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Reframing Whole-Body Angular Momentum:
Exploring the Impact of Low-Pass Filtered
Dynamic Local Reference Frames During

Straight-Line and Turning Gaits
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Abstract— Accurately estimating whole-body angular
momentum (WBAM) during daily activities may benefit from
choosing a locally-defined reference frame aligned with
anatomical axes, particularly during activities involving
body turns. Local reference frames, potentially defined by
pelvis heading angles, horizontal center of mass velocity
(vCoM), or average angular velocity (Aω), can be utilized.
To minimize the impact of inherent mediolateral oscillations
of these frames, such as those caused by pelvis or vCoM
rotation in the transverse plane, a low-pass filter is rec-
ommended. This study investigates how differences among
global, local reference frames pre- and post-filtering affect
WBAM component distribution across anatomical axes dur-
ing straight-line walking and various turning tasks, which
is lacking in the literature. Results highlighted significant
effects of reference frame choice on WBAM distribution in
the anteroposterior (AP) and mediolateral (ML) axes in all
tasks. Specifically, expressing WBAM in the vCoM-oriented
local reference frame yielded significantly lower (or higher)
WBAM in the AP (or ML) axes compared to pelvis-oriented
and Aω-oriented frames. However, these significant dif-
ferences disappeared after employing a low-pass filter to
local reference frames. Therefore, employing low-pass fil-
tered local reference frames is crucial to enhance their
applicability in both straight-line and turning tasks, ensur-
ing more precise WBAM estimates. In applications that
require expressing anatomical axes-dependent biomechan-
ical parameters in a local reference frame, pelvis- and
vCoM-oriented frames are more practical compared to the
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Aω-oriented frame, as they can be determined by a reduced
optical marker set or inertial sensors in future applications
when the whole-body kinematics is not available.

Index Terms— Whole-body angular momentum,
local reference frame, turning gaits, anatomical axes,
biomechanical measures.

I. INTRODUCTION

WHOLE-BODY angular momentum (WBAM) with
respect to the center of mass (CoM) plays an important

role in human balance control. In stable straight-line walking
tasks, it was found to be highly regulated throughout the walk-
ing cycle about all three anatomical axes, following a standard
pattern [1], [2], [3]. Previous research has demonstrated how
humans regulate their WBAM in challenging tasks, such as
on uneven and unpredictable terrain [4], during stair ascent
and descent [5], sloped walking [6], turning tasks [7], [8],
and coping with external perturbations [9], [10], [11]. Humans
continuously adjust their WBAM from standard patterns to
maintain balance, which suggests the potential to assess bal-
ance by quantifying deviations from these usual patterns [12].
WBAM was also found to have close correlations to step
placement [13]. It could help improve the foot placement
estimation by considering the rotation momentum of the body
rather than treating the body as a point mass [14]. Moreover,
understanding WBAM can contribute to the development of
assistive devices to restore efficient walking behavior during
daily life [15], [16], [17]. All these attributes make WBAM
a good option to extract an indicator of balance during daily
life tasks.

WBAM is commonly interpreted in anatomical axes to
enhance the understanding of balance performance across
different anatomical dimensions, as demonstrated in previous
studies [1], [2], [3]. This requires expressing WBAM in a
suitable reference frame aligned with anatomical axes for
reliable estimates during daily-life tasks. Previous research has
used global reference frames (lab-fixed frames) and dynamic
local reference frames (rotating with the body). In straight-line
walking or running tasks, a global reference frame is usually
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used where the axes of a global reference frame are fixed,
such as the ones used for an optical motion capture system
or OpenSim [18]. The anatomical axes are assumed to be
fixed and aligned with the axes of the global reference frame.
However, for activities involving body turns, anatomical axes
also rotate with body direction. Measurements from a global
reference frame lack anatomical significance in such cases.
Therefore, it is often advisable to employ a dynamic local
reference frame which aligns with the fixed anatomical axes
in straight-line tasks and rotating anatomical axes in turning
tasks [19].

Various dynamic local reference frames have been used
during turning gaits. The vertical axis of a dynamic local
reference frame is usually aligned with the global vertical axis,
that is, a dynamic local reference frame is only a rotation of
the global reference frame about the vertical axis [20]. For
instance, dynamic local reference frames oriented by the pelvis
heading [8], [21], or the horizontal center of mass velocity
(vCoM) [7], [22] were found to be frequently used in literature
to express WBAM in different anatomical axes in turning gaits.
Both are continuous local reference frames as the directions of
their axes are determined by the instantaneous pelvis heading
angle or vCoM. Other local reference frames have been used to
assess other biomechanical measures such as the ground reac-
tion force (GRF), which could also be potentially suitable for
expressing WBAM. For example, Mohamed Refai et al. [23]
used a local reference frame which was defined by a vertical
axis, and the line between the beginning and end positions
of the swing foot for each step. Since this local reference
frame changes with each step—its forward axis shifts from
the direction of the current swing foot to that of the con-
tralateral swing foot at heel strike—discontinuity may occur
between steps. This discontinuity leads to discontinuity in the
estimated GRF along horizontal axes, which may influence
its interpretation. In [24], a finite-difference method based on
the position of the whole-body or pelvis CoM at different
time intervals was used to define local reference frames for
expressing horizontal GRF. The authors concluded that it is
better to choose two-time intervals, similar to the definition
of vCoM-oriented local reference frame, to differentiate the
position, as larger intervals result in larger discontinuities
in the local reference frames. Therefore, continuous local
reference frames are recommended for a smooth transition
of WBAM between steps. Although various dynamic local
reference frames have been used in literature, a comprehensive
explanation of the distinctions between different dynamic local
reference frames was barely studied in the literature.

