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Abstract— Facial palsy evaluation (FPE) aims to assess
facial palsy severity of patients, which plays a vital role
in facial functional treatment and rehabilitation. The tradi-
tional manners of FPE are based on subjective judgment by
clinicians, which may ultimately depend on individual expe-
rience. Compared with subjective and manual evaluation,
objective and automated evaluation using artificial intelli-
gence (AI) has shown great promise in improving traditional
manners and recently received significant attention. The
motivation of this survey paper is mainly to provide a sys-
temic review that would guide researchers in conducting
their future research work and thus make automatic FPE
applicable in real-life situations. In this survey, we com-
prehensively review the state-of-the-art development of
AI-based FPE. First, we summarize the general pipeline
of FPE systems with the related background introduction.
Following this pipeline, we introduce the existing public
databases and give the widely used objective evaluation
metrics of FPE. In addition, the preprocessing methods
in FPE are described. Then, we provide an overview of
selected key publications from 2008 and summarize the
state-of-the-art methods of FPE that are designed based
on AI techniques. Finally, we extensively discuss the
current research challenges faced by FPE and provide
insights about potential future directions for advancing
state-of-the-art research in this field.

Index Terms— Facial palsy evaluation, facial nerve
function, artificial intelligence, survey.

I. INTRODUCTION

FACIAL palsy is the most common and frequently occur-
ring neuromuscular disorder among humans aged 15 to

50 worldwide. Despite enormous medical progress, facial
palsy has still affected 11 to 40 persons per 100,000 world-
wide, and its incidence has increased over the years [1], [2],
[3]. The typical symptom of facial palsy is the remarked
facial asymmetry. Due to trauma or acquired diseases (stroke,
Bell’s palsy, etc.), the patient suffers nerve damage, which
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makes it difficult to move the muscles of the face for some
facial movements or expressions such as swallowing saliva and
blinking [4], [5]. In addition to making daily life inconvenient
and affecting the physical health of the patient, the functional
disability or impairment from facial palsy can further dras-
tically erode the patient’s psychosocial well-being [6], [7],
[8]. Facial movements or expressions are important in visual
communication and contain much nonverbal information such
as intent, feelings, meanings, emotions, and social interac-
tions [9], [10]. Thus, the inability to perform facial movements
or expressions and the generation of aesthetic deficits can
significantly decrease the quality of a patient’s daily life [11],
[12], [13], which often leads to patients with negative emotions
such as anxiety, depression, and low self-esteem [14].

Facial palsy evaluation (FPE) is the primary step for
facial functional treatment and rehabilitation, ranging from
self-resolution to surgical intervention [15], [16]. The pur-
pose of evaluating facial palsy is to clearly understand the
progression of the disease in clinical practice and provide
a common language for healthcare professionals about the
severity of facial palsy [17]. By using patients’ facial data,
it is possible to evaluate the treatment outcomes and analyze
which rehabilitation plan has a higher likelihood of success
or effect on the physical improvements of patients to facilitate
decision-making and make an appropriate plan for enhancing
the overall quality of care [18]. In addition, early evaluation
of facial palsy can help people prevent the development of the
disease and take proper treatment as early as possible, which
can significantly reduce morbidity.

Traditionally, to conduct FPE, certain facial expressions of
patients are judged in a visual manner by clinicians based
on sophisticated grading scales [3], [19]. The main clinician
grading scales for FPE include the House-Brackmann [20],
Sunnybrook [21], eFACE [22], etc. In general, these tra-
ditional manual evaluation methods have been utilized by
most hospitals and rehabilitation institutions. There is no
doubt that the clinician’s individual experience and perception
are the most critical factors in the process of facial palsy
evaluation. However, a significant issue with this traditional
evaluation is the overly subjective judgments from clinicians
in some cases, which might yield potential bias and low
reproducible results [11], [20], [23]. Moreover, there are also
other limitations, such as the time cost to train clinicians,
the labour intensity to evaluate patients, and the need for
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Fig. 1. The general pipeline of facial palsy evaluation systems: 1) databases, 2) data preprocessing, 3) AI-based FPE methods, and 4) evaluation
metrics.

face-to-face evaluations. Over the years, disease diagnosis
based on artificial intelligence (AI) has been one of the
fastest-growing directions and the most promising application
areas in healthcare [24], [25], [26], [27], [28], [29]. The
machine with AI can mimic human intelligence and make
decisions automatically like a human [30], [31], [32], [33],
[34] and may cause a paradigm shift in healthcare by helping
clinicians make decisions and identify diseases better and
quickly [35], [36], [37], [38].

Currently, technological advances in AI have provided an
automated and objective way for FPE to quantify the severity
of facial palsy. Most current proposed AI-based approaches for
evaluating facial palsy are based on facial images or videos.
In the early period, most researchers manually computed the
distance between the detected facial landmarks for FPE [39].
With the development of AI technologies, many hand-crafted
features have been utilized to represent facial asymmetry and
were adopted by machine learning algorithms to evaluate facial
palsy severity [40]. However, since 2016, deep learning meth-
ods have increasingly been implemented in FPE by researchers
because of the increase in computer hardware abilities, and
have shown impressive performance [17], [41], [42], [43],
[44]. In addition, some researchers have published public and
relatively sufficient training data [45], [46], [47], which further
promotes the transition of FPE from the period of machine
learning to deep learning.

However, the FPE based on AI technologies has not been
reviewed in previous survey papers, which is still an open
challenge. Recently, automated facial nerve function assess-
ment was surveyed in [3] but focused on the perspective of
visual face capture. In contrast with [3], this survey conducts
more specific and detailed research on the main AI-based
FPE. The aim of this survey is to provide a systematic
review of AI-based FPE for the researchers. We observed
that most of these recent state-of-the-art studies mainly used
AI techniques, more specifically, machine learning and deep
learning, on the facial images of patients to assess facial palsy

severity, which is because image or video data is more widely
accessible in clinics or daily life than data from obtrusive
physical interventions such as electromyography (EMG) and
electroneuronography (ENoG) [48], [49], [50], [51]. Acquiring
image or video data requires no special equipment or complex
operation except for cameras. Thus, in this paper, we organise
our survey from four parts involved in the general pipeline of
the FPE systems based on facial images or videos (see Fig. 1):
1) databases, 2) data preprocessing, 3) AI-based FPE methods,
and 4) evaluation metrics. Following this pipeline, this survey
reviews the existing AI-based research from 2008 conducted
to evaluate facial palsy severity. Our study not only reviews
the state-of-the-art development of AI-based FPE but also
discusses the existing research challenges and provides some
guidelines about future directions for researchers regarding the
possible application of AI in evaluating facial palsy severity.

