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Trial-by-Trial Variability of TMS-EEG in Healthy
Controls and Patients With

Depressive Disorder
Zikang Niu, Lina Jia, Yang Li, Lijuan Yang, Yi Liu, Siyuan Lian, Dan Wang, Wen Wang,

Liu Yang, Weigang Pan, and Xiaoli Li

Abstract— Depressive disorder has been known to be
associated with high variability in resting-state electroen-
cephalography (EEG) signals. However, this phenomenon
is often ignored in stimulus-related brain activities. This
study proposed a new method to explore the EEG vari-
ability evoked by transcranial magnetic stimulation (TMS,
TMS-EEG) in depressive disorder (DE) patients. The TMS-
EEG data were collected from 34 DE patients and 36 healthy
controls (HC). The maximum eigenvalue of the real binary
correlation matrix, calculated between different trials using
cross-correlation and surrogate methods, was extracted to
assess trial-by-trial variability (TTV) of TMS-EEG. The new
method was found to more sensitive and reliable than the
standard deviation method. DE patients exhibited signif-
icantly smaller TTV in Gamma band and greater TTV in
Delta band than HC. Furthermore, the HAMD-17 scores
were negatively correlated with TTV values in Gamma
band. This study represented the first investigation into
the TTV in TMS-EEG data and revealed abnormal values
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in DE patients. Those findings enhance our understanding
of TMS-EEG technology and provide valuable insights for
studying the characteristics of DE.

Index Terms— TMS-EEG, trial-by-trial variability, depres-
sive disorder.

I. INTRODUCTION

AS A common and recurrent disorder, depressive disorder
(DE) is typically characterized by a lowered mood,

reduced energy, and lowered enjoyment. Even with adequate
full-course medication, most adult patients cannot effectively
achieve remission [1], [2]. In the clinical diagnosis and eval-
uation of intervention effects, scales such as HAMD-17 are
deemed inefficient and lack objectivity due to their reliance
on the doctors’ mature experience. Therefore, exploring the
neurophysiological mechanism of DE is critical to help doc-
tors and researchers understanding this disease and optimize
treatment therapy. Over the past few decades, noninvasive
electroencephalogram (EEG) has been favored by doctors and
researchers for its high accuracy, safety, simplicity, and high
temporal resolution in assessing DE [3], [4], [5].

Previous studies have indicated that the dorsolateral pre-
frontal cortex (DLPFC) plays a significant role in the
pathophysiology of DE [6]. Lots of studies have demonstrated
that synchronized EEG data, evoked by Transcranial Magnetic
Stimulation (TMS, TMS-EEG) on the DLPFC, can reflect the
cortical excitability, inhibition, plasticity, and the changes of
connectivity patterns in DE patients [7], [8], [9]. It has been
observed that the amplitude of N100 and N45 components
of DE patients is lower than normal individuals, and these
two components exhibit high accuracy in predicting disease
state [10], [11]. In addition to being biomarkers for disease
diagnosis, TMS-EEG excitability indicators can also predict
the treatment effect of depression and monitor its biological
response. For instance, after a Magnetic Seizure Therapy,
a decrease of N100 was observed in patients with refractory
depression, and this change associated with the Scale for
Suicide Ideation. The accuracy, sensitivity, and specificity of
this index in predicting suicidal ideation reached 89%, 90%,
and 89%, respectively [12]. In addition to being excitatory
indicators, TMS-induced brain connection activity can also
be utilized as a biomarker for detecting and diagnosing
depression. Electroconvulsive Therapy studies have found that
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phase locking value induced by single TMS pulse in EEG can
characterize depressive states and evaluate the antidepressant
effects of neuromodulation [13].

