
marked by the arrow. Anti-fusion though single-layer isosur-
face and multi-layer isosurfaces reduced this impact gradually.
Fig. 5(d) shows the points in the fusion regions, which were
assigned a weight of zero during trajectory tracking.

B. Reconstructed Trajectories for Different Patients
Fig. 6 presents 26 reconstructed trajectories from

13 patients with bilateral DBS implantation, and all of
them are complex trajectories with coils. For patients 1-10,
only the electrode lead trajectory was shown because only
the head was scanned. For the other 3 patients, both the
electrode lead and the extension cable were reconstructed.
The reconstruction was performed on a personal computer
running Microsoft Windows 10 and configured with an
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz
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Fig. 6. Reconstructed trajectories of different patients, including localized magnification of coiled lead, the length of electrode lead trajectories
L1 and L2, and the minimum distance Dmin between two lead trajectories (all quantities are expressed in mm). In cases 1-10, only the head was
scanned, so only the electrode lead trajectories are shown. Cases 11-13 show the trajectory of complete lead including the electrode lead and
extension cable.

processor. The reconstruction time for each patient was less
than 10 minutes.

Fig. 6 also lists the length of the electrode lead trajectory
and the global minimum distance Dmin between any two
segments of the patient trajectories as defined in (3). The
average length was 403 ± 3 mm, with a minimum of 393 mm
and a maximum of 411 mm, a deviation of less than 3% from
the theoretical lead length of 400 mm. Most Dmin are 1.4 mm,
while the smallest is 1.0 mm. Compared to the electrode lead
diameter of 1.3 mm and the wire diameter of 0.9 mm, these
results are acceptable considering the potential deformation of
the lead under external forces, these results are acceptable.

C. Validation Results

Fig. 7 presents the results of the experimental validation.
Fig. 7(a) shows 10 patient trajectories Tps and the correspond-
ing validation trajectories Tvs. The two lead trajectories of a
patient were manually separated in order to be seen clearly.
Tv and Tp are quite close, and the left Tv and the right Tv
are not confused with each other. Thus, the correctness of the
reconstruction method is confirmed.

Fig. 7(b) provides local details at the position where the
maximum distance D′

max between Tp and Tv is the largest
among 10 cases. The largest D′

max is 0.7 mm, only half of
the lead diameter, which shows the high accuracy of the
reconstruction method. The statistical analysis of the distance
D′

n between Tp and segment n of Tv is shown in Fig. 7(c).
The distance is quite smaller than that of [12], indicating a
lower error level of this method.

IV. DISCUSSION

A large number of DBS patients worldwide require MRI,
but there are still many issues that need to be addressed.
Tissue heating and image artifacts can be significantly reduced
by changing the DBS lead trajectory. In this study, we pre-
sented a novel, fully automated framework for reconstructing
DBS lead trajectories from postoperative CT images using
tracking and morphological analysis. The key contributions
include anti-fusion strategies for DBS leads, a robust trajec-
tory tracking method based on weighted average coordinates,
and a validation method using liquid metal gallium. Table I
summarizes comparisons of this study with related studies.

CT numbers contain a great deal of information that has
not been given enough attention before. Fig. 2 shows the CT
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TABLE I
COMPARISON OF THIS STUDY AND RELATED STUDIES

Fig. 7. Results of the experimental validation. (a) 10 patient trajectories
and the corresponding validation trajectories. (b) Local details at the
position where D′

max is the largest among 10 cases. (c) The root mean
square (RMS), minimum and maximum of the distance D′

n between the
patient trajectory and segment n of the validation trajectory in 10 cases.
The bar graph shows the averaged quantities and the error bars show
the standard deviation.

number distribution of an electrode lead in the cross-section.
The closer to the center, the higher the CT number. Since the
trajectory is the centerline of the lead, the CT number was
used to improve the accuracy of trajectory reconstruction. The
weight based on CT number ensures the correctness when
there are no fusion regions.

CT numbers around the contact area of two adjacent leads
increased. Thus, the leads were fused together after threshold
segmentation, which would generate skeletons with topologi-
cal errors after skeletonization [12]. The CT number isosurface
in the fusion regions is concave, in contrast to the convex
isosurface out of the fusion region. The extrinsic measure of
surface shape can be characterized by mean curvature. The
fusion regions were obtained by globally analyzing the mean
curvature of the multi-layer isosurfaces. Excluding fusion
regions simplified the problems to be faced during trajectory
tracking.

Trajectory tracking is based on local information such as
position and CT number, and treats the trajectory as a polyline.
Each lead point in the cylindrical vision field of the trajectory
point was weighted average to determine the next direction.
The idea of trajectory tracing is somewhat similar to manual
reconstruction, but it uses more internal information of the
lead, making reconstruction more accurate and faster.

Injecting liquid metal Ga into 3D-printed models offers a
practical solution for accurately replicating complex patient
trajectories. The use of liquid metal provides a novel approach
to simulating the high-density spiral wires of DBS leads. The
similarity in CT number distributions between Ga and the
leads, as demonstrated in Fig. 4(b), supports the effectiveness
of this substitution.

The accuracy and efficiency of our automated framework
hold significant implications. Reliable reconstruction is critical
for ensuring the safety and effectiveness of MRI. Safe scanning
conditions can be individualized based on the patient’s DBS
lead trajectory. Based on lots of CT images, a database can be
built up for future studies on the impact and further improve-
ments of trajectory. This method can also be generalized to
other implants with leads and generate greater clinical value.

While the results of our method are promising, we must
recognize its limitations and the scope for further advance-
ments in future research. Due to the thin wire, the CT
resolution should be sufficiently high. The impact of CT
imaging paraments can be studied in the future, which may
help to determine a wider range of parameters. Moreover, the
small differences in CT numbers between Ga and the leads
might slightly influence the validation accuracy, which could
be explored in future research. Additionally, only 26 trajecto-
ries were reconstructed, which was limited for validation of
methods and for future study about the influence of trajectory.
Future research should aim to apply the method across a larger
and more diverse patient population. Finally, it is possible to
combine the advantages of artificial intelligence based on a
database built by our method in the future.

V. CONCLUSION

This study presented a novel, fully automated framework
to accurately reconstruct the DBS lead trajectories from
postoperative CT images. The approach demonstrated high
accuracy and efficiency, with an error of less than 1 mm and
a processing time under 10 minutes for bilateral trajectories
across 13 patient cases. This robust trajectory reconstruction
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lays the foundation for optimizing DBS lead implantation to
enhance MRI safety and imaging quality.
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