The remainder of this paper is structured as follows.
Section II introduces the existing public facial palsy databases
and briefly reviews the evaluation metrics of FPE. Section III
provides a summary of data preprocessing required in FPE.
Section IV contains a detailed review of the state-of-the-art
work on FPE based on AI techniques, including machine
learning and deep learning. Section V discusses some of the
research challenges in this field and Section VI identifies
potential future directions. Finally, conclusions are drawn in
Section VII.

II. DATABASES AND METRICS

This section introduces the databases and evaluation metrics
used in AI-based FPE methods.

A. Facial Palsy Databases
Generally, AI can be regarded as a kind of data-driven

technology. In principle, some complicated machine learning
or deep learning algorithms always require much training data
to train a good model. Therefore, the need for large, labelled,
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TABLE I
AN OVERVIEW OF THE FACIAL PALSY DATABASES

available databases for training, evaluating, and benchmarking
has been widely acknowledged. This section only introduces
the existing public databases used in our reviewed papers for
AI-based FPE. Since facial images or videos are the most
commonly used data in FPE, the scope of this survey is
restricted to automatic FPE using 2D facial images or videos.
Fig. 2 exhibits some examples of facial palsy images from
these public databases. For completeness, we also provide a
summary of existing public facial palsy databases in Table I,
which provides an overview of these databases.

1) YFP: The YouTube Facial Palsy (YFP) [47] database
is the most extensively used unconstrained database in FPE
systems, which contains 32 YouTube videos from 21 patients.
Some patients have multiple videos in the YFP database. Each
video records the random facial movements and is converted
into an image sequence with 6FPS. In YFP, three independent
clinicians manually labelled the palsy facial regions, eyes,
or mouth when the deformation intensity was considered
sufficiently high.

2) MEEI: The Massachusetts Eye and Ear Infirmary (MEEI)
[45] database is a laboratory-controlled facial palsy dataset
with facial videos and images. The database is composed
of 60 videos from 9 healthy subjects and 51 patients, and
each video contains 8 different facial movements. In addition,
this database provides images of 8 facial movements for each
participant, which contains 480 high-resolution images in total.
In this database, subjects were categorized by eFACE [22]
score: normal (96–100), near-normal (91–95), mild (80–90),
moderate (70–79), severe (60–69), and complete flaccid or
nonflaccid facial palsy (< 60).

3) AFLFP: The Annotated Facial Landmarks for
Facial Palsy (AFLFP) [46] database is a diverse and
laboratory-controlled database that contains facial images
from 88 subjects. For each subject, the AFLFP database
collects 16 expression videos (such as brow raise, close smile,
gentle eye closure, open smile, etc.). The database contains
keyframes of each facial expression video to express the
four key states (neutral, onset, a mid-state between onset and
peak, and peak). This database contains 5,632 facial images,
1,408 samples for each key state, and 64 samples for each
subject. Each facial image was independently and manually
annotated with 68 facial landmarks.

B. Evaluation Metrics
To achieve the AI-based evaluation of facial palsy, a clinical

practitioner must evaluate and label the facial data. Various

Fig. 2. Sample images with facial palsy from different databases. The
images of per row from YFP [47], MEEI [45], AFLFP [46].

evaluation grade scales have been used to evaluate facial palsy
severity for more uniform and accurate results. These scales
divide the degree of facial nerve damage into discrete levels
or continuous scores based on rigorously validated measures.
The House-Brackmann (HB) [20] is the widely used discrete
grade scale for evaluating facial palsy, which grades facial
palsy into six discrete classes from normal to total paralysis
according to the functional performance of facial muscles
(see Table II). In addition, the discrete grade scales could
be a binary value indicating whether the subject has facial
palsy [52], [53], several customized categories of severity [17],
[44], or if a specific face region is paralyzed [47]. Compared
with discrete grade scales, continuous evaluation grade scales
such as Sunnybrook [21] and eFACE [22] comprehensively
consider factors such as the symmetry of the patient’s face
in a stationary state, symmetry during movement, coordinated
movement, and movement amplitude. Continuous values rang-
ing from 0 to 100 are used to score the severity of facial palsy,
with higher scores indicating better facial nerve function.
From the perspective of AI, the task is called classification
when the prediction assigns the facial data of patients into
the predefined discrete classes of facial palsy severity. But
when the prediction output is continuous, the task is called
regression. Therefore, according to the evaluation results of
facial palsy severity, there are two categories of evaluation
metrics: classification metrics and regression metrics.

For the classification task, the performance is usually
reported using four distinct accuracy metrics (the bigger is
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TABLE II
HOUSE-BRACKMANN FACIAL PALSY EVALUATION SCALE

better), including accuracy, precision, recall, and F1 score,
which are formulated as follows:

Accuracy =
T P + T N

T P + F N + F P + T N
(1)

Precision =
T P

T P + F P
(2)

Recall =
T P

T P + F N
(3)

F1 = 2 ×
Precision × Recall
Precision + Recall

(4)

where TP, TN, FP, and FN represent true positive, true nega-
tive, false positive, and false negative, respectively. In general,
to evaluate the performance of a given AI model, multiple
evaluation metrics are usually used because of the presence of
some imbalanced classes in the database [54].

For the regression task, the performance is usually reported
using two error metrics (the smaller is better), including the
root mean square error (RMSE) and mean absolute error
(MAE). These metrics are formulated as follows:

RM SE =

√√√√ 1
N

N∑
i=1

(pi − gi )
2 (5)

M AE =
1
N

N∑
i=1

|pi − gi | (6)

where N is the number of samples in the evaluation set; pi
and gi are the prediction and ground truth of the i th sample.

III. DATA PREPROCESSING

In this section, we briefly summarize the common data pre-
processing steps and their methods in AI-based FPE according
to the reviewed papers, which can improve the data quality and
are beneficial to the utilization of the semantic information
conveyed by the face during training of the AI model.