Neural variability is a robust phenomenon which has
been observed in intracellular membrane potential, extra-
cellular recordings of spiking activity, and human EEG,
electrocorticography, magnetoencephalography, and functional
magnetic resonance imaging studies [14], [15], [16]. In resting-
state EEG studies, nonlinear correlation analysis showed that
depressive symptoms were associated with high variabil-
ity of resting-state EEG signals [17], [18]. For instance,
Jaworska et al. found reduced multiscale entropy at fine
temporal scales, especially in frontal-central region, and the
increased multiscale entropy value diffusely distributed in
coarser temporal scales, which was related to the magnitude
of the antidepressant treatment response [19]. Lee et al.
found that the severity of major depressive disorder had a
positive correlation with the long-range temporal autocorre-
lation of resting-state EEG [20]. Indexes calculated based
on Higuchi’s fractal dimension and Lempel-Ziv complexity
correlation analysis indicated that the complexity of brain
activity in DE patients was greater than that of healthy controls
(HC), indicating a greater variability [21]. In recent years,
studies have found that Fuzzy Measure Entropy, an improved
method based on Fuzzy Entropy, was related to the severity
of the disease [22].

In event-related potential studies, researchers typically ana-
lyze and discussed the data by averaging over trials. This
averaging operation requires the assumption of linear super-
position between basic random ongoing background activity
and highly stereotyped, repeatable evoked responses [23],
[24]. However, numerous studies have demonstrated that the
neural response to repeated identical stimulation is highly
variable [25], [26], [27]. One possible approach to measure
neural variability is to calculate the trial-by-trial variability
(TTV), as demonstrated in animal and human studies [16],
[28]. Several pieces of evidence suggest that TTV can impact
behavioral performance. First, greater TTV quenching in
sensory cortices was associated with better perceptual per-
formance [29]. Second, the behavioral performance can be
improved by reducing the trial-by-trial response variability
of the visual cortex in visual-related attention experiments
[30]. In the DE, those activities are usually assessed through
visual and auditory pathways. For instance, the inter-trial phase
coherence of 40 Hz-auditory steady-state responses may serve
as potential neurophysiological markers for early depression
detection, and aid in understanding the underlying symp-
tom severity in first-episode major depressive disorder [31].
Combining the steady-state topographical probe and 13Hz
steady-state visually evoked potentials, Kemp et al. discovered
that during acute serotonergic augmentation in a serotonergic
antidepressant research, the response to pleasant valences of
DE was potentiated while the response to unpleasant valences
was suppressed [32].

However, the traditional TMS-EEG analysis, which was
based on averaging all EEG trials, have ignored the neural
variability between repeatable stimulations. In order to inves-

TABLE I
DEMOGRAPHIC AND CLINICAL DATA

tigate the TTV of TMS-EEG data and the abnormal variability
in DE patients, we collected TMS-EEG data of DE patients
and HC. Based on the cross correlation and surrogate method,
we extracted the maximum eigenvalue of the real binary
correlation matrix among different trial data to assess the TTV
of TMS-EEG.

II. MATERIAL AND METHODS

A. Participants
We recruited 34 DE patients and 36 age-matched HC in

Beijing Anding Hospital and Beijing Normal University. All
participants were right hand, aged between 18 and 60 years
old, and Wilcoxon’s signed test results showed no signifi-
cant age differences between groups (detailed information in
Table I). The DE patients were diagnosed according to ICD-10
criteria and didn’t have any other mental illnesses. In addition,
individuals with a history of neurological disorder, seizures,
head injury and other conditions that made them unsuitable
for receiving TMS stimulation were excluded. The Hamilton
Depression Scale-17 item (HAMD-17) of DE patients were
used to assess the severity of depression in DE patients by
two trained doctors who underwent consistency training for
assessments. Finally, patients with a HAMD-17 score greater
than 17 were enrolled in the study and TMS-EEG data were
collected within 24 hours after the HAMD-17 evaluation. Due
to the actual situation of patients and hospital, only medicated
patients were included in the study without controlling the type
of medicine. To minimize the potential influence of medicine
on the results, only patients who had taken the medicine
steadily for more than half a month were recruited and their
TMS-EEG data were collected at least 8 hours after taking
their medicine.