The choice of reference frame has been demonstrated to
alter interpretations of the gait variables during turning gaits.
Ho et al. [25] found that different dynamic local reference
frames had a significant influence on the resulting step length,
step width, anteroposterior (AP) and mediolateral (ML) margin
of stability (MoS) during turning gaits. However, the dif-
ferences among WBAM expressed in various dynamic local
reference frames have not been addressed in the literature. This
oversight complicates comparisons between studies, as varia-
tions in WBAM among different studies could be attributed
solely to the choice of reference frame.

An ideal dynamic local reference frame should provide
stable and anatomically relevant axes in both straight-line and
turning tasks. However, in our previous study [26], dynamic
local reference frames were observed to have oscillations in
the mediolateral direction due to the rotation of the pelvis
or vCoM in the transverse plane with a frequency equal
to the stride frequency, which is referred to as mediolateral
oscillations in this paper. Although it is an expected movement
during gaits, it may lead to a less stable and anatomically
relevant local reference frame. This misalignment may result
in extra uncertainty in interpreting the distribution of WBAM
components along different axes. Additionally, choosing a
local reference frame that rotates with the mediolateral oscil-
lations would also eliminate detailed biomechanical features
related to these oscillations. Our previous research [26] sug-
gested using a low-pass filter to remove the mediolateral
oscillations, aiming to provide a more stable, yet anatomically
relevant reference frame in both straight-line and turning tasks.
It is noted that aligning with the anatomical axes during
straight-line tasks equals aligning with the global reference
frame since the anatomical axes are assumed to be fixed and
align with the axes of the global frame as mentioned before.

Except for the ability to remove the mediolateral oscilla-
tions, the low-pass filter should also avoid excessive smoothing
in turning tasks. The low-pass filter should have a small impact
on the alignment of the local reference frame during the stride
cycles before or after turning while also preserving the turning
features during the turning period. The cut-off frequency
should be lower than the stride frequency and higher than
the turning frequency (the frequency of changing the walking
direction). However, it is uncertain how much low-pass filter-
ing the local reference frame would impact the distribution of
WBAM components around different anatomical axes in both
straight-line and turning tasks.

The purpose of the present study was to answer the fol-
lowing question: How do the differences among the global
reference frame and various non-low-pass filtered (Non-LP)
and low-pass filtered (LP) local reference frames influence the
distribution of WBAM components around different anatomi-
cal axes? This paper included a straight-line walking task and
several turning tasks with different curvatures. Among various
dynamic local reference frames, we chose the pelvis-oriented
and vCoM-oriented dynamic local reference frames which
were commonly used in literature. Additionally, we introduced
an Aω-oriented dynamic local reference frame. It is defined
by the transverse plane body rotation angle calculated by
integrating the average angular velocity of the body [27],
which is averaged over all segments at any moment in
time. Although the Aω-oriented frame has not been used
in literature, the rotation angle calculated by integrating the
average angular velocity has been utilized as a representative
of the total body orientation in different planes in previous
studies [28], [29]. Therefore, the Aω-oriented frame may be
a suitable local reference frame which is more anatomically
relevant than other local reference frames as it is determined
by considering the average orientation of all the body seg-
ments. Our analysis began by investigating the frame angle
differences across the global reference frame, as well as
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Fig. 1. Schematic diagrams for different tasks, (a) straight-line walking
(StrW), (b) slalom walking (SlaW), (c) Zig-zag walking (ZigW), (d) walk-
ing with 180-degree turn (TurW). Five pylons were placed in a line on
the floor with a forward distance of 0.75 m for the SlaW task to guide
the participants, they performed turns less than 90 degrees. For the
ZigW task, these five pylon were placed at two sides of the walkway
with a parallel distance of 1 m and a forward distance of 0.75m, and
participants performed approximately a 90-degree turn. The phase of
interest of each task was denoted by a dashed grey line.

various Non-LP and LP local reference frames. Subsequently,
we compared the differences among the WBAM expressed
in these reference frames to answer the research question.
Finally, we provided insightful explanations of the distinctions
between different reference frames and offered guidance on
selecting an appropriate one. The requirements of being an
appropriate reference frame include aligning well with the
anatomical axes in both straight-line and turning tasks without
having substantial mediolateral oscillations, and being easy
to calculate with optical data and future applications using
inertial measurement unit (IMU) data.

II. METHOD

A. Setup
Ten healthy participants, including four females and six

males enrolled in the experiments with age 27(3) years
old, weight 72.4(10.8) kg, height 1.73(0.12) m, which were
expressed as mean (standard deviation, SD). Research proce-
dures were in accordance with the Declaration of Helsinki
and were approved by the Ethics Committee Computer &
Information Science of the University of Twente (No. 230257).
Informed consent was received from all participants.

