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Closed-Loop Deep Brain Stimulation With
Reinforcement Learning and Neural Simulation

Chia-Hung Cho , Pin-Jui Huang , Meng-Chao Chen , and Chii-Wann Lin

Abstract— Deep Brain Stimulation (DBS) is effective for
movement disorders, particularly Parkinson’s disease (PD).
However, a closed-loop DBS system using reinforcement
learning (RL) for automatic parameter tuning, offering
enhanced energy efficiency and the effect of thalamus
restoration, is yet to be developed for clinical and com-
mercial applications. In this research, we instantiate a
basal ganglia-thalamic (BGT) model and design it as an
interactive environment suitable for RL models. Four finely
tuned RL agents based on different frameworks, namely
Soft Actor-Critic (SAC), Twin Delayed Deep Deterministic
Policy Gradient (TD3), Proximal Policy Optimization (PPO),
and Advantage Actor-Critic (A2C), are established for fur-
ther comparison. Within the implemented RL architectures,
the optimized TD3 demonstrates a significant 67% reduc-
tion in average power dissipation when compared to the
open-loop system while preserving the normal response
of the simulated BGT circuitry. As a result, our method
mitigates thalamic error responses under pathological con-
ditions and prevents overstimulation. In summary, this
study introduces a novel approach to implementing an
adaptive parameter-tuning closed-loop DBS system. Lever-
aging the advantages of TD3, our proposed approach holds
significant promise for advancing the integration of RL
applications into DBS systems, ultimately optimizing thera-
peutic effects in future clinical trials.

Index Terms— Basal ganglia-thalamic (BGT) network,
closed-loop deep brain stimulation (cl-DBS), Parkinson’s
disease (PD), reinforcement learning (RL).
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I. INTRODUCTION

PARKINSON’S disease (PD) is a chronic neurodegen-
erative disorder affecting the central nervous system.

It is cited as the second most prevalent neurodegenerative
disease after Alzheimer’s [1], affected over 10 million people
globally [2]. The degeneration of dopaminergic neurons in
the substantia nigra pars compacta (SNc) [3] leads to motor
symptoms such as tremors, rigidity, bradykinesia, and postural
instability [4], as well as non-motor symptoms including mood
changes and swallowing difficulties. While Levodopa/L-dopa
is effective in the early stages of PD, its benefits diminish
over time, leading to motor complications. High-frequency
deep brain stimulation (DBS) (≥100 Hz) offers a promising
advanced treatment by regulating activity in targeted brain
regions [5]. However, current clinical DBS systems operate
in an open-loop regime, which results in higher power con-
sumption, subject-dependent [6], and adverse effects due to
overstimulation [7].

Closed-loop deep brain stimulation (cl-DBS) systems are
capable of regulating stimulation parameters based on feed-
back signals and control strateies. Optimizing the cl-DBS
algorithm remains crucial for addressing the post-surgical
challenge of DBS device [8]. While machine learning (ML)
techniques are extensively used in the analysis and prediction
of complex systems, deploying new generations of cl-DBS
algorithms in live environments remains challenging due to
the difficulty of conducting experimentation. Thus, the cl-DBS
technique proposed in this study uses physical neural modeling
to mimic the fundamental dynamics of the electrophysiological
alterations associated with PD, allowing the algorithm to
closely replicate the live brain environment and allowing
extensive and harmless testing.

In conjunction with the establishment of this environ-
ment, development of robust, real-time adaptive algorithms
to enhance patient-specific adaptability and address long-term
changes in neurological conditions is essential for advancing
DBS therapy. Reinforcement learning (RL) has emerged as
a powerful technique that enables agents to perceive and
interpret interactive environments, followed by determining
actions to achieve the most desirable outcomes by maximiz-
ing rewards. In other words, integrating RL techniques can
facilitate precise, safe (with constrained action range), and
personalized adjustments to stimulation parameters, thereby
enhancing the effectiveness and reliability of cl-DBS systems.
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Fig. 1. The overall architecture of this study. The solid blue lines
represent what we will implement in this work, whereas the dashed
green lines represent a practical direction for the future. Both present
the closed-loop characteristics.