B. Experimental Equipment and Procedure
Based on a large number of previous studies [33], [34],

[35], we utilized the classical experimental equipment and
single pulse stimulation paradigm, which have been previously
employed in the HC and DE patients. In this experiment,
we used a Rapid2 system with D70 coil (Magstim, UK) to
stimulate the DLPFC of participants’ brain. Additionally, 64-
channel synchronization EEG data (EASYCAP GmbH and
BrainAmp MR amplifier, Brian Products, Germany) were
collected in an electrically and acoustically shielded room at
a sampling rate of 2500 Hz.
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Fig. 1. TMS evoked potentials (TEPs) of healthy controls (A) and depression patients (B). Left: Butterfly plot of all electrode waveforms; right:
voltage distribution in 2D and current density map at the cortex in each peak. “×” indicates p<0.05 between HC and DE in one channel.

During the experiment, all electrode impedances were main-
tained below 5k� and participants were instructed to sit
comfortably in a chair with their arms at rest. First, located
C3 position by 10-20 system, and determined the M1, which
can be induced the max motor-evoked potentials in the first
dorsal interosseous muscle, with a 45◦ angle between the
coil handle and Anterior posterior sagittal line, by using
the conventional nonnavigated strategies in Roland’s paper
[36]. Then stimulated the M1 to determine the resting motor
threshold, which was defined as the minimum stimulation
intensity to evoke 50µV peak-to-peak motor evoked potential
amplitude at least 5 of 10 trials in the relaxed first dorsal
interosseous muscle [37]. After that, stimulate the DLPFC
in a similar way to M1, which was located by the BeamF3
method [38], for a total 120 times with a 2∼2.5s by using
the 110% RMT. In order to avoid possible auditory responses
and the bone-conducted sound caused by the TMS click, the
participants wore earphone with a white noise masking sound
while a thin sponge was placed under the coil [39].

C. TMS-EEG Data Preprocessing
All EEG data were preprocessed by using the TESA

toolbox [40], [41], [42] with the following procedures: (1)
Found bad channels and replaced them with the superfast
spherical interpolation method; (2) Extracted epochs from
−900 to 900ms and performed baseline correction by using
data from −500ms to 0ms (2) Removed -2 to 10ms data,
which contains TMS pulse artifacts, and interpolated them by
using the cubic interpolation method; (4) Rejected bad trials
and down sampled data to 512 Hz; (5) Performed the first
ICA decomposition and removed muscle, electrical and move-
ment noise components (number=9.765±2.254) from the first
15 components; (6) Filtered the data by the fourth-order
Butterworth band-stop filter (48-52 Hz) and fourth-order But-
terworth band-pass filter (!-100 Hz); (7) Performed the first

ICA decomposition and removed muscle, blink, eye movement
and electrode noise artifact (number=17.838±4.730) from all
components(number=43.221±3.689); (10) Converted the data
into average reference. and extracted the data from -250 to
500ms, for the further analysis.

D. TMS-Evoked Potential Analysis
An average TEP signal was obtained from each electrode.

The butterfly outputs of HC and DE are shown in Fig. 1.
To further analysis the differences of each component between
the two groups, we also performed 2D topographic scalp
mapping and source estimation analysis.

In addition, the source location was calculated using Brain-
storm MATLAB toolbox with the follows [43]: (1) Due to the
absence of MRI data, co-registered the EEG cap to the Colin27
head model; (2) Second, used the OpenMEEG to computed
the geometric head model [44]; (3) Third, calculated the noise
covariance matrix based on the -200∼-20ms data; (4) Finally,
constrained the dipoles o the cortex surface and computed the
inverse solution by using the current density analysis.

E. Discrete Stationary Wavelet Transform Analysis
First, since the length of input data must be divided by

2^Q in discrete stationary wavelet transform, we extended
the TMS-EEG data to a length of 512 by using the periodic
extension method:

S(t) = [X (64), · · · , X (1), X (1), · · · , X (H),

X (H), · · · , X (H − 64 + 1)], H = 384 (1)

where X is the original signal of TMS-EEG, H is the length
of X and t is the time variable of TMS-EEG’s trial signal X
with the unit is 1

512 ms ≈ 0.00195ms;
After that, computed the discrete stationary wavelet trans-

form using the method employed by Dutt and Saadeh [45].
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Then, we extracted the 1∼8 levels’ detail coefficients (CD,
CD1∼8) in -200∼400ms for further analysis.

