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BELT: Bootstrapped EEG-to-Language Training
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Abstract— Decoding natural language from noninvasive
brain signals has been an exciting topic with the potential
to expand the applications of brain-computer interface
(BCI) systems. However, current methods face limitations
in decoding sentences from electroencephalography (EEG)
signals. Improving decoding performance requires the
development of a more effective encoder for the EEG
modality. Nonetheless, learning generalizable EEG repre-
sentations remains a challenge due to the relatively small
scale of existing EEG datasets. In this paper, we propose
enhancing the EEG encoder to improve subsequent
decoding performance. Specifically, we introduce the
discrete Conformer encoder (D-Conformer) to transform
EEG signals into discrete representations and bootstrap
the learning process by imposing EEG-language alignment
from the early training stage. The D-Conformer captures
both local and global patterns from EEG signals and
discretizes the EEG representation, making the repre-
sentation more resilient to variations, while early-stage
EEG-language alignment mitigates the limitations of small
EEG datasets and facilitates the learning of the semantic
representations from EEG signals. These enhancements
result in improved EEG representations and decoding
performance. We conducted extensive experiments and
ablation studies to thoroughly evaluate the proposed
method. Utilizing the D-Conformer encoder and boot-
strapping training strategy, our approach demonstrates
superior decoding performance across various tasks,
including word-level, sentence-level, and sentiment-level
decoding from EEG signals. Specifically, in word-level
classification, we show that our encoding method produces
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more distinctive representations and higher classification
performance compared to the EEG encoders from existing
methods. At the sentence level, our model outperformed
the baseline by 5.45%, achieving a BLEU-1 score of
42.31%. Furthermore, in sentiment classification, our model
exceeded the baseline by 14%, achieving a sentiment
classification accuracy of 69.3%.

Index Terms— Brain-computer interface, brain-to-
language translation, sentiment classification, large
language model, contrastive learning, vector quantization.

I. INTRODUCTION

THE decoding of the user’s intention from the noninvasive
electroencephalography (EEG) signals has been a fas-

cinating topic. Unlike most existing BCI-based applications
such as motor imagery classification [1] and emotion
recognition [2], [3], the potential to decode language with
a large vocabulary size opens the door to a new paradigm
for human-to-human and human-to-machine interaction [4],
[5], [6], [7]. Although much effort has been made, decoding
natural language from EEG signals remains a formidable
challenge. Exemplified by the considerable opportunity for
improvement in decoding precision, coherence, and open-
vocabulary generalization [8], [9], [10], [11].

Existing solutions for EEG-to-language decoding use a
generative approach that combines an EEG encoder with a
generative language model (LM) as task-specific decoder [12],
[13]. We depict such encoder-decoder structure in Figure 1.
In these methods, word-level EEG embeddings are first
encoded by an EEG encoder and then used as conditions for
the decoder to generate sentences. Although this approach
has shown promising outcomes, the limited scale of EEG
datasets makes the adoption of a simple model architecture,
such as a Transformer, less effective. As evidenced in previous
research [14], [15], directly training a generic model on
a small dataset can result in a lack of semantics in the
learned representations, subsequently affecting generalization
capacity and decoding performance [16]. To improve language
decoding performance from EEG signals, we aim to develop a
more effective encoder to ensure that the generated sentences
are conditioned on the right EEG information. Therefore,
we consider enhancing the EEG encoder in two key aspects.
Firstly, we improve the architecture of the EEG encoder
to better exploit inter-channel dependencies within the EEG
signals. Secondly, we introduce semantic guidance during
the learning process to bootstrap more meaningful EEG
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Fig. 1. Overview of the EEG-to-language decoding framework used in
our research. The framework consists of an EEG encoder that encodes
EEG data and a task-specific decoder that decodes the information
from the encoded EEG representations. Our research focuses on
enhancing the encoder of this framework. By generating superior
EEG representations, we aim to improve performance across multiple
decoding tasks.

representations. These areas are currently under-explored in
EEG-to-language decoding research.