Based on a review of current literatures, RL techniques have
been increasingly utilized for the treatment of PD via DBS.
Lu et al. [9] incorporated a Cerebellar Model Articulation Con-
troller (CMAC) into an actor-critic RL framework, reducing
energy consumption by 63.3% compared to open-loop DBS.
Krylov et al. [10] used Proximal Policy Optimization (PPO) to
train RL agents for suppressing synchronous neuronal activity
in models of various oscillations. Gao et al. [11] applied
a Markov decision process (MDP) model and convolutional
neural networks (CNNs) to alleviate PD symptoms with
an average stimulation frequency of 45 Hz. Agarwal et al.
[12] used Twin Delayed Deep Deterministic Policy Gradients
(TD3) to suppress neuronal synchronization with reduced
power consumption, comparing it favorably against other
RL algorithms. All these RL models are trained exclusively
on pathological (PD state) data, focusing on the alleviation
of pathological neuronal activity. However, overlooking the
potential coexistence of normal states during training might
lead to several issues. Specifically, the model might misin-
terpret normal data as pathological, resulting in inappropriate
stimulation, side effects, suboptimal performance, increased
false positives, and potential risks to patient safety. Addi-
tionally, within the above articles, feature extraction methods
relying on machine learning methods lack explicit guidance
on their application to extracellular electrophysiological sig-
nals, such as electroencephalograms (EEGs) and local field
potentials (LFPs).

In our study, we wrapped the Basal Ganglia-Thalamic
(BGT) network that simulate brain dynamics in both normal
and pathological states into the Gymnasium [13] environment
for developing and comparing RL methods, as depicted in
Fig. 1. We prioritize using well-established and validated
feature extraction methods for biomarker signals (refer to
Section II-B) to ensure their effectiveness in electrophysiologi-
cal signals during deployment. RL models will explore the best
strategy for regulating the frequency and amplitude parameters
of DBS. Four mainstream on-policy and off-policy [14] RL
frameworks are encompassed in the comparison, namely, Soft
Actor-Critic (SAC), Twin Delayed Deep Deterministic Policy

Fig. 2. Illustration of the simulated regions (purple box) and the related
currents. Purple ovals are the four neuron types in the basal ganglia-
thalamus (BGT) network, containing 10 neurons in each nucleus.
Excitatory inputs are represented by black arrows, including 1⃝ input
from the sensorimotor cortex (ISM), 2⃝ constant bias current, Iapp(STN),
to STN, 3⃝ constant bias current, Iapp(GPe), from Stiatum to GPe, 4⃝
constant bias current, Iapp(GPi), from Stiatum to GPi, 5⃝ synaptic current
from STN to GPe (ISTN→GPe), and 6⃝ synaptic current from STN to GPi
(ISTN→GPi). Inhibitory inputs are indicated by gray arrows, namely 7⃝
synaptic current from GPi to TH (IGPi→TH), 8⃝ synaptic current from
GPe to STN (ISTN), 9⃝ synaptic current from GPe to GPi (IGPe→GPi),
and 10⃝ synaptic current from GPe to itself (IGPe→GPe). Refer to
Equation (1),(2), (3).

Gradient (TD3), Proximal Policy Optimization (PPO), and
Advantage Actor-Critic (A2C). Results demonstrate the effec-
tiveness and superiority of our TD3-based method in terms of
power efficiency and mitigation of error response.

II. METHODS

A. BGT Network Model Simulation
We construct the interactive BGT network based on the

Rubin-Terman model [15], [16], [17] focusing on key neu-
ral nuclei within the basal ganglia (BG). The subthalamic
nucleus (STN), external globus pallidus (GPe), internal globus
pallidus (GPi), and thalamus (TH) relay neurons are crucial
components in our simulation. Employing conductance-based
models, we simulate these four nuclei, interconnected through
inhibitory and excitatory synapses (refer to Fig. 2.) Each
nucleus comprises 10 neurons to balance fidelity and com-
putational efficiency. The parameters and ordinary differential
equations (ODE) of this biophysics model are originated
from the work by So et al. [17] and are implemented in
Python. Consult the supplementary material for comprehen-
sive understanding of equations and parameters. The BGT
network simulation encompasses both normal/healthy and
PD/pathological conditions for better RL model generalization.

The membrane potential (va) of each neuron obeys Kirch-
hoff’s current balance law, where the subscript a denotes the
sub-region, and is presented mainly in differential form as
follows:

Cm
dvST N

dt
= −IL−INa − IK −IT −ICa − IAH P

− IG Pe→ST N + Iapp(ST N ) + IDBS, (1)

Cm
dvG Pe/ i

dt
= −IL−INa − IK −IT −ICa − IAH P

− IST N→G Pe/ i − IG Pe→G Pe/ i + Iapp(G Pe/ i),

(2)
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Cm
dvT H

dt
= −IL−INa − IK −IT −IG Pi→T H + ISM . (3)

In the neuronal models, the term Cmdv/dt represents the
capacitive current responsible for charging the specific mem-
brane capacitor Cm in STN, GPi, GPe, and TH-type neurons.
Currents IL , INa, IK , IT , ICa, IAH P correspond to leak,
sodium, potassium, low-threshold calcium, high-threshold
calcium, and voltage-independent “after hypopolarization”
potassium intrinsic ion channel currents. These intrinsic cur-
rents are characterized by gating variables that dictate the
activation/opening and inactivation/blocking of the channels.
External currents, including IDBS , ISM , Iα→β , and Iapp (refer
to Fig. 2), influence the subsequent elements of the model.