A. Face Detection
Given a series of training data, detecting the whole face

or facial regions is usually the first procedure for FPE [55],

[56], which aims to remove background and non-face areas.
Fig. 3 (a) exhibits some examples of face or facial region
detection. A classic implementation for face detection is the
Viola & Jones (V&J) detector [57], which has been widely
used for detecting near-frontal faces in FPE [53], [58], [59]
because of its robustness and computational simplicity. Other
FPE methods [4], [60], [61], [62], [63] utilize the Dlib
library [64], another popular open-source face detector. Some
recent FPE works have successfully employed object detection
algorithms, such as Faster R-CNN and YOLO, to perform face
or facial region detection [42], [43], [47], [65], [66], [67], [68].
For a method with higher detection performance and lower
computational cost, see a recent survey [69] for the state-of-
the-art development of face detection.

B. Facial Landmark Detection
After face detection, facial landmark detection is an

indispensable procedure and plays a vital role in FPE to
enhance performance substantially. Currently, most existing
FPE methods represent asymmetry and shape features of facial
images based on 68 or 49 facial landmarks (as shown in
Fig. 3 (b) and (c)). Moreover, accurate facial landmarks can
allow for better facial region detection and focus on the
key facial regions for FPE, thus reducing interference from
unrelated facial areas and improving performance [17], [42],
[43]. Many research studies have performed facial landmark
detection before FPE [4], [43], [52], [58], [63], [70], [71],
[72], [73], [74], [75], [76], [77], [78]. Among these works,
the most widely used facial landmark detection methods in this
field are the active shape model (ASM) [79], active appearance
model (AAM) [80], supervised descent method (SDM) [81],
iPAR-CLR [82] and the ensemble of regression trees (ERT)
[83], which usually trained on the normal facial database such
as LFPW [84], HELEN [85], AFW [86], and 300-W [87].
In addition, other works [17], [62], [88], [89], [90], [91], [92],
[93] used open-source tools for facial landmark detection,
such as Dlib [64], IntraFace [94], Emotrics [95], and Auto-
eFACE [96], which are also widely used in FPE. Recently,
some researchers have used deep learning-based methods of
facial landmark detection in FPE [42], [44], [47], [61], [66],
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Fig. 3. Some face detection and facial landmark detection examples.

[67], [97], [98], [99], such as face alignment network (FAN),
and demonstrated higher localization accuracy than traditional
methods. Landmark detection algorithms are trained using
real patients rather than healthy people, which may perform
better [46], [75], [77]. Please see the survey [100] for a more
exhaustive and state-of-the-art development of facial landmark
detection.

C. Data Augmentation
The models of AI generally require sufficient training data

to ensure better performance and generalization. If there are
small volumes of data, it may run the risk of overfitting.
However, most publicly available databases for facial palsy
do not have enough images for training, and the data imbal-
ance commonly appears in most existing databases. Some
works [17], [42], [47], [62], [66], [67], [71], [92], [97],
[101] incorporated images from facial expression databases,
such as the CK+ database [102], to balance healthy and
paralyzed facial images. The more common strategy is data
augmentation, which can help overcome the problem caused
by datasets with imbalanced classes or small datasets. The
idea of sample augmentation is to increase the variability of
the actual sample dataset by altering the existing samples in
a preset way to simulate variability naturally encountered.
Therefore, data augmentation is a vital step for preparing a
high-quality dataset for training an accurate FPE model, which
ensures an equal number of images in each facial palsy class,
increases the diversity of the training data, and improves the
model’s generalization ability. As shown in Fig. 4, the widely
used data augmentation operations during the training step
in FPE [17], [41], [58], [59], [61], [62], [63], [67], [78],
[101], [103], [104], [105] include random flipping, adding
noise, random scaling, random shearing, etc. Combinations
of multiple operations can generate more unseen training
samples, which can result in a database that is much larger than
the original training data. Please see [106] for more details
about data augmentation.

Fig. 4. Illustration of the dataset augmentation over a sample image.
The images of each row from left to right: raw image, rotating, adding
noise, cropping, shearing, flipping, brightness, and scaling.

IV. AI-BASED FACIAL PALSY EVALUATION

FPE has witnessed promising progress in recent years with
the development of AI techniques, which provide a highly
efficient and cost-effective means to quantify facial palsy
severity automatically and objectively. The evolution process
of AI-based FPE is shown in Fig. 5. In this section, according
to the AI methods used in the literature, we broadly divide
the current FPE approaches into two main categories: machine
learning approaches and deep learning approaches, and pro-
vide an overview of the FPE approaches in these categories.

A. Machine Learning Approaches for FPE
Machine Learning (ML), as a branch of AI, can build a

predictive model trained on labelled image data to predict
the facial palsy severity grade on new data. Recent studies
have shown significant advancements in the field of FPE
using machine learning techniques. For the machine learning
approaches, the facial image data of patients with facial palsy
are firstly preprocessed, and then key features aiding in the
identification of facial palsy are extracted. These hand-crafted
features are subsequently utilized in general machine learning
algorithms, such as support vector machine (SVM), multilayer
perceptron (MLP), random forests (RF), etc., to assess the
facial palsy by mapping the features to the facial palsy severity
grades [107], [108]. Therefore, according to feature types,
we categorize existing machine learning approaches for FPE
into two main categories: appearance feature-based approaches
and geometric feature-based approaches.

1) Appearance Feature-based Approaches: The appearance
features, including facial area texture and colour, are the
most commonly used in FPE. They primarily focus on the
movement capability and symmetry of facial muscles, pro-
viding intuitive assessment indicators that can quickly reflect
the severity of facial palsy and the extent of facial nerve
function damage in patients. LBP is an operator commonly
used to describe local texture features in images and is the
most frequently used feature extraction method in facial palsy
evaluation systems. Many works successfully used partitioned
LBP features to evaluate facial palsy (e.g., [40], [71], [73],
[99], [109], [110]). For example, He et al. [40] extended LBP
to the spatiotemporal domain and used the similarity between
multiresolution LBP (MLBP) features on the left and right
sides of the face to evaluate facial palsy in image sequences.
Other works [109], [110], [111], [112] used filter features
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Fig. 5. The evolution of facial palsy evaluation. From the perspective of the database, there is a shift from an unpublic and small size to a public
and large scale. In terms of methods, the development of facial palsy evaluation can be divided into three periods: the early period, the machine
learning period, and the deep learning period.

such as Gabor and wavelet decomposition to extract specific
frequency or texture information from facial images to analyze
facial nerve function abnormalities.