In this paper, we propose to improve EEG encoding
capability for EEG-to-language decoding tasks using a
novel encoder architecture and training method. Specifically,
we introduced a novel discrete conformer (D-Conformer)
as the EEG encoder to exploit both the global context
and local brain dynamics from the EEG signals. Then,
we bootstrap the learning of semantic EEG representation
by imposing EEG-language alignment. We summarize our
approach as Bootstrapped EEG-to-Language Training (BELT).
Our BELT approach leverages pre-trained language models
(BART [17]) to guide the training of our D-Conformer
encoder. We evaluate BELT’s effectiveness in enhancing
the capacity of learned EEG representations across several
tasks, including EEG-to-word classification, EEG-to-sentence
decoding, and zero-shot sentiment classification. Additionally,
we demonstrate that our bootstrapping scheme can be adapted
to specific tasks by selecting different sources of language
guidance. To handle various decoding tasks, we can bootstrap
the training of the D-Conformer encoder using word-level,
sequence-level, or context-level modeling strategies. Our
extensive experiments show that BELT achieves performance
gains over existing methods. The highlights of this paper can
be summarized as follows:

• We propose the D-Conformer as a novel EEG encoder
architecture that employs vector quantization and Con-
former blocks to enhance the extraction and utilization
of EEG information.

• We propose bootstrapping the training of the EEG
encoder by aligning its representations with pre-trained
language models (LMs). Our bootstrapping method
adapts to various decoding tasks by leveraging different
sources of language guidance, including word-level,
sequence-level, and context-level modeling strategies.

• Extensive experiments and ablations were conducted
on decoding tasks including EEG-to-word classification,
EEG-to-sentence decoding, and zero-shot sentiment
classification to evaluate the effectiveness of the proposed
methods. Internal comparison between ablated models
and external comparison with existing methods show
that our proposed approach improves performance across
these EEG decoding tasks.

II. RELATED WORK

A. Decoding Language From Human Brain Signals
Existing research on brain-to-language decoding includes

both invasive [18], [19] as well as noninvasive approaches [6],

[20], [21]. Compared to an invasive approach that requires
sensor array implantation, non-invasive methods are less risky
and more accessible. Among non-invasive techniques, EEG
offers higher temporal resolution than magnetoencephalogra-
phy (MEG) [6] and functional magnetic resonance imaging
(fMRI) [21], making it particularly suitable for linguistic
applications. Consequently, our research focuses on language
decoding from EEG. Due to the underlying neural processes
involved in speech production, pioneers mainly focus on
decoding subword units [22], [23], [24]. For instance, [25]
proposed to extract auto-regressive coefficients as features
for imagined syllable classification with a k-nearest neighbor
(KNN) classifier. [26] leverages the Hilbert transform to
extract features and classify the syllables using a Bayesian
classifier. To decode higher-level semantics, numerous studies
have dedicated efforts to word-level classification using
EEG signals [27], [28], [29], [30], [31]. For instance,
[32] have evaluated various convolutional neural network
(CNN) architectures for decoding imagined speech from EEG,
showcasing the potential of deep learning approaches in
improving classification accuracy. However, most of these
studies have trained and evaluated their models on a dataset
comprising a vocabulary of only 4 to 10 words, which
can be insufficient for conveying daily communication [33].
To decode EEG into sentences with a larger vocabulary
size, [34] proposes a novel Adaptive Graph Attention
Convolutional Network (AGACN) to decode sentences or
phrases from EEG signals, achieving high classification
accuracy and demonstrating the feasibility of decoding
silent reading with complex semantics from EEG signals.
More recently, EEG decoding methods have predominantly
employed end-to-end generative approaches leveraging large
language models as decoders. For instance, EEG-to-Text [13]
pioneered open-vocabulary decoding of EEG signals into
sentences, establishing an initial performance benchmark
while DeWave [35] advanced decoding performance by
performing raw wave decoding. Different from their works,
we focus on improving the EEG encoder architecture and
leveraging various language supervision strategies, including
word-level, sentence-level, and context-level strategy, to guide
the training of the EEG encoder to achieve better performance
in various language decoding tasks.

B. Learning Representations by Natural Language
Supervision

Training effective representations for EEG signals is
critical to achieving high decoding performance. Recent
deep learning methods have shown that language modalities
can guide the training of semantically aligned multimodal
representations, as demonstrated in visual-language [15],
[36], video-language [37], and audio-language [38], [39],
[40]. Unlike conventional end-to-end supervised learning, the
use of natural language supervision introduces additional
semantic information and zero-shot generalization capacity to
the representation space of non-language modalities. Current
methods for leveraging natural language supervision often
involve jointly training both the non-text encoder and the
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Fig. 2. The overall framework of the proposed approach. After segmenting and applying frequency-domain transform in the preprocessing step,
we obtain a sequence of frequency-domain word-level EEG embedding e for each word. Then, we use a D-Conformer to encode e into discrete
EEG representations b. These discrete EEG representations will be used as inputs to a subsequent decoder model as conditions for language
decoding. To learn semantic EEG representation, we bootstrap the learning of language-aligned EEG representations by training the model using
a contrastive objective between b and the language representation w. A pre-trained LM is used to generate these language representations. A total
of three strategies are designed to bootstrap the learning of language-aligned EEG representations for different tasks. Including the (a) word-
level strategy where we sample positive and negative word representations for each word-level EEG representation to provide dense supervision
information, (b) sentence-level strategy where we only provide sentence-level supervision to the whole EEG sequence, and (c) context-level strategy
where we provide word-level as well as context information supervision for each EEG representation.