Since the binary based filtering process of discrete sta-
tionary wavelet transform, Nyquist Sampling Theorem and
512Hz sampling rate of data, the CD1∼8 can reflect the
signal X’s information in the 128∼256Hz (CD1), 64∼128Hz
(CD1), 32∼64Hz (CD2), 16∼32Hz (CD3), 8∼ 16Hz (CD4),
4∼8Hz (CD5), 2∼4Hz(CD6) and 1∼2Hz(CD7) frequency
bands, respectively.

F. Trial-by-Trial Variability Analysis
A. Based on the maximum eigenvalue of correlation matrix,

we calculated TTV values of the CD1∼8. Taking the CD3
series (d) as an example, the algorithm is as follows:

(1) Extracted the TMS-EEG data in Tpre and Tpost form N
TME-EEG trials and normalized them using z score method;

where the Tpre is -200∼0ms, Tpost is 0∼400ms and N is the
number of TMS-EEG trial.

(2) Calculated the cross correlation Ci, j between two trials
in Tpre period:

Ci, j =
1
M

t2∑
t=t1

di,t × d j,t (2)

where di,t and d j,t is CD3 series of trial i or j (1 ≤ i, j ≤ N )

in time point t (1 ≤ t ≤ M), M is the data length of di,t from
t1 to t2, t1 = −200ms, t2 = 0ms.

(3) In order to test the reliability of cross correlation
between trials, generated 50 fake TMS-EEG data by randomly
shuffling each single trial TMS-EEG data in the time ranging
from -200 to 0ms. And, calculated the cross correlation C Fi, j
from those fake data. Then, transformed the cross correlation
matrix into a binary matrix (C Bi, j ):

C Bi, j =


1 i f Ci, j ≤ A1i, j

0 i f A1i, j < Ci, j < A2i, j

1 i f Ci, j ≥ A2i, j

(3)

where A1i, j and A2i, j is the 5% and 95% largest value of the
50 fake TMS-EEG data’s C Fi, j between trial i and j;

(4) Decomposed the binary correlation matrix C B using the
eigenvalue decomposition method:

C Bvi = λivi (4)

where λi is the eigenvalue and νi is the corresponding eigen-
vector;

(5) Normalized the max eigenvalue M ETpre by the number
of trials.

M ETpre =
max(λi )

N
(5)

Since C Bi, j is a real symmetric matrix with all elements
are 0 or 1, the M ETpre value are in the range of [1/60, 1]

which can provide information about the synchronization of
neural activity over trials. If the TMS-EEG data series are
completely uncorrelated over trials, then C Bi, j is an identity
matrix. So the max(λi ) is 1 and M ETpre is equal to 1/60.
If the TMS-EEG data series are completely correlated over

trials, then all the elements of C Bi, j are equal to 1. So the
max(λi ) is N and M ETpre is equal to 1.

(5) Repeat steps (2)∼(5), extracted the M ETpost of the TMS-
EEG signals in Tpost.

(6) Calculated the T T VM E :

T T VM E =
M ETpost − M ETpre

M ETpre

(6)

B. To demonstrate the sensitivity of the T T VM E , we also
calculated each participant’s TMS evoked neural variability
(T T VST D) using standard deviation method, which is usually
used in EEG signal variability studies but ignores the similarity
in time dynamic characteristic between different trial series,
The steps were as follows:

(1) Calculated the mean value of variability in a time period
Tpre:

V arST DTpre =

t2∑
t=t1

√
N∑

i=1
(di,t −d t )

N

M
(7)

where d t is the mean value of the sequence di,t over trials,
N is the number of TMS-EEG trials. M is the data length of
di,t from t1 to t2, t1 = −200ms, t2 = 0ms.