Some works also tried to combine the above two appear-
ance features to promote the overall improvement of FPE.
In [110], a method was proposed using Gabor filters to remove
noise and redundant information from LBP images of face
regions (e.g., eyebrows, eyes, nose, and mouth) of facial
palsy patients. Similarly, Ngo et al. [109] compared traditional
methods’ facial palsy recognition rates based on single appear-
ance features with methods based on LBP images processed
with Gabor filters (GBLBP) and LBP images decomposed
by wavelet transformation (WLLBP). GBLBP and WLLPB
exhibited higher evaluation rates for facial palsy than previous
traditional methods. However, the effectiveness of GBLBP and
WLLPB varies in detecting facial palsy during different facial
movements. For instance, GBLBP performs better in express-
ing eyebrow movements, while WLLBP performs better in
expressions involving tightly closed eyes and teeth movements.

Additionally, in terms of extraction strategies, most research
works extracted the appearance features of local facial regions
(e.g., [40], [71], [73], [99], [109], [110], [111], [112]). Typ-
ical local feature extraction involves dividing the face into
non-overlapping small segments and applying feature descrip-
tors to each segment to obtain block-based local features. The
local features can be used directly to assess facial palsy, or all
local features can be concatenated to form a feature vector. For
example, Li et al. [99] cropped several segments from each
frame of the video, extracted the LBP features of all segments,
and concatenated them into a single local area motion feature
vector to describe the dynamic changes in the local area. For
FPE, local features can better capture key facial information

and focus on detailed descriptions of specific facial
areas.

2) Geometric Feature-based Approaches: The calculation
of geometric features is based on a set of facial reference
points known as landmarks, which capture statistics derived
from the location of facial landmarks. The machine learning
methods based on geometric features first detect the facial area
in the image and then extract facial landmarks to calculate
other metrics such as distances, angles, and areas between
facial landmarks [93], [113]. In the process of facial palsy
evaluation, these landmark-based measurements are input into
classifiers or regressors for training to determine the degree of
facial asymmetry and facial nerve dysfunction.

Researchers have delved into the facial characteristics of
patients with facial palsy and designed various geometric
features based on facial landmarks that reflect facial asym-
metry. The most common geometric feature analysis involves
measuring the distances between key facial landmarks, which
is used as a key basis for classifying the severity of facial
palsy [114]. In [115], Anguraj et al. proposed a method that
uses the salient point selection algorithm (SPSA) to calculate
the distances between salient points in different expression
states and assesses the degree of facial palsy by comparing the
ratio of distances between salient points on the affected and
unaffected sides. Arora et al. [91] extracted 10 distance-related
landmark features and identified the three most important
features in facial palsy detection. These features were then
input into SVM and Logistic Regression models to identify
facial palsy.

In addition to measuring the straight-line distances between
facial landmarks, researchers have developed a series of land-
mark features based on the full face range, including angles
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Fig. 6. The five landmark features proposed in [90] for FPE are utilized to derive the differences of the left–right (L-R) parts of the face for eye
opening symmetry ratios, brow elevation, mid-facial symmetry, and oral commissure symmetry.

between facial landmarks, ratios of distances, etc., which are
crucial for revealing the asymmetry of facial muscles [58],
[116]. The L-FAM method was proposed in [90], which
includes five landmark features, as shown in Fig. 6. These
features were used to measure the differences in eye-opening
symmetry ratio, eyebrow height, facial midline symmetry, and
oral connection symmetry between the left and right sides
of the face, making it more convenient to repeat measure-
ments of facial asymmetry and severity. In [4], researchers
quantified the degree of asymmetry between the two sides
of the face through a set of landmark-based features, which
used simple mathematical operations to measure the extracted
facial landmarks and could achieve the binary classification
of healthy and facial palsy states without performing specific
facial movements. An efficient classification was achieved by
calculating 29 symmetric measurements (as shown in Fig. 7),
such as angles, inclinations, and distance ratios between facial
landmarks, and inputting these features into the MLP classifier.

In general, full-face landmark features cover the entire
face, providing more comprehensive facial information, but
may require more data and computational resources; regional
features typically require less data volume because they only
focus on specific facial areas, which may make model training
and computation more efficient, but may not capture overall
facial changes comprehensively. For example, in [58], the
researchers divided the face into key areas such as eyebrows,
eyes, nose, and mouth using landmarks and extracted features

highly related to the HB scoring system. These features
were then input into the SVM model for classifying patients
with facial palsy. To explore the different effects and usage
scenarios of full-face and regional features in facial palsy
evaluation, Parra-Dominguez et al. [62] further refined the
facial features based on [4], dividing the facial features into
four facial areas (eyebrows, eyes, nose, and mouth). The study
comprehensively analyzed full-face features and compared the
classification effects based on features from each region. This
study indicates that although full-face analysis has a slight
advantage in accuracy, regional features are also effective in
facial palsy detection, especially when dealing with images
with partial occlusion, still achieving satisfactory results. Con-
sidering the landmarks around the eyes are particularly useful
for measuring the severity of the palsy, Barbosa et al. [53] used
iris segmentation and key point detection based on localized
active contour (LAC) to measure facial symmetry by the
ratio of iris area to the vertical distance between two facial
landmarks on the face, combined with a hybrid classifier based
on rule-based and regularized logistic regression to analyze
and predict the type and severity of facial palsy.