The term IDBS in (1) indicates that the stimulation wave-
form is directly transmitted to the STN region by the DBS
stimulator. Due to safety concerns, IDBS is a symmetric,
charge-balanced biphasic pulse, where anodic stimulation
comes first and follows the cathodic stimulation with no
interphase delay (refer to Fig. 3). Maintaining “charge-
balanced” helps prevent undesirable faradic reactions at the
electrode-tissue interface over time, which can pose a risk to
brain tissue. The pulse width is fixed at 60 µs in consideration
of the observed phenomenon that the overall therapeutic
window decreases with an increase in the pulse width [18].
Furthermore, fixed pulse width helps minimize charge injec-
tion and reduce power consumption [19]. The trained RL
agent will intervene in the regulation of additional stimulation
parameters, such as frequency and amplitude.

TH neurons do not exhibit intrinsic firing properties with-
out sensorimotor input (ISM ). ISM is modeled as a series
of anodal, monophasic current pulses with an amplitude of
3.5µA/cm2 and a pulse duration of 5ms. The instantaneous
frequencies of this pulse conform to a gamma distribution with
an average rate of 14 Hz and a variation of 0.2 to emulate
the irregular nature of incoming signals from the cortex.
As a role of a relay station, TH cells must respond faithfully
and promptly to periodic input with a single action potential
(AP) [17]. Subsequently, this signal will be transmitted to
the brainstem and spinal cord to facilitate the execution of
motions. Relay error exhibits a high correlation with motor
symptoms, as indicated in [20]. It functions as a quantitative
metric for assessing the degree of PD pathology in our study.
We quantify the degree of response error using the Error Index
(EI), which is formalized as:

E I =
Nerror

NSM
. (4)

According to the equation, EI is defined as the number of error
transmissions (Nerror ) over the total number of sensorimotor
inputs (NSM ). It depends upon the average of all (10) TH
channels/neurons. Higher EI indicates a greater dominance of
PD in the current circuit and lower relay reliability (RR) of
TH neurons.

Currents in the form of Iα→β stand for synaptic inhibitory
or excitatory current from presynaptic nucleus α (α ∈ {STN,
GPe, GPi}) to postsynaptic nucleus β (β ∈ {GPe, GPi, TH}).
According to [17], each STN neuron receives inhibitory input
from two GPe neurons. Each GPe or GPi neuron receives

Fig. 3. Illustration of the biphasic, charge-balanced, symmetric DBS
pulses we applied throughout our simulation work.

excitatory input from two STN neurons and inhibitory input
from two other GPe neurons. Finally, each GPi cell projects
to one TH cell. In other words, the effect of the overall
BG network and external DBS is propagated to TH through
GPi, i.e., IG Pi→T H , allowing us to evaluate the efficacy of
stimulation through the quantified EI.

Iapp denotes the constant external applied/bias currents in
STN, GPe, and GPi nuclei, which is the main difference
between the healthy and PD states in simulation. Based on
the PD etiology, decreased Iapp level elucidates the effect of
insufficient dopamine secretion by SNc since currents from
other brain regions or striatum are correspondingly lessened.
We apply additional noise (refer to supplementary material)
to the Iapp of GPe neurons to simulate the variability in this
variable due to different PD salience in the current circuit.

B. Biomarker Selection
In the BGT network, we call for a discriminative signal as

the environmental output. Varied relay properties in the TH
neuron are influenced by the IG Pi→T H synaptic current that
carries distinct signal representations. IG Pi→T H is comprised
of: IG Pi→T H = gG Pi→T H [vT H − EG Pi→T H ]

∑
SG Pi , where

gG Pi→T H is the maximal synaptic conductance, SG Pi denotes
the synaptic variable from the presynaptic structure GPi, and
EG Pi→T H is the reversal potential across synapses. Among
these components, we refer to the synaptic variable-based
control strategy proposed by Gorzelic et al. [21], setting SG Pi
as a biomarker signal. We further examine the correlation
between the SG Pi signals and TH membrane potentials in three
different states in Section III-A.

C. Problem Formulation
We wrapped the BGT network into a customized interactive

environment based on Gymnasium ( [13], [22]) architecture,
devising a tailored interface with appropriate action space,
state space, reward function, episode configuration, and step
length. As an initial condition, the environment randomly
assigns a state from healthy and PD when an episode starts,
mimicking the irregular occurrence of PD.