Participants were asked to perform several tasks at their
normal walking speed and stride frequency, including walking
along a straight line (StrW), slalom walking (SlaW), Zig-zag
walking (ZigW), and walking with 180-degree turn (TurW)
tasks, as shown in Fig. 1. The mean (SD) of walking speeds
and stride frequencies for StrW, SlaW, ZigW and TurW tasks
are 1.17 (0.16) m/s and 0.91 (0.06) Hz, 1.09 (0.15) m/s and
0.80 (0.05) Hz, 1.04 (0.13) m/s and 0.81 (0.05) Hz, 1.10 (0.15)
m/s and 0.87 (0.06) Hz, respectively. There are two turning
strategies during human walking, the step-turn and spin-turn
strategies [30]. The step-turn strategy was more frequently
used than the spin-turn strategy for both healthy people and
people with diseases [31]. In this paper, we decided to maintain
the same turning strategy and all participants were instructed

Fig. 2. Visualization of the global 9G (black), pelvis-oriented 9P (green),
vCoM-oriented 9vCoM (orange) and Aω-oriented 9Aω (blue) dynamic
local reference frames. (b) Rotation angles between global and dynamic
local reference frames, where the angle of the counterclockwise rotation
as shown in the figure was denoted as negative values.

to use the step-turn strategy to perform a normal turn that is
more common in daily life [31], [32]. All tasks were repeated
3 times. The 3-D kinematics of the participants was recorded
using an optical motion capture system (VICON, Oxford, UK)
with a sample rate of fs = 100 Hz. Optical markers were
placed according to the Plug-in Gait protocol plus one marker
at each 5th metatarsal phalanx, including 41 markers on the
subject’s skin.

B. Data Preprocessing
Data processing was carried out using Matlab (R2023b,

MathWorks). Raw marker position data were filtered using
a zero-phase second-order (biquad), 6 Hz Butterworth low-
pass filter. A full-body model consisting of 22 segments was
scaled for each participant using OpenSim 4.3. The OpenSim
inverse kinematics tool and Analyze tool were employed to
calculate the 3-D segment kinematics of each participant,
including the positions and velocities of the whole-body and
segmental CoMs, orientations and angular velocities of all
segments expressed in the global reference frame.

C. The Definitions of Reference Frames
As shown in Fig. 2(a), the +XG of the global reference

frame was the walking direction of the StrW task, the vertical
axis +YG pointed upwards, and +ZG pointed horizontally and
was perpendicular to the walking direction, as defined in the
OpenSim [33]. The vertical axes (+YP, +YvCoM, and +YAω)
of all dynamic local reference frames were aligned with
the global vertical axis. The pelvis-oriented reference frame
ΨP [8] was defined by using the vector from LASI marker
to RASI marker to determine the ML axis (+ZP), and the
right-handed cross-product of +YP and +ZP was taken as the
AP axis (+XP). The AP axis (+XvCoM) of the vCoM-oriented
reference frame ΨvCoM [7] was defined by the vector of the
instantaneous velocity of the whole-body CoM in the trans-
verse plane, and the ML axis (+ZvCoM) was determined by
the cross-product of +XvCoM and +YvCoM. The whole-body
CoM velocity was obtained from the output of the Analyze
tool. The Aω-oriented reference frame ΨAω was defined by
rotating the global reference frame with the transversal plane
body orientation angle. The transversal plane body orientation
angle was calculated by integrating the vertical component
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of the average angular velocity [27] of the body with a time
interval of 1/ fs s. The average angular velocity of the body
was obtained by averaging over all segments, which was

Gωave =

G H
G I

(1)

where G H and G I are the WBAM and whole-body inertia
tensor with respect to the whole-body CoM, respectively. The
vertical component of the average angular velocity of the body
was obtained by Gωave =

Gωave
(
0 1 0

)T . G H and G I were
expressed in the global reference frame ΨG defined in Fig. 1,
and they were calculated as

G H =

22∑
j=1

G HCoM, j

=

22∑
j=1

[(
GrCoM, j −

GrCoM

)
× m j

(
GvCoM, j −

GvCoM

)
+

G I j
Gω j

]
(2)

G I =

22∑
j=1

G ICoM, j

=

22∑
j=1

[
m j ·

G r̃T
CoM, j/CoM

G
r̃CoM, j/CoM+

G I j

]
(3)

where j represents each body segment, a full-body model con-
sisting of 22 segments [34] was used G HCoM, j and G ICoM, j
are the segmental angular momentum and inertia tensor of j-th
segment with respect to the whole-body CoM, respectively.
GrCoM, j and GrCoM are the positions of j-th segment and
the whole-body CoMs, respectively, and Gω j represents the
angular velocity of each segment. GvCoM, j and GvCoM are
the velocities of j-th segment and the whole-body CoMs,
respectively. Whole-body CoM position and velocity were
calculated as the mass-weighted sum of the CoM positions and
velocities of all segments. Body segment inertial parameters
(i.e., mass m j and inertia tensor G I j with respect to the
segment CoM) were calculated using procedures described
by de Leva [35]. G ICoM, j is obtained from the parallel-axis
theorem, where G r̃CoM, j/CoM is the skew-symmetric matrix
of the relative position vector from whole-body CoM to j-th
segment CoM, i.e.,

(GrCoM, j −
GrCoM

)
. The skew matrix of a

vector ρ =
[
ρx , ρy, ρz

]
is defined as:

ρ̃ =

 0 −ρz ρy
ρz 0 −ρx

−ρy ρx 0

 (4)

Please refer to equation (5.51) in [36] for the parallel-axis
theorem in (3) if it is accessible for readers, otherwise one
can refer to equation (14) in [37] for a similar calculation.
All measures are now given in the global reference frame ΨG.
The inertia tensor of each body segment was first given in the
body-fixed reference frame of each segment (ΨB, j ), which is
defined in OpenSim and moves along with the segment. G I j
was then calculated as

G I j =
G RB, j

B, j I j

(
G RB, j

)T
(5)

where B, j I j is the inertia tensor of each body segment defined
in its body-fixed reference frame (ΨB, j ), which is a fixed value.
G RB, j is the rotation matrix between ΨB, j and ΨG, and was
calculated in OpenSim.