3) System Applications: In practical applications,
researchers have developed a series of integrated automatic
diagnostic systems using machine learning models to evaluate
patients with facial palsy efficiently. In [117], a smartphone-
based application was developed to track facial landmarks
in real-time, complete video capture, and apply grading
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Fig. 7. The proposed 29 symmetric measurements in [4] for FPE include angles, inclinations, and distance ratios between facial landmarks.

algorithms under user interface guidance. The researchers
set up 13 facial landmarks and selected 99 measurement
values, such as triangle area and linear distance. Time
difference vectors were extracted from each measurement
value to quantify facial asymmetry. Similarly, Kim et al.
[52] proposed an automatic diagnostic system based on a
smartphone, which distinguishes patients with facial palsy
from normal individuals by analyzing three types of facial
movements (i.e., rest, smile, and raise eyebrows). The
system calculates the displacement ratio of landmarks in
the forehead and mouth areas to quantify the asymmetry
index and uses SVM to classify healthy and facial palsy
subjects. For computer platforms, Miller et al. [96] further
developed an automated facial palsy evaluation tool called
Auto-eFACE based on Emotrics [95], which can distinguish
between normal faces, flaccid facial palsy, and severe facial

palsy. In [77], the authors introduced a new evaluation tool
called the automatic facial evaluation system (AFES), which
uses 68 facial landmarks on the face to select and segment
static and dynamic features. Specifically, the system extracts
32 static parameters that describe facial symmetry for static
features, divides the face into six key areas, and calculates the
optical flow difference between the left and right symmetric
parts of these areas using the Horn-Schunck method. Finally,
the system integrates static and dynamic feature data for
comprehensive analysis and evaluates it using SVM to obtain
a comprehensive facial function score.

B. Deep Learning Approaches for FPE
Deep learning, a rapidly developing subset of machine

learning, has shown significant advantages over traditional
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Fig. 8. The proposed Deep Hybrid Network (DHN) in [42] is composed
of a face detector, a facial landmark locator, and a palsy region detector.

machine learning in evaluating facial palsy, bringing revo-
lutionary advances in diagnosing and treating facial palsy.
Traditional machine learning methods often use hand-crafted
features that usually require design and selection, which
present certain limitations. Deep learning, especially con-
volutional neural networks (CNNs), can deeply mine facial
feature information and automatically learn unique feature rep-
resentations of paralyzed patients from raw data, significantly
improving diagnostic accuracy and providing more precise
support for the treatment strategies of facial palsy. In facial
palsy evaluation systems, commonly used deep learning mod-
els include VGGNet [118], GoogLeNet [119], ResNet [120],
etc. In the existing literature, based on the different types of
input data, deep learning-based FPE methods can be divided
into two main categories: single-frame based approaches and
multi-frame based approaches.

1) Single-frame Based Approaches: In the FPE systems
based on single-frame images, the application of deep learning
techniques is mainly reflected in two aspects: (a) Deep learning
methods are used to extract facial features, which are used
to assist in the in-depth evaluation of facial palsy; (b) By
constructing end-to-end neural network models, the system can
directly automate the evaluation of facial palsy.

For one thing, deep learning technology is extensively
applied in detecting facial information, significantly improving
the accuracy of facial information extraction and paving the
way for subsequent relevant computations in FPE [59], [74],
[97]. In this process, deep models such as deep convolutional
neural networks (DCNNs) can automatically identify facial
landmarks or extract facial features of the face or other key
regions such as eyes, eyebrows, mouth, etc. These detected
facial landmarks or extracted features can be combined with
machine learning methods to evaluate facial palsy severity
comprehensively. The study in [121] proposed an improved
ResNet model to identify acupuncture points on the face,
achieving quantitative analysis and grading of facial nerve
damage by measuring the angle between the connecting lines
of acupuncture points and the vertical lines of facial left-
right segmentation. Li et al. [65] used Faster-RCNN as an
object detection network to identify the nasolabial area in
face images, followed by semantic segmentation using a
global convolutional network (GCN) to extract nasolabial folds
accurately. By analyzing the length, depth, and direction of
these folds, the researchers establish a quantitative relationship
between the asymmetry of nasolabial folds and the severity
of facial palsy. Raj et al. [60] used a pre-trained CNN to

extract deep features from images, which were then used to
train a support vector regression (SVR) to automatically and
objectively predict facial palsy grading indices. In another
study [122], CNNs are used to detect facial landmarks accu-
rately to quantify facial expression asymmetry.

For another, deep learning technology is also utilized to
design end-to-end network models, which can automatically
learn and extract features from input single-frame images and
then directly output the evaluation results of facial palsy [92],
[105]. Guo et al. [103] used a fine-tuned GoogLeNet model
with transfer learning and data augmentation techniques to
develop an end-to-end recognition method of the degree of
unilateral peripheral facial palsy. Similarly, the authors in [55]
combined GoogLeNet Inception V3 with DeepID to design a
new network structure called Inception-DeepID-FNP (IDFNP)
for FPE. This hybrid method implemented the evaluation of
facial palsy by pre-training the IDFNP on ImageNet without
the final classification layer and retraining it using the authors’
dataset. Sajid et al. [56] proposed an improved CNN structure
that automatically classifies facial palsy based on the HB
scale. The method first applies preprocessed facial images and
their mirrors to two independent CNNs, obtaining maximum
pooling mappings of input facial images and their mirrors,
and then inputs these maximum pooling mappings into the
palsy grading structure composed of the pre-trained VGG16
network to finally classify facial palsy into 5 levels of facial
asymmetry.

In addition, some works identify local facial palsy regions
using target detection algorithms [123]. For instance, in [47],
researchers proposed a hierarchical detection network (HDN)
consisting of three components for facial palsy detection.
The first component, based on YOLO-9000, is designed for
detecting faces in images; the second component conducts
landmark detection; the final component, based on the Darknet
architecture, reduces the number of convolutional layers to
optimize processing speed, effectively locating facial palsy
regions. Furthermore, in a subsequent study [42], they further
proposed a deep hierarchical network (DHN), building upon
the HDN model, as shown in Fig. 8. The DHN network,
also comprising three components, differs from [47] in that
the second component connects facial landmarks according to
facial structure, generating binary images of facial segments.
This method enhances the accuracy of facial landmark and
palsy area detection, capturing changes in facial palsy intensity
over time and providing a new perspective for quantitative
analysis of facial palsy syndrome.

Another interesting idea is to combine semantic segmenta-
tion networks to enhance diagnostic accuracy and efficiency
in FPE [124]. For example, in the work of [41], a cascaded
encoder network architecture was employed to automate the
diagnosis of facial palsy through two main stages, as shown in
Fig. 9. The first stage is a facial attribute semantic segmenta-
tion network, utilizing a fully convolutional network enhanced
with multiscale attention modules to extract facial spatial
information. The second stage is a facial palsy evaluation
network, which predicts the HB level of facial palsy using
a pre-trained VGG16 network structure based on the facial
spatial information extracted in the first stage.
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Fig. 9. The proposed cascaded encoder network architecture in [41]. The architecture comprises a facial attribute semantic segmentation network
and a facial paralysis evaluation network. The two components share the same encoded feature map extracted by E1. This shared feature map
contains compressed spatial information on facial attributes. Please note that E1 indicates information compression, while E2 refers to the spatial
dimension reduction.