1) Action: Action space comprises the DBS frequency and
amplitude value in a total dimension of 2. These values serve
as the output of the RL model, while the input to the BGT
environment. Studies have evaluated the effects of variation in
the DBS parameters and suggested suitable ranges ( [18], [19],
[23], [24]). Both frequency and amplitude are continuous vari-
ables within the range of 100∼185 Hz and 0∼5000 µA/cm2,
while the pulse width remains fixed at 60 µs. However, these
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actions will be set in a normalized range [−1, 1], aligning
with the common practice in many RL algorithms that utilize
a Gaussian distribution (initially centered at 0 with a standard
deviation of 1) for continuous actions. The actual frequency
and amplitude value will be denormalized back to the desired
range within the BGT environment, by using:

actual value =
(normalized + 1)

2
× (max − min) + min . (5)

2) State: The state space comprises the feature extraction
value extracted from the biomarker signal SG Pi (as detailed
in Section II-B ) in a total dimension of 6. Contrary to the
action space, state values are the input to the RL model,
while the output of the BGT environment. Furthermore, all
features were normalized by the max–min normalization tech-
nique. Extracellular-based feature extraction techniques are as
follows:

• Signal standard deviation.
• Hjorth Parameters: Hjorth Parameters, comprising activ-

ity, mobility, and complexity, offer a statistical charac-
terization of time-domain signals. Initially developed for
EEG analysis due to low computational complexity [25],
they have proven effective in enhancing PD diagnosis
with an accuracy of up to 89.3% [26]. Calculation defined
as:

Activity: A =
1
N

N∑
i=1

(xi − x)2, (6)

Mobility: M =

√
A(

dxi
dt )

A
, (7)

Complexity: C =
M(

dxi
dt )

M
, (8)

where xi represents the signal values, x is the mean of
the signal, and N is the number of samples.

• Beta Band Power: Increasing evidence indicates a correla-
tion between beta-frequency band (12)–30 Hz) oscillation
powers in the LFPs recorded in the STN of PD patients
and motor impairments such as bradykinesia and rigid-
ity [27]. PD patients exhibit elevated beta power spectra
in both STN and GPi neurons, which can be suppressed
by adequate stimulation amplitude or medication. Calcu-
lation defined as:

Sx ( f ) =
1
T

|X ( f )|, (9)

Pβ =

∫ fhigh

flow

Sx ( f ) d f, (10)

where X ( f ) is the Fourier transform of the filtered signal
xβ , T is the total time duration of the signal, Sx ( f )

is the power spectral density of xβ , flow and fhigh are
cutoff frequencies for the bandpass filter, which is 12 and
30 in our case, and finally the Pβ is the desired beta-band
power.

• Sample Entropy (SampEn): SampEn has proven effective
in evaluating the complexity of physiological time-series
signals and diagnosing disease states [28]. Its advantages
over approximate entropy (ApEn), such as data length

independence and ease of implementation, make it a
preferable choice. Lower sample entropy values indicate
a higher degree of self-similarity in the dataset, reflect-
ing lower complexity and irregularity, which is often
observed in PD cases. In the context of subthalamic
nucleus-local field potential (STN-LFP) signals, neuronal
entropy exhibited a progressive increase with the rise of
DBS amplitude, coinciding with the suppression of beta-
band oscillation—a characteristic that can be interpreted
as an inverse indicator [29].
Formula defined as:

SampEn(m, r, N ) = − ln
C(m + 1, r)

C(m, r)
, (11)

where N is the data length, m is the embedding dimension
(default = 2), r is the radius of the neighborhood (default
= 0.2× std(xi )), C(m +1, r) is the number of embedded
vectors of length m + 1 having a Chebyshev distance
inferior to r , and C(m, r) is the number of embedded
vectors of length m having a Chebyshev distance inferior
to r . Sample entropy measures the likelihood that vectors
of length m that are close to each other will remain close
when their length increases to m + 1.

To ensure the applicability of these feature extraction meth-
ods in real data, we validated them in the EEG dataset
from [30] using channels located above the primary motor
cortex (C3, FC3, CP3, C5, FC4, C4, C6, CP4). The diagram
is presented in the Results III-B.

3) Step Length: The step length significantly influences
the time resolution of the action and information content of
the state space, presenting a trade-off. A shorter step length
provides higher resolution in the control action space and more
dynamic DBS waveforms. However, this comes at the cost
of potentially diminishing the meaningfulness of state signals
to the RL agent and limiting the observation of long-term
features. In our study, we selected a 100-millisecond (ms) step
length, guaranteeing the occurrence of at least one ISM input
pulse at 14 Hz.