Our previous study [26] proposed a method to find the
optimal cut-off frequency and filter order for both StrW and
TurW tasks. Using the same data collected in this paper,
a second-order low-pass filter with a cut-off frequency of
0.5 Hz was found to be optimal in filtering out oscillations
for both StrW and TurW tasks while also preserving the
turning features during the turning period of the TurW task.
As explained in the Introduction, the requirement for a suitable
cut-off frequency is lower than the stride frequency and higher
than the turning frequency (if applicable). All participants
were observed to take 3 to 4 strides for the SlaW task and
5 to 6 strides for the ZigW task to complete a full cycle of
changing direction, thus the turning frequencies of both tasks
are 1/3∼1/4 and 1/5∼1/6 of the stride frequency. A frequency
of 0.5 Hz meets the requirement of being lower than the stride
frequency and higher than the turning frequency. Therefore,
we applied the same low-pass filter as used in the StrW and
TurW tasks.

This low-pass filter was implemented to the frame angles of
a dynamic local reference frame to generate a low-pass filtered
dynamic local reference frame The difference between global
and dynamic local reference frames could be represented by a
rotation angle (θP, θvCoM and θAω), where clockwise rotation
was denoted by negative angles, as shown in Fig. 2(b). The
frame angles of the global reference frame (θG) are always 0.
The frame angles of the LP dynamic local reference frame1

were defined as θP(LP), θvCoM(LP) and θAω(LP).

D. Calculation of WBAM
The WBAM with respect to the whole-body CoM was

first calculated in the global reference frame by (2), and
subsequently was transferred to different Non-LP and LP
dynamic local reference frames by a rotation matrix between
the global and each of the dynamic local reference frames.
For instance, the WBAM expressed in the Non-LP ΨP was
calculated as

P H =
P RG,y (θP) G H (6)

where P RG,y (θP) is the rotation matrix between ΨG and ΨP,
representing a rotation around the vertical axis (+YP) by θP.
All WBAM were normalized for individual participants by
dividing them through a scaling factor based on the partici-
pant’s mass (M , kg), walking speed (V , m/s), and leg length
(L , m), resulting in a unitless angular momentum measure [1].

There are two important considerations to be highlighted.
Firstly, it is crucial to note that the difference between the
WBAM estimated in global and local reference frames only
involves a rotation around the vertical axis. Consequently, the
magnitude of WBAM and the component of WBAM around

1Non-LP and LP local reference frames were both defined by the 6 Hz-low-
pass-filtered marker data and the inverse kinematics derived from OpenSim.
‘Non-LP’ and ‘LP’ indicate whether the local reference frame is low-pass
filtered by the zero-phase second-order Butterworth low-pass filter with a
0.5 Hz cut-off frequency.
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Fig. 3. Frame angles of the global θG, pelvis-oriented θP (green, solid), vCoM-oriented θvCoM (orange, solid), Aω-oriented θAω (blue, solid) dynamic
local reference frames and their low-pass filtered ones (dashed lines with the same color) for a participant performing (a) StrW, (b) SlaW, (c) ZigW,
and (d) TurW tasks. In these plots, the light-gray area represents the phase of interest. The moments of heel strike right (HSR), heel strike left
(HSL), toe-off right (TOR) and toe-off left (TOL) are displayed as vertical blue, red, blue-dashed, and red-dashed lines, respectively. Furthermore,
(a1-b2) shows an example of the +X and +Z axes of the three local reference frames at the moment of HSR and HSL in the StrW and SlaW tasks,
respectively.

the vertical axis remain consistent across different reference
frames. Only the components of WBAM around X (AP axis,
perpendicular to the frontal plane) and Z axes (ML axis,
perpendicular to the sagittal plane) are different, and therefore,
compared in our paper. For simplification, we used AP and ML
WBAM to indicate the components of WBAM around X and
Z axes in the following text. Secondly, it is worth mentioning
that one can also directly calculate the WBAM with respect
to a local reference frame by measuring all variables in that
frame. This approach mirrors the method we used where the
WBAM is first calculated in the global reference frame and
then transferred to the local reference frame. This approach is
detailed in the Appendix for further clarification.

Our analysis was conducted during the phase of interest [8]
of each task as shown in Fig. 1. For the StrW task, we focused
on the phase of interest when the participant’s CoM position
was within the central 4 meters of the walkway, bounded by
the first and last heel strikes. In other turn tasks, the turn
phase (phase of interest) was determined using the pelvis
heading angle. The pelvis heading angle was the same as θP.
We identified the maximum and minimum pelvis heading
angles within stride cycles during StrW trials, averaging them
to establish person-specific positive and negative thresholds,
respectively. The heel strike before the pelvis threshold was

reached was the start of the turn phase. The end of the turn
phase was defined by the first heel strike that occurred after
the pelvis heading angle was reduced below the thresholds.

E. Evaluation Measures and Statistics

In order to provide insights of the global and various
dynamic local reference frames, we conducted an analysis
of the discrepancies in frame angles among these differ-
ent reference frames. We calculated the root mean square
(RMS) of the frame angle differences between the global,
and various Non-LP or LP dynamic local reference frames
(RMSθG−P, RMSθG−vCoM, RMSθG−Aω) in the StrW task to
investigate how the low-pass filter improved the alignment
between local reference frames and the anatomical axes.
Since we do not have a gold standard for anatomical axes,
especially in turning tasks, we compared the RMS frame
angle differences across various Non-LP and LP dynamic local
reference frames (RMSθP−Aω, RMSθP−vCoM, RMSθAω−vCoM)
as evaluation measures to analyse their distinctions in all tasks.