text encoder [15], [37], [41]. For instance, CLIP [15]
jointly trains a text encoder and an image encoder using
contrastive learning between images and captions. Similarly,
VideoCLIP [42] trains encoders for video and text modalities
using a contrastive objective between video frames and
their descriptions. However, these methods require large-scale
multimodal data pairs to train both encoders from scratch,
leading to high training costs. To address this, another branch
of research leverages frozen pretrained unimodal models
and performs cross-modal alignment instead of training both
encoders from scratch [36]. In the field of EEG-to-language
decoding, the incorporation of language guidance at the
beginning of training an EEG encoder remains unexplored.
The absence of a pretrained EEG encoder on a large dataset
also hinders the adoption of this approach. Furthermore, the
most effective modeling strategies for aligning EEG and
language modalities are unclear. To address this research
gap, we propose training an EEG encoder using guidance
from a pretrained text encoder. To determine the optimal
modeling methods, we design and compare sentence-level and
context-level modeling strategies with word-level strategies,
investigating their impact on subsequent decoding tasks.

III. METHOD

The proposed BELT method comprises the D-Conformer for
EEG encoding and a bootstrapping scheme for training the
D-Conformer. The overall framework of BELT is illustrated
in Fig. 2. After preprocessing, the D-Conformer encodes the
EEG signals into discrete representations, each corresponding
to the brain dynamics for a word. To bootstrap the training of
semantic EEG representations, we use a pretrained language
model to provide supervision through a contrastive learning
objective. To optimize performance across different decoding
tasks, we designed various bootstrapping strategies leveraging
word-level, sequence-level, and context-level supervision.

The remainder of this section is organized as follows:
Section III-A introduces the preprocessing steps crucial for
converting raw EEG signals into the proper input format for
the D-Conformer. Section III-B provides a detailed description
of the D-Conformer encoder, including its Conformer building
blocks and the vector quantizer used to discretize the EEG
representation. Section III-C presents our bootstrapped training
scheme. Lastly, Section III-D explains how we applied the D-
Conformer model to various decoding tasks and details the
final training objectives.

A. EEG Signal Preprocessing
In the preprocessing step, the EEG signals are transformed

into word-level embeddings using frequency-domain transfor-
mation. First, the EEG recordings are segmented according
to the eye-tracking fixation on each word. Following the
preprocessing pipeline in previous works [13], [43], the
segmented EEG signals are band-pass filtered into eight
frequency bands: theta1 (4-6Hz), theta2 (6.5-8Hz), alpha1
(8.5-10Hz), alpha2 (10.5-13Hz), beta1 (13.5-18Hz), beta2
(18.5-30Hz), gamma1 (30.5-40Hz), and gamma2 (40-49.5Hz).
The Hilbert transform is then applied to each channel. Finally,
word-level EEG embeddings are obtained by averaging the
frequency band power within each frequency band. In the
remainder of this paper, we denote the word-level EEG
embedding as e and the corresponding word as w.

B. Discrete Conformer for EEG Encoding
After preprocessing the EEG data into word-level embed-

dings, we introduce the D-Conformer EEG encoder to
extract discrete representations. The proposed D-Conformer
consists of a number of Conformer blocks and a vector
quantizer. They are explained in Sections III-B.1 and III-B.2
respectively.
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Fig. 3. The detailed structure of the proposed D-Conformer architecture
for EEG encoding. The D-Conformer encoder uses EEG embeddings e
as input and outputs discrete EEG representations b. Our D-Conformer
is comprised of 6 Conformer blocks and a vector quantizer. Each
Conformer block contains a convolution module for exploiting local
patterns within the EEG embeddings and a multi-head attention layer
for exploiting global information from all input EEG embeddings. The
outputs of the Conformer model are fed to a vector quantizer where each
continuous EEG representation h is replaced by a discrete codebook
code from the discrete codebook V. Finally, we obtain the discrete EEG
representation b for each word from the D-Conformer.

Fig. 4. The detailed structure of the convolution module used in the
conformer blocks.