Fig. 10. The proposed parallel hierarchy convolutional neural network
(PHCNN) framework in [17].

2) Multi-frame Based Approaches: The above methods
based on deep learning only target static single-frame facial
images by considering the facial asymmetry but ignore facial
dynamic changes, which are crucial for in-depth analysis
of facial palsy. Since facial palsy is dynamic, analysing
still frames is less desirable for diagnosis and analysis.
To accurately capture the dynamic characteristics of the
face, researchers have started to adopt methods combining
multi-frame video data to assess facial palsy (e.g., [17], [43],
[44], [67], [68], [78]). The general idea of these studies is
to input image sequences of the entire face or specific facial
palsy evaluation areas into the designed network model. The
model can obtain dynamic features of the whole face or the
local regions through the network and then effectively integrate
these features to achieve the final classification judgment. The
multi-frame based methods improve the accuracy of facial
palsy evaluation and provide new perspectives for research
in related fields.

The most commonly used network architecture in
multi-frame based approaches for FPE is the long short-term
memory (LSTM). In [17], Liu et al. proposed a region-based
parallel hierarchy convolutional neural network (PHCNN)
combined with the LSTM network structure. The network
structure of this method is shown in Fig. 10. The detected

landmarks are first used to divide the eyebrows and mouth
into two regions of interest (ROIs) for data preprocessing.
Then, the global facial image and the two ROI images are
sent to different sub-network branches. One sub-network is
responsible for extracting the basic contours of facial organs
and the asymmetry differences between the two sides of the
face from the global facial image; the other two sub-networks
focus on learning hierarchical features of the two ROIs,
covering basic shapes and textures to higher-level abstract
semantic information. Then, the obtained global and regional
feature vectors are fused to form the static feature vector for
each frame in the sequence. The static features of consecutive
frames are concatenated into a feature sequence, which is input
into the LSTM network to capture temporal dynamic changes
for FPE. This method integrates global and local features
extracted from facial palsy, capturing richer dynamic facial
information and effectively reducing the impact of non-critical
factors such as age, wrinkles, and changes in the shape and
position of facial organs on feature learning. Furthermore,
employing LSTM can capture temporal dynamic features
in image sequences, significantly enhancing the accuracy of
facial palsy diagnosis.

Also, using the LSTM network structure, Xu et al. [43]
proposed a dual-path LSTM network based on a deep differen-
tial network (DP-LSTM-DDN), aiming to capture both global
and local facial motion features simultaneously. The network
structure of this method is shown in Fig. 11. In this study, the
detected facial landmarks are first used to calculate the facial
midline to achieve symmetry separation of the face and related
areas. Then, the deep differential network (DDN) is used to
extract static difference features between the symmetrical sides
of the face or specific diagnostic regions. The DDN consists
of two main parts: the first part is the bifurcated convolutional
neural network (BCNN), which extracts features from image
pairs, generates feature map pairs, and calculates depth differ-
ence information through the semi-global matching algorithm
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Fig. 11. The overall architecture of the proposed Adaptive Local-Global
Relational Network (ALGRNet) for facial AU detection in [44].

(SGM). In the second part, these differential pieces of informa-
tion are input into the CNN to obtain differential features from
both sides of the face and related areas. These features are then
sent to the LSTM network to learn their dynamic features. The
DP-LSTM-DDN contains two LSTM paths, one focusing on
learning global temporal features and the other on extracting
local temporal features from areas involved in specific facial
diagnostic actions. After feature extraction, global and local
features are fused into a comprehensive feature vector for FPE.

Another solution is to use 3D CNN to replace 2D CNN,
which can learn richer dynamic and spatiotemporal features
in video data, thereby improving the recognition accuracy of
FPE. In the study [67], the 3DPalsyNet model was proposed,
specifically designed to recognize mouth movements and
grade the severity of facial palsy according to the HB scale.
3DPalsyNet consists of two key stages: In the first stage,
the input video data is preprocessed using an integrated deep
model (IDM) for face detection and landmark localization,
followed by cropping the images to retain the facial area and
standardizing the number of frames in the video sequence
to a fixed length. The second stage involves two 3D CNNs,
one responsible for analyzing mouth movements and the
other for assessing the degree of palsy. During the model
training process, the researchers employed a joint supervision
learning strategy using the softmax loss function and centre
loss function, with the introduction of centre loss helping to
improve the distribution between categories and the compact-
ness within categories. Additionally, the researchers utilized
transfer learning techniques, initially pretraining the model on
the Kinetics dataset to complete action recognition tasks and
transferring the model to the facial palsy dataset to fulfil the
requirements for mouth movement analysis and facial palsy
scoring.

Recently, studies have explored using action unit (AU)
detection technology for facial palsy evaluation [125]. Each
AU corresponds to a specific facial muscle activity, can be
individually recognized, and shapes various facial expressions
together. Similarly, the severity of facial palsy can also be
estimated through features of facial muscle areas akin to
the representation of facial expressions. In the study [44],
a novel model named adaptive local-global relational network
(ALGRNet) was designed, as shown in Fig. 12., for detecting

AU and assessing the severity of facial palsy, which is the
first time AU detection technology has been adopted in the
field of facial palsy evaluation, providing a new perspective
for the diagnosis and treatment of facial palsy. Specifically,
the study uses a multi-branch network for AU detection, con-
sidering the information transfer between different branches
and the diversity and individual differences in expression, and
designed three key modules: an adaptive region learning mod-
ule, a skip-BiLSTM module, and a feature Fusion&Refining
module. The model extracts grid-based global features from
the trunk network composed of multiple convolutional layers
and extracts local AU features from the computational area
based on the detected AU centres. It combines deep features
of muscle areas closely related to facial palsy evaluation and
global facial information to generate the final facial features
for facial palsy grade classification.