4) Episode Termination Prerequisites: Determining when an
episode is done in RL environment depends on the specific
context and goals of the task. For a DBS parameter tuning
environment, the following criteria should be met:

• EI of the current state is zero ( no error response in current
state).

• The average EI is below 0.1.
• The average beta band power is suppressed below a

threshold value (Tβ ).
Satisfying the above demands will lead to an episode termi-
nation, indicating convergence of the episode.

5) Reward: In our design, the reward function combined
different aspects into a single, balanced reward function as
follows:

Reward = R(t) = α · r1 + β · r2 + γ · r3 + δ · r4, (12)

where r1, r2, r3, r4 is respectively identified as “improve-
ment score,” “energy consumption,” “side effect score,” and
“compensation score.” Positive weighting coefficients (α, δ)
imply encouragement, while negatives (β, γ ) are for penalty.
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Additionally, each component of the reward function is scaled
in the range [0, 1] to avoid skewed learning of the RL model.

Crafting the improvement score based on reliability com-
ponents (EI) can be a beneficial approach, considering that
reducing thalamus EI is one of the primary objectives of
this task. We define the improvement degree of EI before
(E It−1) and after (E It ) the action (IDBS(t)) as the first reward
component with α = 1.2:

r1 = E It−1 − E It . (13)

Next, the energy consumption is calculated using the root
mean square of IDBS(t), where the frequency and amplitude
components are actions output from the RL model, as:

r2 = IRM S

IRM S =

√
1
T

∫ T

0
I 2

DBS(t)dt, (14)

where T denotes the duration of the IDBS stimulation on STN
neurons, and weighting factor β = −0.8. r2 is further scaled
by the highest possible value of IRM S , which is based on the
upper bound of DBS frequency: 185 Hz and amplitude: 5000
µA/cm2.

To expedite the agent to achieve the episode termination
goal without intentionally prolonging the episode, we design
the “side effect score” as the EI of the current state with γ =

−0.5:

r3 = E It (15)

Follow with a compensation value for switching off the DBS
(zero amplitude) in healthy states for encouragement of energy
conservation, with weighting factor δ = 0.5:

r4 =

{
1, if r1 ∩ r2 ∩ r3 = 0
0, otherwise. (16)

Jointly, the final reward function is normalized as: R′(t) =

R(t)/(α + β + γ + δ) within [−1, 1] to stabilize training.

D. RL Actor-Critic Frameworks Implementation
In this study, we evaluate the BGT environment using the

Soft Actor-Critic (SAC [31]), Twin Delayed Deep Determinis-
tic Policy Gradient (TD3 [32]), Proximal Policy Optimization
(PPO [33]), and Advantage Actor-Critic (A2C [34]) frame-
works. All models share the same critic and actor architecture,
implemented using PyTorch [35].

SAC is an off-policy actor-critic algorithm that incorporates
an entropy regularization term for exploration encourage-
ment. Its objective function combines expected return and
policy distribution entropy, preventing excessive determin-
ism for improved exploration. The learnable temperature
parameter (α), updated through gradient descent, controls
entropy regularization strength. Critic and target critic net-
works guide policy optimization, with soft updates ensuring
gradual adaptation. The actor-network employs a Gaussian
policy parameterized by the mean and standard deviation for
stochasticity.

TD3 addresses issues in deep deterministic policy gradient
(DDPG [36]) by reducing the overestimation bias with twin

critic networks, delayed updates of the actor, and action
noise regularization. It is an off-policy algorithm, similar to
SAC, and it leverages the advantages of a replay buffer.
This approach enhances data efficiency, diminishes correla-
tions between consecutive samples, facilitates efficient batch
learning, and enables the algorithm to revisit and learn from
past experiences. The critic networks are updated to minimize
the temporal difference (TD) between the predicted Q-values
and the target values, in both TD3 and SAC.

PPO is an on-policy algorithm, meaning it learns from the
data collected by the current policy. The rollout buffer stores
on-policy experiences sampled from the most recent policy
to ensure that the learning process remains focused on the
current policy. It involves replacing the intricate constrained
optimization step in the Trust Region Policy Optimization
(TRPO [37]) with a simpler surrogate objective function that
incorporates advantage, a clipping mechanism, and the entropy
of the policy.

A2C is an on-policy algorithm that integrates policy and
value learning, ensuring simplicity and stability in training
with synchronous updates. It directly optimizes the policy
using the advantage function with the value function baseline,
represented as the difference between the estimated value
function and the value of the current state. Notably, A2C does
not explicitly enforce a trust region constraint, allowing for
potentially larger policy updates.