1) Conformer Block: A critical step in EEG encoding
is handling the input signal’s multi-channel characteristics
and temporal dynamics. Thus, exploiting the local patterns
within channels or the change of patterns when reading
through a sentence is crucial for effective pattern extraction
in linguistic tasks [44], [45]. However, traditional transformer
models lack the mechanisms to effectively capture the local
patterns [46]. To overcome this limitation, we proposed to
utilize a Conformer block in our encoder to extract local
patterns within each EEG embedding as well as the contextual
information among the EEG embeddings in a sentence
simultaneously.

As depicted in Fig. 3, our D-Conformer is comprised of
six conformer blocks. Each conformer block contains four
modules including a feed-forward layer, a convolution module,
a multi-head self-attention layer, and another feed-forward
layer. The convolution module is depicted in Fig. 4, which
is in turn comprised of two pointwise convolution layers
and a depthwise convolution layer. Detailed configuration
of the convolution module is listed in Table I. The first
pointwise convolution layer of the convolution module uses
the gated linear unit (GLU) as the activation function. A batch
normalization layer and a swish activation function were
also used after the depthwise convolution layer. Overall, the
Comformer blocks take the EEG embeddings e as input and
output the continuous EEG representation h.

TABLE I
DETAILED CONFIGURATION OF THE CONVOLUTION MODULE

2) Vector Quantizer: To achieve representations that better
conserve the important features of the word-level EEG
segmentations, we further quantize the EEG representations
into discrete codes using a vector quantizer. After word-level
segmentation, each EEG embedding has been associated with
a unique language symbol (e.g., a word). Hence, it can be a
more natural fit to represent these EEG symbols in discrete
representations [47]. Specifically, a vector quantizer ze(h) is
added after the conformer blocks to map each word-level
EEG representation h into a discrete code b by finding the
nearest discrete element v from a codebook V ∈ RK×D . The
codebook V contains K discrete embeddings {v1, · · · , vK },
with each embedding being a vector of size D. A fully
connected layer is used to adjust the size of h to D for
calculating and comparing the distances between vi and h.
The codebook of the vector quantizer is randomly initialized
when building the D-Conformer. Mathematically, the vector
quantizer finds the nearest discrete code for each EEG repre-
sentation by applying the following nearest neighbor lookup
algorithm:

b = ze(h) = vk, k = arg min
j

∥h − v j∥
2
2, (1)

where ∥h j − v j∥
2
2 denotes the Euclid distance between h and

a codebook embedding v j . We use Lvq (Equation 2) to train
the discrete codebook V. The Lvq comprises two terms. The
first term is the codebook loss for updating the codebook V
and the second term is the commitment loss to keep the output
ze(h) close to input h.

Lvq = ∥sg [ze(h)] − v∥
2
2 + β ∥ze(h) − sg[v]∥

2
2 , (2)

where sg [·] denotes the stop-gradient operation for the
straight-through gradient estimation process [48]. During the
forward pass, sg [·] is equivalent to an identical function
and passes zero partial gradients, constraining its operand
to be a non-updated constant. Coefficient β is a coefficient
that controls the impact of the commitment term, we set
β to 0.3 in our experiments. This commitment term helps
constrain the EEG representations h from the Conformer
model to be compatible with the discrete codes from
the codebook. Due to the non-stationarity nature of EEG
signals, quantizing the EEG representation could reduce
the variations by replacing the EEG representation h with
its discrete counterpart b and consequently increase the
EEG encoder’s robustness against subject-specific noise and
perturbations while conserving key information from the EEG
embeddings.
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C. Bootstrapped EEG-to-Language Training for
D-Conformer

Nonetheless, the D-Conformer alone cannot guarantee
the extraction of semantic EEG representations without an
appropriate learning method. To address this, we employ
EEG-language alignment to bootstrap the learning of the
D-Conformer. Considering that different decoding tasks
may emphasize different types of information, we designed
strategies to use word-level, sequence-level, and context-level
language representations to adapt our method to various tasks.
Specifically, we utilize a pretrained Bart model [17] to provide
these language representations for corresponding sentences,
which are then aligned with the D-Conformer’s outputs. This
alignment process allows the D-Conformer to extract semantic
information from EEG signals.

1) Word-Level Bootstrapping Strategy: For tasks that focus
on decoding precision, we consider providing dense language
guidance on the word level. In this strategy, we align the
discrete EEG representations b to the word embedding w. The
sampling method between the word embeddings and the EEG
representations is illustrated in Fig. 2.(a), where we sample
the corresponding word as positives and others as negatives.
Let M = {w1, · · · , wn; b1, · · · , bn} represent a mini-batch
containing n EEG-word representation pairs, we will use the
following contrastive term Lw

cl during training:

Lw
cl = E

i≤n

−log
f (bi , wi )

f (bi , wi ) +
∑
i ̸= j

f (bi , w j )


f (bi , w j ) = exp( fe(bi )

T fw(w j ))/τ, (3)

where fe and fw are linear layers that align the input
dimensions for the discrete EEG representation and the word
embedding, respectively. τ is a temperature hyperparameter.
We apply masking to words outside the vocabulary set of the
language model, as well as for padded elements in the input
sequences so that they do not affect the training process.