Subsequently, we compared the AP and ML WBAM
expressed in the global reference frame and various Non-LP
and LP dynamic local reference frames. This analysis aimed
to investigate how the differences among the global reference
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Fig. 4. (a) The RMS frame angle differences between the global, and various Non-LP or LP dynamic local reference frames (RMSθG−P,
RMSθG−vCoM, RMSθG−Aω) in the StrW task, (b-e) the RMS frame angle differences across various Non-LP and LP dynamic local reference
frames (RMSθP−Aω , RMSθP−vCoM, RMSθAω−vCoM) in the StrW, SlaW, ZigW and TurW tasks. Mean values with standard deviation error bars over
all trails and participants are displayed.

frame and various Non-LP and LP local reference frames influ-
enced the distribution of WBAM components around different
anatomical axes. The normalized RMS (NRMS, %) of the AP
and ML WBAM differences between the global, and various
Non-LP or LP dynamic local reference frames (NRMSHG−P,
NRMSHG−vCoM, NRMSHG−Aω) were calculated in the StrW
task, and the RMS of the AP and ML WBAM differences
among various Non-LP and LP dynamic local reference frames
(NRMSHP−Aω, NRMSHP−vCoM, RMSθAω−vCoM) were calcu-
lated in all tasks. They were all normalized by the range of
the AP and ML WBAM expressed in their respective reference
frames.

Additionally, linear mixed models were further used to test
the effect of the reference frame on the distribution of WBAM
components in the AP and ML axes before and after low-pass
filtering. The statistical analysis was performed in RStudio
(Posit Software, Boston, USA). Linear mixed models were
fitted for the following outcome measures with the reference
frame as the factor: maximum (Max), minimum (Min) and
range of the AP and ML WBAM, which were extracted during
each step. Random effects for the intercept and slope were
included to take into account the participant effects. Post-hoc
contrasts were tested for pair-wise comparisons between each
pair of reference frames, and a Bonferroni correction was used
to account for multiple comparisons. Significance was assessed
at an alpha level of 0.05.

III. RESULTS

A. Comparisons Before Low-Pass Filtering

In the strW task, all Non-LP dynamic local reference frames
showed differences compared to the global reference frame
(Fig. 3a) with an average of RMS frame angle difference
of 4.8 (1.3) degrees (Fig. 4a). These frame angle differences
resulted in an average of NRMS WBAM differences of 3.5
(1.2)% and 2.1 (1.0)% around the AP and ML axes (Figs. 6a
and 7a), respectively. Significant differences in most WBAM
outcome measures between the global and non-LP dynamic
local reference frames (Table I) were observed, especially
around the AP axis. Detailed distribution (Mean, SD) of the
AP and ML WBAM outcome measures expressed in the
global, various Non-LP and LP dynamic local reference frames
can be found in the supplementary material.

Figs. 3a-d and 5a-d showed that during both the StrW and
turning tasks, Non-LP ΨP and ΨAω showed similarity in the
frame angles and WBAM with only a slight difference, while
Non-LP ΨvCoM showed a large variation compared to those of
Non-LP ΨP and ΨAω. ΨvCoM exhibited a pronounced oscilla-
tory motion around each side of Non-LP ΨP and ΨAω within
each step (see Fig. 3a1-b2). As displayed in Figs. 4, 6, 7b-e,
RMSθP−Aω had an average value of 5.4 (2.5) degrees, leading
to an average NRMSHP−Aω of only 2.3 (1.0)% and 2.8
(1.5)% in the AP and ML axes, respectively, across all tasks.
RMSθP−vCoM and RMSθAω−vCoM had an average value of
11.8 (3.4) and 14.0 (3.8) degrees across all tasks, respectively.
The average value of NRMSHP−vCoM and NRMSHAω−vCoM
across all tasks were 5.3 (2.2)% and 6.3 (2.2)% in the AP
axis, 5.8 (2.1)% and 6.9 (2.5)% in ML axis, respectively. They
were all much larger than those between Non-LP ΨP and ΨAω.
Furthermore, the frame angle differences between Non-LP ΨP
and ΨAω had almost no significant influence in their pair-wise
comparisons in both AP and ML WBAM outcome measures
as shown in Table I, while those outcome measures extracted
from Non-LP ΨvCoM were significantly different from those
of Non-LP ΨP and ΨAω in most conditions. Specifically,
expressing WABM in Non-LP ΨvCoM underestimated the Max,
Min and Range of the AP WBAM, and overestimated the Min
and Range of the ML WBAM compared to Non-LP ΨP or ΨAω

(see Table I and the supplementary material).

B. Comparisons After Low-Pass Filtering
In the StrW task, the low-pass filter decreased the

frame angle differences and WBAM differences between
the global and all LP dynamic local reference frames
(Figures 3a and 5a). The average value among RMSθG−P,
RMSθG−vCoM and RMSθG−Aω decreased to only 2.2
(1.2) degrees (Fig. 4a), and that among NRMSHG−P,
NRMSHG−vCoM and NRMSHG−Aω decreased to only 1.5
(0.9)% and 0.8 (0.5)% in the AP and ML axes, respectively
(Fig. 6a and Fig. 7a). Table I indicated no significant differ-
ences in all AP and ML WBAM outcome measures between
the global and various LP dynamic local reference frames.

Furthermore, the low-pass filter decreased the frame angle
and WBAM differences among different LP dynamic local
reference frames in both straight-line and turning tasks
(Figs. 3a-d and 5a-d), especially between LP ΨvCoM and ΨP or
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Fig. 5. The AP and ML WBAM expressed in the global (black, solid), pelvis-oriented (green, solid), vCoM-oriented (orange, solid), Aω-oriented
(blue, solid) dynamic local reference frames and their low-pass filtered ones (dashed lines with the same color) for a participant performing (a) StrW,
(b) SlaW, (c) ZigW, and (d) TurW tasks. Only one of the stride cycles (from HSR to the next HSR) within a trial was shown. The moments of HSR,
HSL, TOR and TOL are displayed as vertical blue, red, blue-dashed, and red-dashed lines, respectively.