3) System Applications: Numerous studies based on deep
learning models have successfully developed a range of
automatic scoring systems for evaluating facial palsy patient
images [126]. In [127] and [128], the authors developed an
automated scoring system designed for facial palsy patients,
analyzing nine different facial expression images of patients
and inputting them into a multi-layer neural network, which
can automatically predict the HB level of facial palsy patients.
Researchers have also developed a series of hardware-software
integrated facial palsy detection systems, which provide a
more comprehensive and convenient solution for diagnosing
and evaluating facial palsy. Based on CNNs, the system
in [129] combines Raspberry Pi with digital camera hardware
to propose an automatic facial palsy detection system. Addi-
tionally, researchers have proposed an innovative, intelligent
system [130] designed to assist facial palsy patients in auto-
mated physical therapy at home using 3D-printed headgear and
a smartphone application. The system comprises two neural
network models: the palsy prediction neural network (PPNN)
for assessing the degree of palsy and the routine time sugges-
tion neural network (RTSNN) for suggesting treatment times.
This system aims to reduce the frequency of patients visiting
clinics, thereby enhancing the convenience and efficiency of
physical therapy.

C. Summary
A comparison of the existing AI-based FPE methods is sum-

marized in Table III and Table IV. Recent studies commonly
evaluate their algorithms and can achieve satisfactory perfor-
mance on a specific database that is unpublic and inaccessible.
The databases used in these studies are significantly different
due to their inaccessibility, leading to incomparable results.
Therefore, this survey summarizes performance comparisons
of existing methods by describing the datasets they used.
Some research has shown the impressive performance of the
implications of machine learning in FPE; many hand-crafted
features, including appearance features and geometric features,
were used in a machine learning model to train and evaluate
facial palsy severity. In many cases, geometric features based
on facial landmarks, as the most mainstream, are used as
the basis of many FPE methods based on machine learning.
However, traditional methods for facial palsy evaluation based



ZHANG et al.: ARTIFICIAL INTELLIGENCE-BASED FACIAL PALSY EVALUATION: A SURVEY 3127

Fig. 12. The proposed dual-path LSTM with the deep differentiated network (DP-LSTM-DDN) in [43].

TABLE III
PERFORMANCE SUMMARY OF REPRESENTATIVE MACHINE LEARNING METHODS FOR FPE
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TABLE IV
PERFORMANCE SUMMARY OF REPRESENTATIVE DEEP LEARNING METHODS FOR FPE

on hand-crafted features and machine learning still have spe-
cific limitations, such as being easily affected by the changes
in lighting conditions and the accuracy of facial landmark
detection.

Recently, multiple FPE methods based on deep learning
have demonstrated higher accuracy and reliability in facial
palsy evaluation, particularly when dealing with large-scale

datasets. However, clinical evaluation of facial palsy usually
depends on static facial asymmetry at maximum movement
and dynamic changes during motion. Most FPE methods based
on deep learning focus solely on static asymmetry. Besides,
research in the medical field also shows that features of
facial palsy normally occur in particular areas [131], [132].
Therefore, some researchers have started to study dynamic
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changes and the asymmetry of specific facial areas in deep
learning-based FPE methods.

In summary, various relevant research and rehabilitation
bodies have committed to researching more objective and
universal AI-based FPE systems. These systems can reduce
the influence of subjective factors and facilitate comparing
clinical outcomes. Moreover, AI-based FPE is important in
reducing healthcare costs. It is not meant to replace the
assessment from clinicians completely but to offer a rapid
automated estimation of the patient’s data. The AI-based FPE
can compensate for the deficiency and inherent problems of
traditional manual evaluation manners and integrate human
intelligence and machine efficiency into one unit [133], which
has proven its feasibility [77].

V. RESEARCH CHALLENGES

Automated evaluation of facial palsy using AI techniques
such as machine learning or deep learning offers a promising
solution to the limitations of current traditional assessment
methods, which are time-consuming, labour-intensive, and
subject to clinicians’ bias. Over the past several years, facial
palsy evaluation based on AI has been extensively researched
and developed. However, the use of AI in facial paralysis is
a relatively new concept. Current methods are still far from
satisfying clinical requirements, and some limitations still need
to be overcome to develop a clinically usable tool. This section
briefly presents the research challenges for AI-based FPE,
concentrating on the following aspects.

A. Insufficient and Unavailable Databases
AI-based FPE is a data-driven task that relies on large-scale

and accurate labelled datasets. However, current datasets
related to facial palsy are not only small in scale, but it is also
challenging to collect a large annotated facial palsy database,
requiring specific expertise and a time-consuming annotation
process. In general, the facial palsy database should have facial
images of varying age ranges, genders, and ethnicities, not
just of severity but also of other facial attributes. However,
existing databases are far from meeting these requirements,
which may impact related research on the cross-group FPE.
Also, imbalanced class distribution is a common issue in
the database, frequently occurring in naturalistic settings. For
example, collecting a normal face is simple, but collecting a
face with severe facial palsy can be difficult. AI algorithms can
perpetuate and amplify these imbalances, which may result in
reduced accuracy across different categories. Another common
issue relates to privacy and ethical concerns. Some facial palsy
databases (e.g., [40], [56], [58], [71], [117], [134]) are not
publicly available. Currently, there is no widely accepted and
publicly available benchmark database.

B. Inconsistent and Coarse Annotations
Another current limitation of AI-based FPE is the accuracy

and reliability of data annotations. A common approach is
to manually annotate the data with FPE grade scales under
the guidance of clinicians. The quality of annotations mainly
depends on the experience of the annotator, which may lead to

inconsistency across different annotators or databases. In addi-
tion, most existing works classify the severity of facial images
of the patient into a few discrete levels. While categorical
grade scales like House-Brackmann [20] have been widely
used in FPE, they simply classify the severity and cannot
describe symptoms in more detail. The continuous-valued
scales may be a better choice for this problem. For example,
the dimensional FPE grade scales, namely, Sunnybrook [21]
and eFACE [22], are proposed to describe a detailed range
of facial palsy severity and continuously encode small visible
appearance changes in the severity of facial palsy. However,
these dimensional FPE grade scales need to grade each facial
region by clinicians, which is more time-consuming and
expensive to collect the data.