2) Sentence-Level Bootstrapping Strategy: Unlike the word-
level strategy, which enhances precision in decoding tasks by
focusing on individual words, sentence-level representations
from an LM emphasize the topical information of the entire
sentence. This approach is particularly beneficial for tasks
such as sentiment classification from EEG signals. To generate
sentence-level EEG representations, we add a global pooling
layer to the outputs of both the D-Conformer and the word
embeddings, thereby obtaining sequence-level representations
from both EEG and text modalities, as demonstrated in
previous works [37], [41], [49], [50]. We denote the sentence-
level EEG representation and the sentence representation after
pooling the word-level representations as b̄ and w̄. As depicted
in Fig. 2.(b), we treat all sentences other than the ground truth
as negative samples. Thus, the contrastive term for sentence-
level bootstrapping Ls

cl can be expressed as follows:

Ls
cl = E

i≤n

−log
f (b̄i , w̄i )

f (b̄i , w̄i ) +
∑
i ̸= j

f (b̄i , w̄ j )

 , (4)

Fig. 5. Various decoding tasks from EEG signals using the proposed
D-Conformer.

where i , and j are indexes sampled from a mini-batch
containing n pairs of EEG sequences and sentences.

3) Context-Level Bootstrapping Strategy: The context-level
strategy is designed to introduce guidance from the deeper
representation of a pretrained LM, mirroring how humans
gradually grasp sentence meaning by assimilating semantic
cues from multiple words. Illustrated in Fig. 2.(c), the
context-level modeling strategy aligns the EEG encoder’s
representation space with a specific transformer block from the
LM encoder. We denote the context-level word representation
as c = L M(w) which is output by the Transformer layer of
a LM. We use the same sampling strategy between the EEG
and words in the word-level modeling strategy to obtain the
following contrastive term:

Lc
cl = E

i≤n

−log
f (bi , ci )

f (bi , ci ) +
∑
i ̸= j

f (bi , c j )

 (5)

D. Decoding Tasks and Training Objectives
When combined with different decoders or classifiers,

discrete representations from our D-Conformer can be utilized
for multiple tasks, including EEG-to-sentence decoding, zero-
shot sentiment classification, and EEG-to-word classification.
The overall model structure for each task is depicted in
Figure 5.

1) EEG-to-sentence Decoding: As depicted in Figure 5(a),
we aim to generate the target sentence S using a sequence
of word-level EEG representations E = {e1, · · · , eL}, with
L being the maximum length of the input EEG sequence.
These EEG inputs will be first encoded into discrete
representations by the D-Conformer model and the discrete
EEG representations will in turn used as input to a LM
decoder. Following the settings proposed in [13] and [35],
we use a pretrained BART model [17] as decoder in this
task. For training our model, we train the model for end-to-
end EEG-to-sentence generation using the machine translation
loss Ltr = −

∑
log p(S|E). Additionally, we employ Lvq for

training the discrete codebook and Lcl to bootstrap the learning
of the semantic representation space. The final loss function
can be written as follows:

L = Ltr + αLr
cl + λLvq , (6)

where α and λ are coefficients used to control the weighting
of the bootstrapping term and the codebook training term.
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The bootstrapping strategy is determined by r ∈ {w, s, c},
corresponding to word-level, sentence-level, and context-level
strategies, respectively.

The performance of the translation task is measured
using the bilingual evaluation understudy (BLEU) score [51]
and the recall-oriented understudy for gisting evaluation
(ROUGE) score [52]. The ROUGE scores are a set of metrics
(precision, recall, and F1-score) used to evaluate the unigram
performance between the target and generated sentences.
On the other hand, the BLEU scores assess the quality of
generated text by comparing n-gram matches between the
target and the generated sentence. The BLEU-N score is
calculated as BLEU − N = bp × exp(

∑N
n=1 ςn log pn), bp =

exp(1 −
lt
lg

), where bp = exp(1 −
lt
lg

) is the brevity
penalty term, lt and lg are the lengths of the generated
translation and the closest target translation, respectively,
and ςn = 1/N is the weight assigned to each n-
gram precision score. We evaluate BLEU-1,2,3,4 scores in
this paper.