Fig. 6. (a) The NRMS differences of the AP WBAM between the global, and various Non-LP or LP dynamic local reference frames (NRMSHG−P,
NRMSHG−vCoM, NRMSHG−Aω) in the StrW task, (b-e) the NRMS differences of the AP WBAM across various Non-LP and LP dynamic local
reference frames (NRMSHP−Aω , NRMSHP−vCoM, RMSθAω−vCoM) in the StrW, SlaW, ZigW and TurW tasks. Mean values with standard deviation
error bars over all trails and participants are displayed.

ΨAω. Figs. 4, 6, 7b-e indicated that after filtering, RMSθP−Aω,
RMSθP−vCoM, RMSθAω−vCoM had an average value of 4.3
(2.6), 5.1 (2.5), and 7.0 (3.5) degrees, respectively, across all
tasks. The average value of NRMSHP−Aω, NRMSHP−vCoM,
RMSθAω−vCoM across all tasks were 1.8 (1.1)%, 2.0 (1.0)%
and 2.8 (1.4)% in the AP axis, 2.1 (1.4)%, 2.6 (1.4)% and
3.4 (1.9)% in ML axis, respectively. They were all smaller
than those among Non-LP local reference frames. Almost
no significant difference was found in AP and ML WBAM
outcome measures among LP dynamic local reference frames
as shown in Table I.

IV. DISCUSSION

This study investigated how the differences among the
global reference frame and various Non-LP and LP local

reference frames influence the distribution of WBAM com-
ponents in different anatomical axes, during straight-line and
various turning tasks. Firstly, our findings highlighted the
significant impact of the mediolateral oscillations of various
Non-LP local reference frames on the distribution of WBAM
components during the StrW task. This prompts the use of a
low-pass filter to filter out the mediolateral oscillations. Sec-
ondly, we found that among different local reference frames,
Non-LP ΨP and ΨAω displayed similar frame angles and
WBAM during all tasks. The frame angles of Non-LP ΨvCoM
showed a larger difference compared to those of Non-LP ΨP
and ΨAω due to the out-of-phase mediolateral oscillations of
the horizontal vCoM around each of ΨP and ΨAω within each
step (see Fig. 3). The AP and ML components of the WBAM
expressed in Non-LP ΨvCoM were also significantly different
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Fig. 7. (a) The NRMS differences of the ML WBAM between the global, and various Non-LP or LP dynamic local reference frames (NRMSHG−P,
NRMSHG−vCoM, NRMSHG−Aω) in the StrW task, (b-e) the NRMS differences of the AP WBAM across various Non-LP and LP dynamic local
reference frames (NRMSHP−Aω , NRMSHP−vCoM, RMSθAω−vCoM) in the StrW, SlaW, ZigW and TurW tasks. Mean values with standard deviation
error bars over all trails and participants are displayed.

TABLE I
P-VALUES OF THE POST-HOC PAIR-WISE COMPARISONS OF AP AND ML WBAM OUTCOME MEASURES BETWEEN THE GLOBAL, AND VARIOUS

NON-LP OR LP DYNAMIC LOCAL REFERENCE FRAMES IN THE StrW TASK, AND ACROSS VARIOUS NON-LP AND LP DYNAMIC LOCAL

REFERENCE FRAMES IN THE StrW, SlaW, ZigW AND TurW TASKS. A SIGNIFICANT DIFFERENCE WAS INDICATED BY * (p < 0.05).
↑ AND ↓ REPRESENT OVERESTIMATE AND UNDERESTIMATE THE WBAM OUTCOME MEASURES1 , RESPECTIVELY

from those in Non-LP ΨP and ΨAω in most conditions (see
Fig. 5), due to these frame angle differences. Finally, the

low-pass filter decreased the frame angle differences between
the global and all LP dynamic local reference frames in the
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StrW task, as well as among different LP dynamic local
reference frames in all tasks. As a result, all LP dynamic
local reference frames showed no significant differences in
all AP and ML WBAM outcome measures in the StrW task
compared to the global reference frame. Additionally, almost
no significant difference was found in AP and ML WBAM
outcome measures among various LP dynamic local reference
frames.

In future studies, we suggest researchers to low-pass filter
the local reference frames for expressing the WBAM in turning
tasks. Our research revealed that the choice of reference frame
significantly changed the distribution of WBAM around dif-
ferent axes before using the low-pass filter, that is, expressing
WABM in ΨvCoM underestimated the AP WBAM and over-
estimated the ML WBAM compared to ΨP or ΨAω (Table I).
Therefore, it might be cumbersome for researchers to compare
WBAM outcome measures from studies [7], [8], [21], [22]
that used different local reference frames as the differences
might just be a result of the difference in reference frames.
The low-pass filter smoothed out all local reference frames
by filtering out their mediolateral oscillations, diminishing the
differences among them. No more significant difference in the
outcome measures of AP and ML WBAM was found among
them, which was highlighted in our study. Yet, this paper only
investigated how the differences among Non-LP and LP local
reference frames influence the distribution of WBAM com-
ponents around different anatomical axes. It is of interest to
underscore the importance of employing the low-pass filtered
local reference frames by evaluating additional biomechanical
measures that are usually assessed in anatomical axes. These
biomechanical measures may include step length, step width,
AP or ML MoS, CoM-center of pressure (CoP) distance [38],
GRF [39], as well as the anticipated foot placement estimated
by a foot placement estimator [14], etc.