(2) Same as step (1), extracted the V arST DTpost
of the TMS-

EEG signals in Tpost.
(3) Calculated the T T VST D:

T T VST D =

V arST DTpost
− V arST DTpre

V arST DTpre

(8)

It should be noticed that the T T VST D describes desynchro-
nization variability over TMS-EEG trials while the T T VM E
represent the synchronization variability. To describe the
variability in a uniform manner, we used “variability” to
represent desynchronization variability. In other words, when
the T T VM E is larger, the TTV of TMS-EEG is small.

G. Statistical Analysis
To study the differences between the TMS-EEG data at

HC and DE, we first conducted cluster based permutation
test between two groups on all channels’ TEPs. Subsequently,
to examine the changes in TTV induced by TMS, we per-
formed cluster based permutation test on V arST D of T T VST D
before and after TMS pulse, as well as on the real correlated
trial number of T T VM E . In the T T VM E method, N are set as
10∼75 to explore the influence of trial number on T T VM E .
Thirdly, we executed cluster based permutation test to examine
the significant differences of T T VM E or T T VST D value
between two groups [46]. In order to reduce the probability of
false positive, Bonferroni procedures was performed between
two TTV calculating method, that is to say, the alpha levels
(p-values) was set to 0.05/2 = 0.025. Finally, in the correlation
analysis between T T VM E or T T VST D and HAMD-17 of
DE, we also performed cluster based permutation correlation
analysis, which was similar with the cluster based permutation
test, between the symptom scores and every electrode.
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TABLE II
THE DETAIL STATISTICAL VALUES OF TEP

Fig. 2. TTVSTD analysis of CD3. (A) analysis of VarSTD before and after
TMS pulse in HC; (B) Topographic distribution and statistical of analysis
of TTVSTD between HC and DE in CD3. “×” indicates p<0.025.

III. RESULTS

A. TMS Evoked Potentials
Fig. 1 A and B showed the average TEP and source location

analysis of the two groups. After TMS pulse stimulation, all
subjects exhibited seven components (P30: 33ms, N45: 44ms,
P60: 73ms, N100: 113ms, P200: 171 or 200ms, N280: 276ms,
P380: 389ms). In group level, the latency of DE in the P200
component was shorter than that of HC in group level. So the
P200 latency of DE were respectively set as 171ms while it
was set at 200ms for HC. Statistical results indicated that the
P200 amplitudes of channel P3, P5, C5, CP5, T7 and FT7
in DE were significantly larger than those in HC. The detail
values were showed in Table II.

B. Trial-by-Trial Variability
In T T VST D method, statistical analysis showed that there

was no significant difference in V arST D before and after
TMS pulse. For instance, Fig.2A showed the CD3’s V arST D
value in HC. Compared with HC, DE had lager T T VST D
in the left frontal and right central-parietal lobe and smaller
T T VST D in the left central, left parietal and middle frontal
lobe. However, no significant difference was found between
DE and HC (Fig.2D).

Fig. 3 showed the T T VM E results of two groups. First,
to investigate the impact of trial number N on T T VM E ,

TABLE III
THE DETAIL STATISTICAL VALUES OF TTVME

we randomly selected 10 to 75 TMS-EEG trials to calculated
the T T VM E and observed that the fluctuation of T T VM E
remained stable when N was greater than 30 (Fig. 3 A).
In order to capture more brain signals, N was set to be 60 for
calculating of cross correlation. We also analyzed the real
correlated trial number of two groups and found that TMS
increased the correlation over trials. For instance, in HC group,
TMS significantly increased this value of CD3 in lots of
channels and the channel in left central and middle frontal
lobe showed the most changes (Fig. 3 B).