2) Zero-shot Sentiment Classification: Building on the
previous EEG-to-sentence decoding model, we can perform
zero-shot sentiment analysis using a sentiment classifier
that has not been trained on the same dataset as the
EEG-to-sentence decoding model, as exemplified in [13].
The zero-shot sentiment classification pipeline is depicted
in Figure 5(b), where the EEG-to-sentence decoding model
and the sentiment classifier are trained individually using
different datasets. For the EEG-to-sentence decoding model,
we use Equation 6 for training as described in the previous
section. For the sentiment classifier, we experiment with
pretrained BART [17] and XLNet [53], fine-tuning them
using the Stanford Sentiment Treebank (SSTB) dataset [54].
The objective function for training the sentiment classifier is
defined as Lss = −

∑
y log(p(ŷ|S)), where ŷ denotes the

sentiment prediction for an input text sample from the SSTB
sentence-sentiment pairs ⟨S, y⟩, and y is the target sentiment
label. This sentiment classifier is then used to classify
the generated sentences from the EEG-to-sentence decoding
model and output a sentiment prediction. To evaluate the
model’s performance on sentiment classification, we calculate
both micro and macro metrics, including accuracy, precision,
recall, and F1 scores.

3) EEG-to-word Classification: Unlike the sentence decod-
ing task, where we leverage the power of a pretrained language
model as the decoder, we also evaluate the encoder model at
the word level to determine whether the proposed encoding
architecture can encode more precise information from EEG
compared to previous methods. To do this, we select the
500 most frequently occurring words from the sentences in
the training, evaluation, and testing splits for training and
evaluating word-level classification performance. As depicted
in Figure 5.(c), we use a multi-layer perceptron (MLP)
classifier to output the probability distribution over the selected
vocabulary set using the discrete EEG representations from
the D-Conformer encoder. Given the challenging nature of
this task, we use top-10 accuracy as our evaluation metric,
following [6]. To train our model for classification, we employ
a cross-entropy loss, denoted as Lce = −

∑
z log p(ẑ|e),

TABLE II
DATASET STATISTICS FOR EACH DECODING TASK

where z and ẑ denote the ground truth word and the word
prediction, respectively. When incorporating the Lvq and Lcl
terms, the full training loss is written as follows:

L = Lce + αLr
cl + λLvq (7)

IV. EXPERIMENT

A. Dataset
We use the ZuCo dataset [43], [55] to conduct our

experiments and evaluate our proposed model. The ZuCo
dataset comprises EEG data recorded during a natural
reading task, supplemented by eye-tracking data for word-
level segmentation. It includes 105 EEG channels, with EEG
waves denoised and filtered into eight frequency bands after
segmentation. A more complete preprocessing details can be
found in the dataset paper [43]. The dataset features two
reading tasks: normal reading (NR) and task-specific reading
(TSR). In the NR task, text passages are sourced from online
movie reviews and Wikipedia. The TSR task provides ground-
truth sentiment labels in three categories: positive, neutral, and
negative. For fair comparison with existing methods, we follow
the data division approach outlined in [13], splitting the data
into training, validation, and testing sets with proportions
of approximately 80%, 10%, and 10%, respectively. The
distribution of training samples for each tasks is detailed
in Table II. In particular, for word-level classification tasks,
we select the 500 most frequently occurring words from
the sentences. These sentences are obtained from sentence
decoding task across each dataset split.

B. Implementation Details
We use a D-Conformer encoder with 6 Conformer blocks in

our experiments, each comprising 8 attention heads. The size
of the output EEG representations is set to 840. For the vector
quantizer, we set the number of discrete codebook embeddings
K to 1024 with the codebook embedding size D to be 1024.
All models are trained on Nvidia A40 GPUs. During training,
we use a learning rate of 5e-6 and a batch size of 64. For
the loss function, we set α to 0.9 and λ to 1.0. We train our
model for a total of 60 epochs, with the best model selected
based on validation set performance before evaluation on the
test set. We use the SGD optimizer [56] for all training.

C. EEG-to-Sentence Decoding Performance
The performance for the EEG-to-sentence decoding task

is presented in Table III. We primarily report results using
word-level bootstrapping, as it achieves the best performance
for this task. A comparison of different bootstrapping
strategies will be presented and discussed in Section IV-F.2.
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TABLE III
BRAIN-TO-SENTENCE DECODING RESULT

TABLE IV
EEG-TO-SENTENCE DECODING EXAMPLES

Overall, our model achieves state-of-the-art BLEU scores of
(42.31, 25.26, 14.81, 8.73) and ROUGE-1 precision, recall,
and F1-scores of (36.06, 29.86, 32.57). External comparisons
show that our model outperforms EEG-to-Text [13] and
Dewave [35] on both metrics. Notably, the main differences
between these models lie in the design of the EEG
encoder. Compared to the EEG-to-Text method, both our
method and the Dewave method encode EEG into discrete

representations, indicating that encoding EEG signals into
discrete codes is more robust to noise than continuous
encoding. Additionally, compared to the Dewave method, our
Conformer-based encoder further exploits spatial dependencies
within EEG inputs, contributing to improved sentence
decoding performance.