Using low-pass filtered local reference frames not only helps
standardize WBAM comparisons between studies by reducing
variations due to the choice of different reference frames
but also preserves the effects of mediolateral oscillations.
We applied a low-pass filter with a 0.5 Hz cut-off frequency to
smooth local reference frames defined by kinematic quantities
such as the pelvis heading angle, horizontal CoM velocity,
or the average transverse plane rotation angle of all body
segments. Biomechanical parameters (e.g. the WBAM studied
in this paper) that are related to these kinematic quantities
are not low-pass filtered. This approach provides a more
stable and anatomically relevant local reference frame during
turning gaits which is not influenced by the mediolateral
oscillations. Consequently, the critical effects of mediolateral
oscillations on WBAM or other biomechanical measures can
be maintained if expressing them in a low-pass filtered local
reference frame, whereas using an oscillated local reference
frame would obscure these details.

Considering the ease of calculation with optical data when
a full-body marker set is not available, the LP ΨP and
ΨvCoM were more advisable than the LP ΨAω for expressing
anatomical axes-dependent biomechanical parameters. In our
work, ΨP was defined using only two markers, while ΨvCoM
and ΨAω relied on the whole-body inverse kinematics results,

thus a full-body marker set was required, such as the Plug-in
Gait protocol used in this paper. However, reducing the marker
set for estimating vCoM is possible [40], [41], [42]. Although
ΨAω could be a good representative of anatomical axes from
a methodological point of view as it is determined by con-
sidering the average orientation of all the body segments in
the transverse plane, the definition of ΨAω always required
the kinematics of all body segments, and it is difficult to
estimate the whole-body kinematics using a reduced marker
set. Moreover, the similarity between Non-LP (also LP) ΨP
and ΨAω indicated the former is an appropriate alternative of
the latter. Our results also indicated that applying the low-pass
filter to ΨP and ΨvCoM effectively eliminated their frame angle
differences and no significant WBAM differences were found
between them.

When using IMU data in future applications, the LP ΨP
and ΨvCoM were also recommended over the LP ΨAω. The
pelvis heading angle can be estimated with an IMU placed at
the sacrum. Additionally, the vCoM can be estimated using a
sacrum IMU [43] or a set of three IMUs [44]. However, ΨAω

demands a full-body set of IMUs [33] due to its requirement
of whole-body kinematics, which typically requires an IMU
at each body segment. Although learning-based methods for
estimating whole-body kinematics using a reduced set of IMUs
exist [45], [46], their performance heavily relies on the training
motion database. This dependency can limit their applicability
to scenarios not included in the database, and these methods
remain more complex than those for estimating the pelvis
heading angle and vCoM. As a result, regardless of whether
optical data is employed as in this paper or IMU data in future
applications, the LP ΨAω may be less suitable than LP ΨP and
ΨvCoM during turning tasks, as the whole-body kinematics is
not always available. However, care should be taken when
using a reduced marker set or IMUs to estimate vCoM, as the
reduced accuracy may alter the comparable results between
the LP ΨP and ΨvCoM.

While we recommend LP ΨP and ΨvCoM for expressing
WBAM during turning tasks, the choice of reference frames
should be carefully considered to support specific research
questions in other applications and there are cases that other
reference frames are more suitable. For studies that require the
interpretation of other biomechanical measures in anatomical
axes as mentioned earlier, LP ΨP and ΨvCoM may also be
preferable when the whole-body kinematics is not available.
In studies without turns, such as experiments on the treadmill,
a fixed global reference frame is sufficient [25]. When anatom-
ical relevance is prioritized over computational complexity,
such as in studies focusing on body facing direction, the Non-
LP ΨAω should be considered as it is a good representative
of anatomical axes as mentioned above. In cases where a
walkway can be clearly defined [25], a walkway-fixed local
reference frame can be denoted as an anatomical-related frame,
which is free from mediolateral oscillations. It is noted that LP
local reference frames might be expected to align more closely
with the walkway-fixed frame than Non-LP frames. Conduct-
ing such comparisons could strengthen the recommendation
for using an LP pelvis or vCoM-oriented local reference frame
in scenarios where a defined path or walkway is not available.
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Although the low-pass filter reduced the large difference
between ΨvCoM and ΨP or ΨAω, the cause of this difference
is still interesting to be investigated, which has not been
discussed in the literature. Tesio et al. [47], [48] found that the
CoM trajectory had a figure-of-eight shape in the horizontal
plane during straight-line tasks. At the moment of the heel
strike of each step, the CoM oscillates laterally toward the
stance foot, then starts to swing toward what is to become
the next stance foot just after midstance [49]. The effect of
this periodic movement of the CoM trajectory on the vCoM
is that during each step, the mediolateral direction of the
vCoM shifts from the stance foot to the swing leg, while
the swing leg drives the pelvis to rotate in the opposite
direction. As a result, the Non-LP ΨvCoM would oscillate out
of phase around each side of Non-LP ΨP or ΨAω, which
could be observed from Fig. 3a1-a2. A similar explanation
was provided in [50] through a detailed analysis of the phase
difference between the transverse-plane linear and angular
momenta in straight-line and turning gaits. This out-of-phase
mediolateral oscillation of the vCoM led to much larger
RMSθP−vCoM and RMSθAω−vCoM than RMSθP−Aω in all the
tasks before the low-pass filtering, especially around the heel
strikes and early Single Stance (SS) phase, as shown from
Fig. 3 and discussed in [50]. Consequently, the WBAM differ-
ences between ΨvCoM and ΨP or ΨAω are expected to be larger
during Double Stance (DS) phases than during SS phases (see
Fig. 5). This expectation was confirmed by our comparison
of the RMS differences of the AP and ML WBAM across
various Non-LP and LP dynamic local reference frames during
the DS and SS phases (see Table S2 in the supplementary
material).