III. RESULTS

A. Environment Simulation Results
Fig. 4 report the voltage traces of TH neuron, the synaptic

signal, SG Pi , and its scalogram in normal, PD without DBS,
and PD with 130 Hz DBS condition. Scalograms are calculated
through continuous wavelet transform with the Morse wavelet.
During PD state, substantial synchronous in the GPi nuclei
is sufficient to affect thalamic activity through large syn-
chronous oscillations/fluctuations in the SG Pi signal, resulting
in a higher EI compared to other conditions. There is also
a substantial difference between the pathological state and
the others in the scalogram, presenting the frequency band
(10)–20 Hz) of the synchronous neuronal activity. The applied
DBS could suppress the oscillating characteristic of SG Pi ,
exhibiting a reduction in the error response in TH neurons
to ISM and the band power.

B. Feature Verification
Fig. 5 demonstrates the results of the feature extraction

(mentioned in II-C.2) for both synaptic signal (SG Pi ) from the
BGT environment and the EEG dataset from [30] across PD
and Healthy Control (HC) participants. In the 64-channel mon-
tage of EEG electrodes, the channels most commonly related
to PD for further signal analysis are typically those covering
the motor cortex and supplementary motor areas. In total, eight
channels are selected, including C3, FC3, CP3, C5 within the
left central lobe, and C4, FC4, C6, CP4 within the right central
lobe. Features are normalized by the max–min normalization
technique. The observed consistency in trends between PD and
HC states suggests promising potential for their application in
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Fig. 4. Thalamus voltage traces, synaptic input signals from GPi to
TH (SGPi), and scalogram within the beta band in three conditions:
(A) normal/healthy (EI=0.0), (B) PD without DBS (EI=0.5), and (C) PD
with DBS conditions(EI=0.0). ISM inputs are highlighted in red pulse.
+: represents a “bursting” error response (generating more than one
AP); *: represents a “missing” error response (TH neuron signal does
not constitute an AP). There is a bright band (high magnitude/power)
between 10–20 Hz in (B) PD condition, which is the so-called beta band
oscillation. The oscillation is obscure in (A) healthy conditions and is
eliminated with biphasic DBS in (C).

subsequent agent deployments. Furthermore, the correlation
between each feature and the EI of TH neurons is shown
in Fig. 6. All features suggested highly correlation with the
EI of TH neurons, allowing the biomarker SG Pi to be nicely
represented.

C. RL Experimental Results
The reward curves in Fig. 7 for each architecture portray

varying levels of performance over each training session. The
plot reveals that the TD3 architecture (green line) converges
the fastest, stabilizing after just 400 steps, and achieves the
highest reward value, demonstrating its efficiency and effec-
tiveness in optimizing stimulation parameters. The SAC model
(blue line) converges at a slightly slower rate, attaining the

Fig. 5. Observations on the effect of feature extraction in (A) synaptic
signals and (B) EEG signals. Eight channels (C3, FC3, CP3, C5, FC4,
C4, C6, CP4) are selected from the Iowa dataset in [30] for feature
verification.

Fig. 6. Pearson correlation coefficients between each feature and the
error index (EI) of the TH neurons.

Fig. 7. The reward curve of the RL models across different
architectures, including Soft Actor-Critic (SAC), Twin Delayed Deep
Deterministic Policy Gradient (TD3), Proximal Policy Optimization
(PPO), and Advantage Actor-Critic (A2C). The x-axis represents the
training steps, while the y-axis shows the average rollout reward
obtained by the RL models. The shaded regions around each curve
represent the ± 1 standard deviation of the rewards, reflecting the
variability in the model’s performance across training sessions.

second-highest peak reward. PPO (orange line) and A2C (red
line) exhibit nearly identical convergence rewards, with A2C
securing a marginally faster convergence time than PPO, indi-
cating a modest performance advantage. The shaded regions
surrounding each curve represent the ± 1 standard deviation
of the rewards, providing insight into the variability and con-
sistency of each model’s performance across episodes. These
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Fig. 8. Control strategy in the PD state by (A) SAC, (B) TD3, (C) PPO, and (D) A2C RL agents. Stimulation is activated after 1000 milliseconds.
Each subplot includes the biomarker signal (SGPi), action signal (IDBS), thalamus action potentials, sensorimotor input (ISM), and the scalogram of
the SGPi signal in the beta frequency band, from top to bottom.

areas emphasize the stability of TD3’s superior performance
and the slightly greater variability observed in SAC.

Fig. 8 and Fig. 9 illustrate the control strategies performed
by agents trained using the SAC, TD3, PPO, and A2C RL
frameworks in the PD and healthy state. DBS is activated after
1000 milliseconds (ms). Each subplot includes the biomarker
signal (SG Pi ), action signal (IDBS), thalamus action potentials
in response to sensorimotor input (ISM ), and the scalogram of
the SG Pi signal in the beta frequency band. Table I summa-
rizes the quantitative reductions in percentage and average EI
for each framework compared to ol-DBS.