In Table IV, we present examples of sentence decoding
results using the proposed method for qualitative evaluation.
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TABLE V
ZERO-SHOT SENTIMENT CLASSIFICATION RESULT ON ZUCO DATASET

The examples illustrate semantic similarity by comparing
Levenshtein distances between phrases of the target and
decoded sentences. Despite the inherent challenges of EEG
decoding, our model significantly improves both single-word
decoding precision and the semantic similarity of the decoded
phrases.

From on the decoded results, we observe that our method
is capable of decoding the verbs and nouns that contain the
critical information of a sentence. For instance, in sentence (3)
“was born in” vs. “was born in” and in sentence (4) “moved
to” vs. “move to”, our model correctly decoded the action
to be taken in a sequence of EEG signals. This characteristic
could be critical in some tele-control applications. In addition,
our model also decodes critical concepts such as “Catholic”,
“family”, “president”, and “politics”. This suggests that in the
future if more training data is available, our proposed model
could help convey sophisticated or even philosophical ideas
using EEG signals.

When it comes to short phrases, the proposed method tends
to decode semantically similar translations. Such as in sentence
(7) the second son of former President vs. the younger son of
President and in the sentence (8) fill the void vs. serve the
gap. We hypothesize this issue is due to two reasons. The first
and major reason is that the EEG representation extracted by
our model still lacks discriminative power for the subsequent
language model to recognize when the EEG signal is collected
from a new person or from a different session. Secondly,
we hyporheic another reason could be that when reading a
sentence, the words instead provoke the reader to paraphrase
the words into some meanings or inner sentence that the person
is familiar with or can relate to. This process could potentially
help the reader understand unfamiliar or complex ideas in the
sentence better and quickly. Therefore our model decodes a
similar meaning or situation that the reader is actually related
to or thinking of instead of the words displayed on the screen.

D. Zero-Shot Sentiment Classification Performance
In addition to the EEG-to-sentence decoding task, we also

evaluate the performance of zero-shot sentiment classification.
Here, we use the sentence-level bootstrapping strategy for
training the D-Conformer model. As can be observed from
the quantitative results displayed in Table V, our method

TABLE VI
TOP-10 ACCURACY (%) FOR WORD-LEVEL CLASSIFICATION

Fig. 6. Visualization of top-10 word level prediction results.

substantially outperforms the baseline method. We could also
observe that finetuning a larger sentiment classifier (XLNet)
has a positive impact on all classification metrics. Overall,
we observe that when using the same BART classifier,
our method gains a 5.2% improvement in accuracy. When
replacing the zero-shot sentiment classifier with the XLNet
model, we additionally achieve an +8.8% improvement in
classification performance.

E. EEG-to-Word Classification Performance
The sentence and sentiment tasks assess the encoder’s

ability to capture high-level information, with the powerful
language decoder compensating for any missing details to
generate coherent sentences. To more accurately evaluate
the encoder’s capability to capture word-specific patterns,
we use a simpler MLP classifier for the EEG-to-word task,
avoiding the influence of a powerful language model decoder.
This approach allows us to directly compare the encoder’s
ability in learning word-specific features. Since no existing
studies have tackled word-level classification using the Zuco
dataset, we implemented the encoders from the EEG-to-
Text model [13] and the Dewave model [35] for external
comparison with our method. Given the lack of contextual
information in the word-level task, we exclusively use the
word-level strategy for training the D-Conformer model.
Evaluation results, presented in Table VI, indicate that our
model predicts the correct word with a top-10 accuracy of
31.04%, outperforming other methods. Fig.6 shows decoding
results from the test set using linear probing, demonstrating
that our word-level bootstrapping training enhances the
semantic richness of EEG representations. For instance, when
predicting “intelligence”, our model also identifies “school”,
“university”, and “college” as highly probable candidates.