The optimal cut-off frequency was only determined based
on all participants walking at their normal walking speeds
and stride frequencies with a slow turning frequency, chang-
ing the condition may influence the choice of the cut-off
frequency. In the case of more dynamic movements, the
turning frequency may be higher than 0.5 Hz, a low-pass filter
with this cut-off frequency would also filter out the turning.
Additionally, for patients with very low stride frequencies,
such as those with stroke or Parkinson’s disease [51], 0.5 Hz
might not be low enough to remove oscillations. However, for
healthy adults, 0.5 Hz is lower than the stride frequency even
when they walk at a slow walking speed [52]. Since most
daily activities do not involve high-frequency turns, a 0.5 Hz
cut-off frequency is generally suitable for most daily life
scenarios.

Although comparing across turning tasks was not the central
research question of this paper, there are important contrasts
to share, across turning task analysis. The TurW task only
included a 180-degree turn while the other two turning tasks
were cyclic turns of less than or around 90 degrees. In the
TurW task, turning around the vertical axis is more dominant
than the mediolateral oscillations of local reference frames.
Consequently, the mediolateral oscillations may not be as
pronounced to the WBAM about the vertical axis, compared
to the other two turning tasks. Accordingly, it is expected to
observe that the WBAM outcome measures between the Non-
LP ΨvCoM and Non-LP ΨP or ΨAω had the fewest significantly

different instances in the TurW task (see Table I). It is also
expected that the frame angle, AP and ML WBAM differences
between ΨP and ΨAω were smaller in the TurW task than in
the SlaW and ZigW tasks (see Figs. 4, 6, 7e).

A. Limitations and Future Work
The primary limitation is that we do not have a golden

standard for the anatomical axes during turning tasks, thus
there is also a lack of a golden standard for the WBAM
around different anatomical axes during turning tasks. This
limits our ability to conclude whether the WBAM expressed
in the suggested LP pelvis- or vCoM-oriented local reference
frames accurately represents the true WBAM. It is impor-
tant in future work to address this limitation through the
establishment of a consensus on the golden standard for the
WBAM around different anatomical axes during turning tasks.
Another limitation is that although we have included more
turning tasks than our previous work [26] and the low-pass
filter has been proved to be applicable to the straight-line
walking and various turning tasks, all participants performed
these tasks with a normal speed. Faster or slower speeds
may influence the performance of the low-pass filter as
mentioned, and may vary the degree to which reference
frames impact the WBAM interpretation. Moreover, different
types of low-pass filters [53] could be considered in future
applications.

Additionally, this study focused solely on step turns. When
participants used the spin-turn strategy, characterized by turn-
ing on the ipsilateral limb [54], the distinctions between
local reference frames observed in this paper may differ. For
example, ΨP and ΨAω may be expected to be more aligned.
While young healthy adults (the only population examined
in this paper) prefer step turns, this preference declines in
older populations. Older adults use a higher proportion of
spin turns compared to younger adults. Therefore, an in-depth
analysis of additional data collected from spin turns, from
older adults and individuals with mobility impairments could
provide further insight into the distinctions between local ref-
erence frames during turns. Finally, our work defined dynamic
local reference frames using optical marker data and its inverse
kinematics results, while in daily-life conditions, inertial mea-
surement units (IMU) are more commonly used. Therefore,
it is also essential to assess the complexity and accuracy
of defining different dynamic local reference frames using
IMU data.

V. CONCLUSION

In summary, our study highlights the significant impact
of the choice of reference frame on the distribution of
WBAM components around different anatomical axes dur-
ing straight-line and turning tasks. Employing a low-pass
filter with an optimal cut-off and filter order removed the
inherent mediolateral oscillations of various local reference
frames, which reduced their differences and provided more
stable and anatomically relevant local reference frames. As a
result, the significant differences in the distribution of WBAM
around both AP and ML axes between global and local
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reference frames in the straight-line walking task, and among
local reference frames in all tasks, were eliminated. Employ-
ing a low-pass filter enhances the applicability of dynamic
local reference frames, ensuring more precise estimates of
WBAM. In applications that require expressing anatomical
axes-dependent biomechanical parameters in a local reference
frame, local reference frames defined by the pelvis heading
angle or the horizontal CoM velocity, are easier to apply
compared to the Aω-oriented frame since both of them could
be determined by a reduced optical marker set or IMU
when the whole-body kinematics is not available. Still, the
choice of reference frames should be carefully considered
to support specific research questions in other applications.
These findings are expected to have practical implications for
choosing a suitable dynamic local reference frame for getting
reliable/accurate estimates of biomechanical measures during
functional tasks in daily life.

Supplementary materials of this paper can be
assessed in arXiv (https://github.com/JunHaoZhang1995/
ReframingWABM.git).

APPENDIX A
THE CALCULATION OF WBAM WITH RESPECT

TO A LOCAL REFERENCE FRAME

The WBAM with respect to a local reference frame was
defined as

L H

=

22∑
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=

22∑
j=1
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where L represents one of the dynamic local reference frames,
and all parameters were now measured in the local reference
frame. We have

L I j =
L RB, j

B I j
(L RB, j

) T

L RB, j =
L RG

G RB, j (8)

Substituting (7) into (6) leads to (9), which is shown at the
top of next page.
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