In the PD state, the agents are anticipated to administer opti-
mal stimulation based on signal features, effectively mitigating
the existing pathology without undue energy expenditure.
Fig. 8 reveals that both SAC and TD3 agents manifest actions
with low variability, contributing to significant corrections
in thalamic relay reliability (both with EI values of 0) and
the suppression of oscillations in the beta frequency band.
Notably, TD3 exhibits superior energy efficiency compared
to SAC. However, under the parameter control of the (on-
policy) PPO and A2C agents, the resulting actions show
increased variability, and the parameter adjustments lead to
less effective suppression in the PD state. Due to the limited
suppression effect on the beta band oscillation, a distinct bright
band continues to appear in the scalogram after 1000 ms.
Quantitatively, the EI values are notably higher, reaching
0.15 and 0.23, respectively, as shown in Table I.

In the healthy control state, guided by the reward design, the
agents are expected to minimize or deactivate stimulation to
conserve energy without inducing side effects. SAC maintains

TABLE I
EVALUATION METRICS FOR ALL TRAINED RL AGENTS, OPEN-LOOP

DBS (OL-DBS), WITHOUT DBS IN BOTH PD AND

HEALTHY CONTROL CONDITIONS

a stable output with small amplitude, and the application of
stimulation does not result in side effects or an increase in
EI. Remarkably, under the TD3 agent’s control, it effectively
modulates the amplitude to zero, indicating the cessation
of stimulation. This control strategy demonstrates significant
effectiveness. PPO and A2C strategies typically show higher
variability. Although they exhibit stability in mild oscillations
in the healthy state, a slightly increased power in the beta
frequency band is observed on the scalogram compared to the
former two strategies. Their energy efficiency is slightly lower,
with values of 78% and 77%, respectively, subsequent to TD3.

Table I shows the quantitative comparison of four trained
RL agents, open-loop DBS, and the case without DBS inter-
vention in both PD and healthy control states. In ol-DBS
regime, we assume ´IDBS(t) delivers pulses with frequency



3622 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 9. Control strategy in the healthy control state by (A) SAC, (B) TD3, (C) PPO, and (D) A2C RL agents. Stimulation is activated after
1000 milliseconds. Each subplot includes the biomarker signal (SGPi), action signal (IDBS), thalamus action potentials, sensorimotor input (ISM),
and the scalogram of the SGPi signal in the beta frequency band, from top to bottom.

of 130 Hz and amplitude of 2500 µA/cm2. The reduced
percentage is calculated by: 1− ( ˆIRM S/ ´IRM S)×100%, where

ˆIRM S is for root mean square of target IDBS(t), and ´IRM S is
for the corresponding value in ol-DBS. Notably, the elevation
of EI in ol-DBS regime under healthy state highlights potential
concerns related to overstimulation and its associated side
effects, while the restorative effect is constrained in the PD
state.

In summary, off-policy approaches exhibit better stability
in generating actions for this task and demonstrate superior
restoration capability compared to on-policy agents. However,
SAC tends to employ a more greedy strategy, resulting in
relatively higher energy expenditure. Among the off-policy
frameworks, PPO slightly outperforms A2C, with its control
strategy resembling SAC in the healthy state. TD3 stands
out in both scenarios across all frameworks: in the PD state,
it effectively restores thalamic relay reliability, suppresses beta
frequency oscillations, and maintains efficient energy usage;
in the healthy condition, it conserves energy by deactivating
stimulation, preventing side effects.

D. Continuous Episode Evaluation
The outperformed TD3 architecture is further evaluated

in continuous episodes to mimic real-world deployment.
Conterminous states with RL model intervention and its
corresponding beta band scalogram are shown in Fig. 10.
We extract the information of the PD occurrence index from
the environment to portray the “ground truth” of a healthy
control or parkinsonism state for reference. Between 0 and
200 ms, as a healthy state, the model maintains a stimulation

amplitude of zero. After 200 ms, with the onset of PD at
200 ms and 400 ms, a prominent bright beta band appears
in the SG Pi scalogram, accompanied by bursting error in the
TH neurons. The model then applies stimulation to effec-
tively suppress beta band power between 300 and 400 ms.
The normal state reemerges at 600 ms, leading to a slight
application of DBS amplitude. A new bright beta band appears
between 800 and 1000 ms, prompting the RL model to take
an additional step to better detect the PD occurrence. DBS is
then applied again after 1000 ms to suppress this beta band.
This showcases the model’s capability to adapt and respond
to dynamic conditions in a continuous, real-world setting.