F. Ablations Studies
1) Ablation on Encoder’s Design Components: We evaluate

the impact of the proposed encoder improvements on EEG
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TABLE VII
IMPACT OF DIFFERENT BOOTSTRAPPING STRATEGIES

decoding tasks using translation and word-level prediction,
as shown in Tables III and VI. In both tasks, we compare the
performance of our model and its ablated versions. Notably,
in Table VI, we observe that word-level classification perfor-
mance decreases when either language guidance or the vector
quantizer is removed during training, indicating that these
design choices positively impact classification performance.
Additionally, the word-level bootstrapping strategy contributes
more to prediction accuracy (+5.78%) compared to the use of
the vector quantizer (+1.44%). This highlights the importance
of learning a semantic representation space in linguistic EEG
decoding tasks. For the sentence decoding task, Table III
shows a similar trend, but both the vector quantizer and
bootstrapping learning contributes to a smaller increase in the
BLEU-1 score compared to the improvement seen in the word-
level task.

2) Ablation on Bootstrapping Strategies: The impact of
different bootstrapping strategies is illustrated in Table VII
for the sentence decoding task and Table V for the sentiment
classification task. For sentence decoding, the word-level
strategy achieves the highest BLEU scores, likely because it
provides more fine-grained and precise information for the
EEG encoder. In contrast, context-level word embeddings,
which contain both word-level and sequence-level context
information, perform worse than the word-level and sequence-
level strategies. This may be due to the general context
information introducing additional noise to the already noisy
EEG signals, making it more challenging to train an effective
EEG encoder. For the sentiment classification task, sequence-
level strategies yield the best results across all sentiment
classifiers. Since sentiment classification considers the entire
sentence rather than individual words, the sequence-level
supervision enables our model to better capture the overall
context and sentiment inclination of the entire sequence.

3) Ablation on Bootstrapping Coefficients: We also investi-
gate the impact of a range of bootstrapping coefficients α

ranging from 0.05 to 0.9 by the word-level strategy with
different EEG encoders. In Figure 8, we present the BLEU-
1 scores for a bootstrapped D-Conformer with or without
the use of vector quantization (red and blue curves), as well
as a comparison between the Conformer encoder and the
Transformer encoder. It is noteworthy that the performance
curve of the Transformer encoder (green curve) corresponds
to the baseline EEG-to-Text model, as they both use the
Transformer architecture for their EEG encoder. We could
observe that the increase in bootstrapping coefficient comes

Fig. 7. The cross-subjects performance for translation tasks. Cross
Sent. denotes the performance of the cross-sentence setting on each
evaluated metric.

Fig. 8. Comparison of BLEU-1 scores for sentence decoding across
varying contrastive coefficients.

with an increase in translation performance from a broad
perspective. With the introduction of the conformer block in
the D-Conformer (the blue curve) to replace the transformer
encoder used in the baseline EEG-to-Text model (the green
curve), our method could reach better performance under
higher bootstrapping coefficients (0.8 and 0.9). However,
we could also observe that the further introduction of the
vector quantization method (the red curve) could bring greater
sensitivity to the final performance relative to the change of
the bootstrapping coefficients.

4) Ablation on Cross-Subject Performance: In this section,
we evaluate the performance in the cross-subject setting,
which is a vital indicator for application on unseen subjects
during training. Unlike the cross-sentence setting as evaluated
in Section IV-C, this section evaluates the performance of
unseen subjects. Figure 7 shows the cross-subject translation
performance for a total of 8 subjects compared to the cross-
sentence result we achieved in the cross-sentence setting. The
radar charts in Figure 7 denote the performance is stable across
different subjects with subjects achieving BLEU-1 scores
ranging from 42.25 to 46.90. However, the variant in longer-
gram BLEU-4 score is larger among subjects ranging from
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9.34 to 12.11. This difference is mainly due to the word-level
strategy we used in the enhancement of single-word decoding
precision.

V. CONCLUSION AND FUTURE WORK

In this paper, we present BELT, which consists of
an innovative D-Conformer architecture for encoding EEG
into discrete representations and a bootstrapping training
method for learning language-aligned EEG representations.
Our experiments show that leveraging supervision from natural
language is an effective way to facilitate the learning of
semantic EEG representations. This is supported by substantial
improvements in various EEG decoding tasks, including
EEG-to-word classification, EEG-to-sentence decoding, and
sentiment classification. The proposed method also encourages
more in-depth exploration and discussion of the pivotal topic
of decoding thoughts into text, which could potentially lead
to numerous new BCI applications. Despite the progress
achieved, there is still room for future improvement in terms
of translation precision and fluency without the implicit use
of teacher-forcing evaluation. In the future, we plan to collect
more language-related EEG data to train a more general EEG
encoder and tackle the fundamental problem of data scarcity
in this research area.
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