Statistical analysis revealed significant differences
in T T VM E of CD3 and CD7 between two groups
(Fig. 3 C and D). In CD3, HC had a greater T T VM E
in left frontal and central lobe while those values of DE
had higher values in left central lobe. Compared with HC,
DE showed significant smaller values in central-parietal and
right temporal lobe. In CD7, HC exhibited higher value in
the right frontal and left temporal lobes while DE showed
higher values in the right parietal and parietal-occipital lobe.
Compared with HC, DE had a significant larger value in the
parietal lobe. The detail values were showed in Table III.

C. Correlation Between TTV and HAMD-17
The correlation analysis showed there were significant cor-

relations between T T VM E and depressive symptoms of DE
(Fig. 4). In CD3, the T T VM E values of some channels were
negatively correlated with HAMD-17 scale. Those channels
were distributed in two clusters: cluster 1 (left parietal region),
C4, C6, FC6 and FC4; cluster 2 (left parietal region), P3, P5,
P7 and CP5. The detail values were as shown in TABLE IV.

IV. DISCUSSION

A. TMS Evoked Potentials
TEPs, which are evoked by TMS on DLPFC, are typically

defined as P30, N45, P60, N100, and P200 [47]. Our study
also found these components using supraliminal stimulation
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Fig. 3. TTVME analysis. (A) The TTVME value of CD3 for different trial number in channel Cz. (B) analysis of real correlated trial number over
TMS-EEG trials before and after TMS pulse in HC. (C) and (D) Topographic distribution and statistical analysis of CD3 and CD7’s TTVME. “×”
indicates p<0.025.

Fig. 4. Correlation analysis between TTVME of CD3 and clinical HAMD-17. (A) Cluster 1: right central region; (B) Cluster 2: left parietal region.

patterns of TMS pulses. The generation of TEPs is associated
with the spatial and temporal summation of postsynaptic

potentials which originate from a large number of pyramidal
neurons and interneurons. These components are thought to
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TABLE IV
THE DETAIL STATISTICAL VALUES OF TTVME

be important indices of cortical excitability. For instance, early
TEPs (such as N45 and P60) are associated with postsynaptic
inhibitory Gamma aminobutyric acid A receptors and gluta-
matergic activity, while the N100 component is involved in
cortical inhibition mediated by presynaptic and postsynaptic
Gamma aminobutyric acid B receptors [48], [49].

Previous studies have demonstrated that the TMS-EEG
excitability can not only be used as a diagnostic biomarker
for depression but also to monitor biological responses to
treatment. For instance, compared with HC, major depressive
disorder patients exhibit lower N100 and N45 amplitudes and
greater P200 amplitudes [10], [50]. Additionally, Theta burst
stimulation can reduce the N45 in the right intraparietal lob-
ules, while the administration of Baclofen (a GABAB agonist),
can increase the N100 amplitude in healthy participants [48],
[51]. Unfortunately, our study only found significant greater
P200 amplitude of DE in channel P3, P5, C5, CP5, T7
and FT7, while no significant difference was observed in
N45 or N100. Previous studies, which set the intensity of
TMS pulse to less than 100%RMT, have reported significant
differences in the early TEP between DE and HC. However,
such differences are rarely reported when setting the intensity
of TMS pulse to larger than 100%RMT [50], [52]. Only
Dhami found a significant P30 difference among youth with
depression [51]. Therefore, we hypothesis that there are two
possible reason. One possible reason may be the different
clinical condition. For example, other studies usually recruited
young, fist-episode or severely suicidal patients which this
paper are not identical with. In addition to the clinical factors
of patients, the TMS pulse intensity (110% RMT) may be so
large that it failed to evoked the a significant different early
TEP between the DE and HC.

B. TTVSTD vs TTVME

Neural activity is variable over time and across stimulation
trials. Among the trials with identical stimulation, neural
variability is small before stimulus onset and significantly
increased after stimulus presentation. In traditional event-
related potential experiments, the standard deviation method is
usually used to describe neural variability of cognitive process-
ing pathways after the brain receives external stimuli through
the sensory organ [53]. In this study, we first studied the TTV
in the TMS-EEG data and developed a new method to assess

the neural variability of TMS-EEG data. The results showed
that T T VM E were changed after TMS stimulation. From this
phenomenon, we assume that the reduced reproducibility of
neural activity may be attributed to the TMS stimulation on
DLFPC leading to the depolarization of neurons and evoked
action potentials, which phenomenon can also be observed
in other event-related potential studies and EEG calculation
methods [9], [54], [55]. Our results indicate that T T VM E is
more sensitive for representing abnormal in DE patients and
reducing falsity of the TTV index than T T VST D .