IV. DISCUSSION

Our study demonstrated the improvement of cl-DBS sys-
tems via RL-based architectures compared to existing systems.
This finding underscores the potential of RL to offer more
precise and adaptive treatment by automatically adjusting stim-
ulation parameters based on environmental feedback. Within
the interactive environment, we focused on the core dynamic
changes of action potentials of neuron cells in the BGT
network. This simulation allows to capture more precise
information between cell synapses. Additionally, unlike earlier
studies, the mechanism with intermittent pathological and
healthy states aims to enhance the robustness of our RL model
across varying neuronal conditions.

We fine-tuned parameters in mainstreamed RL architec-
tures in evaluation for energy efficiency and error correction.
Due to shared dynamics between PD and healthy states
in our environment, off-policy algorithms efficiently reuse
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Fig. 10. Continuous episode with RL agent intervention and its corresponding beta band scalogram. The dotted line separates each episode.
Frequency of 132 Hz and amplitude of 3087 µA/cm2 at 300∼400 ms; 104 Hz and 4473 µA/cm2 at 500∼600 ms; 116 Hz and 150 µA/cm2 at
700∼800 ms; 132 Hz and 3985 µA/cm2 at 1000∼1100 ms.

data and generalize across states. Experience replay allows
for more stable policy updates and can be beneficial when
dealing with diverse scenarios. In TD3, the implementation
of exploration strategies, such as noise injection in the action
space, also proves to be effective in handling various initial
states.

While the software-driven approach used in this research
provides significant convenience as a controlled testing envi-
ronment, it may face challenges when applied to in vivo
models due to the complexity of biological systems and
the variability of individual responses. The discrepancy in
performance between the BGT network and real-world electro-
physiological signals could stem from several factors such as
data distribution differences, noise and artifacts, sampling rate
mismatch, and feature variability. To alleviate such differences,
the feature extraction methods have been preliminarily verified
in real signals. Future research should address these limitations
by considering additional brain nuclei in the pathological
network to overcome the discrepancies between simulated
and actual in vivo conditions as well as reveal other poten-
tial numerical features that contribute to RL training, e.g.,
gamma and theta band oscillations [38]. Utilizing a personal-
ized and electrophysiological-based neural simulation model,
as suggested in [39], might also facilitate more effective cus-
tomization of parameter adjustments to individual differences.
For the RL agent model, domain adaptation techniques such
as transfer learning or adversarial training can bridge the gap
between training and deployment domains. Further, fine-tuning
the model on small datasets from individual patients also
enhances its adaptation to their specific characteristics. We will

assess the performance of the model through preclinical animal
experiments and refine our research with the aforementioned
methods in the future.

Following our in silico simulations, future research will
focus on integrating the RL model into a cl-DBS system.
This involves embedding the model in low-latency systems,
such as FPGAs or embedded processors, to enable real-time
data processing and feedback loops, and validating the system
through preclinical animal studies. To fit the RL model within
the constraints of battery-operated or embedded devices, tech-
niques such as model compression, pruning, and quantization
will be employed. Effective integration will also require
incorporating real-time monitoring and safety mechanisms to
prevent overstimulation and ensure continuous adaptability.
Pre-deployment testing and simulation using neural simulators
will help validate the model’s performance under in vivo
conditions. Additionally, cloud-based processing and strict
adherence to regulatory standards will ensure robust and safe
operation. Longitudinal studies will be essential for adapting
the model to evolving patient conditions. These combined
efforts will bridge the gap between simulation and real-world
application, paving the way for advanced DBS treatments.

V. CONCLUSION

This study presents a significant advancement in the appli-
cation of cl-DBS for Parkinson’s patients. By instantiating a
basal ganglia-thalamic (BGT) model and designing it as an
interactive RL-friendly environment, we established four finely
tuned RL agents (SAC, TD3, PPO, A2C) for comprehensive
comparison.
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The major findings highlight the remarkable efficacy of the
optimized TD3 architecture, which demonstrated a substantial
67% reduction in average power dissipation compared to
the open-loop system. Notably, this reduction was achieved
while preserving the normal response of the BGT network,
showcasing the potential for improved energy efficiency in cl-
DBS. TD3 effectively mitigated thalamic error responses under
pathological conditions and exhibited optimal performance to
achieve complete power savings under healthy conditions.
These results underscore the significance of our adaptive
parameter tuning for optimizing therapeutic effects.

The integration of RL algorithms into DBS controllers
represents a promising avenue for advancing neuromodula-
tion therapies. These controllers offer dynamic and adaptable
parameter tuning, enhancing the precision and efficacy of stim-
ulation. The envisioned future development and deployment
of such controllers hold the potential to revolutionize DBS
treatments, offering personalized and optimized interventions
tailored to individual patient needs.
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