C. Trial-by-Trial Variability and Depressive Disorder

In the pathophysiology of clinical disorders, oscillations can
provide important information about the effects of plasticity-
inducing protocols on brain activity. For instance, specific
frequency bands can be associated with specific behaviors
or cognition [56]. Gamma band activities are commonly
used to characterize depressive disorder and schizophrenia
patients [57], [58], [59]. Event-related potential and resting-
state EEG studies have shown that Gamma oscillations have a
good diagnostic capability for DE [3], [60]. Unlike traditional
event-related potential, TMS–EEG offers an opportunity to
measure those activities in different frequency bands of the
brain without involving the processing of sensory pathways.
Our results revealed that DE patients had significantly smaller
variability of CD3, which mainly reflects the gamma band
information (32∼64Hz), than HC. Pizzagalli and Isomura both
found that Gamma activities, which was evoked by auditory
steady-state responses or Flanker task, can be used to distin-
guish depressed patients from healthy controls, even unipolar
depression and bipolar disorder in their own experiments [54],
[61]. In clinical studies, Gamma oscillations can not only be
used to distinguish the depressive disorder, but also can be the
potential biomarker for the treatment. For instance, Pellicciari
and his colleague found the gamma oscillation, which were
evoked by TMS in DE patients, was asymmetrical in bilateral
DLPFC, and a 10-day Theta Burst Stimulation can reduce this
abnormal phenomena [62]. In a paired associative stimulation
studies, Noda found that compared to HC, the changes of
Gamma power and Theta-Gamma coupling activities were
significantly lower in DE [64]. Our results provide another
important evidence for the abnormal Gamma brain activity in
depressed patients.

D. Correlation Between TTV and HAMD-17

In this study, we discovered a significant negative corre-
lation between the HAMD-17 and T T VM E of CD3 which
mainly reflecting the Gamma(32∼64Hz) band information.
Similar results have been found in previous studies of patients
with DE. For instance, one study reported a 50% reduction
of Gamma aminobutyric acid in the occipital cortex of major
depressive disorder patients while it is also significantly asso-
ciated with the severity of depression [63]. High-frequency
activity is known to be associated with the continuation of
the cognitive setting and the dominance of endogenous top-
down influences, which override the effect of potentially
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novel, or unexpected, external events [64]. Our results indi-
cated T T VM E had a negative correlation with HAMD-17.
We hypothesis that our findings may be related to a defect
in receiving and processing new information in depressed
patients. Future experiments need to be designed to investigate
the difference between TMS-EEG and other states.

V. CONCLUSION

In this study, we not only proposed a new, more sensitive,
and reliable method to assess TTV based on the maximum
eigenvalue of the cross-correlation matrix, but also conducted
the first study of TTV in TMS-EEG data. Additionally,
we observed significantly smaller TTV in Gamma band and
greater TTV in Delta band in DE patients. Furthermore, the
HAMD-17 scores were negatively correlated with TTV values
in Gamma band. Our findings may contribute to a better
understanding of the capabilities of TMS-EEG technology and
the specific characteristics associated with depressive disorders
for researchers and medical professionals. However, our study
still has some limitations: 1. Lack of MRI data to help localize
the M1 motor region and DLPFC; 2. Lack of a paired-
pulse TMS–EEG experiment (e.g. long interval intracortical
inhibition) to examine the inhibition of neural variability; 3.
No intensity lower than 100% RMT were used as the TMS
pulse intensity. In future studies, we will recruit more DE
patients to validate the findings and apply this method to other
patients with different brain diseases. Moreover, new studies
should be designed to resolve these limitations.
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