C. Low Reliability and Explainability
Although the main research focus in FPE has shifted to

analysis with AI technologies, existing methods cannot be
effectively and widely used in clinical practice. One of the
challenges to prevent this is the lack of reliability and suf-
ficient clinical validation. The AI algorithms, especially deep
learning approaches, need large data with annotations to ensure
performance. However, in FPE, most existing studies are based
on databases with a small amount of facial image data. Thus,
they have limited performance and are not reliable enough
for practical applications. Moreover, most studies just applied
an existing classical network without designing a particular
network structure for the task of FPE [56], [103]. Most
importantly, researchers often consider deep learning models
as black boxes with low explainability. In clinical practice,
users need to understand the mechanisms of AI-based FPE to
trust them in practical applications.

D. Limited Application and Real-Time Performance
AI-based FPE can automate and accelerate the workflow by

rapidly doing standardized assessments of facial palsy based
on patient data. Usually, a clinician needs to examine dozens of
patients per day. The lack of clinicians in some areas leads to
an increased workload for clinicians, which makes them more
prone to human error. Automatic FPE systems are urgently
needed for clinical diagnosis. Currently, no FPE system appli-
cations can be widely used in clinical practice. Additionally,
health applications on handheld devices, such as weight-loss
support and heart rate monitoring, have become an integral
part of the clinical workflow over the past decade [128], [135].
The FPE can be deployed onto portable devices with a camera,
like smartphones, and is easily available to anyone. Therefore,
an ideal FPE system should have high real-time performance.
However, most researchers usually choose and design deeper
network structures to achieve the higher performance of FPE.
These networks often have more parameters, calculations,
and memory requirements, which may have limited real-time
performance in applications.

VI. FUTURE DIRECTIONS

In addition to the research challenges reviewed above,
we further introduce a few future directions related to AI-
based FPE.
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A. Databases Construction and Synthesis
Since the performance of AI-based FPE mainly depends

on the training data, collecting more facial data from clinical
settings is needed. For the annotation quality of data, the
inter-rater annotation reliability should be reported for each
database to filter out noisy annotations. Building automatic
labelling tools [95], [96] refined by experts is an alternative
that can efficiently provide consistent annotations in case of
disagreements. In addition, the recent success of technologies
of artificial intelligence generated content (AIGC) has made
it possible to generate various specific facial images. Without
manually collecting and labelling large datasets, synthesizing
the images of facial palsy patients based on generative models,
such as generative adversarial networks (GANs) [56], [89],
[136], is a novel direction and a more feasible alternative for
obtaining the data. Overall, constructing a large, public, and
high-quality database with annotations for FPE that meets AI
technology is an important and long-term task in this field,
which is beneficial to develop and push an AI-based FPE
system to clinical use.

B. Utilizing Other Training Manners and Modal Data
One solution to overcome the low reliability problems

because of limited data is transfer learning, which uses or
fine-tunes pre-trained models from large databases to transfer
the knowledge to the FPE task instead of training a model
from scratch [101]. Other alternatives are semi-supervised
learning [97], or designing a cost-sensitive loss function [17].
Moreover, facial palsy severity can be encoded from different
modal data, although collecting multiple types of data on
patients is challenging as it involves specific devices and
costs. The authors in [76] and [137] proposed to predict
facial palsy severity based on eye information instead of facial
images. In [138], the authors proposed the FPE method based
on infrared thermal images which can extract the features
of temperature distribution on specific facial areas, and [72]
proposed an approach to provide a quantitative evaluation of
facial palsy by analysing the blood flow images of relevant
facial regions. In addition, EMG information can promote
FPE methods based on facial images by distinguishing some
micro-expressions [139]. The information obtained from 3D
face reconstruction or 3D facial landmarks also provides the
opportunity for FPE [140], [141], [142], [143], [144]. The
fusion of other modalities is becoming a promising research
direction. Future research could investigate whether diverse
multi-modal data could result in better reliable and generalized
outcomes.

C. Incorporation of Prior Knowledge
To enhance the explainability of the deep learning network,

a novel solution is to introduce or incorporate the prior knowl-
edge, which makes the shift from the data-driven model to the
knowledge-driven model. The facial representations via land-
mark detection allow the extraction of clinically interpretable
measurement outcomes about symptoms of facial palsy [3],
[145]. These representations are valuable prior knowledge,
which applies to different people since facial landmarks are

some predefined locations unaffected by skin colour, ethnicity,
or gender. Another novel viewpoint argues that FPE is closely
related to the problem of facial expression analysis since
they both study facial muscle movements and changes [146].
Some works have also demonstrated a correlation between
facial expression analysis and FPE. During attempted smiles
in facial palsy patients, researchers found they may have some
negative emotions like contempt [45]. The FPE methods can be
studied with prior knowledge of facial expression analysis. For
instance, it is well-known that facial action units (AUs) rarely
appear in isolation during spontaneous facial behaviour, and
some AUs cannot co-occur. Therefore, a possible solution is
to rely on the prior knowledge of AU temporal co-occurrence
and consistency, which adds additional constraints to comple-
ment the AI model for improving the performance to some
extent. Some interesting associated works extended the AU
detection models of facial expressions to the assessment of
facial paralysis grades [44], [147], [148], [149]. Overall, the
utilization of prior knowledge for interpreting models has
been a hot research topic in the AI field. However, it still
has received limited attention in the field of FPE. Therefore,
how to incorporate the knowledge to help solve the problem
of explainability of FPE is an important future research
direction.

D. Network Optimization and Medical Large Models

AI-based systems have the potential to rapidly triage
patients with varying levels of palsy severity according to a
facial nerve grading scale, which may reduce the workloads of
clinicians, prevent subjective bias, and increase time-efficient
disease evaluation [77]. In addition, FPE can be further
integrated with other mobile health applications to collect
various information on patients, such as heart rate, sleep
quality, and blood pressure. The clinically relevant data from
these mobile health applications may give a comprehensive
evaluation report of the patient’s situation, which is beneficial
for more refined therapy decisions and evaluating their effec-
tiveness. With the mobile application, people can complete
the initial self-diagnosis at any time and thus get real-time
feedback, which is highly efficient and cost-effective for
patients who have difficulties visiting therapists or are in reha-
bilitation training. The application also helps people establish
a correct perception of their facial function and determine
whether they can be cured at home or need medical support,
reducing the waste of medical resources. As a result, optimis-
ing the network framework to design a lighter network for
real-time and easy-to-use FPE mobile applications is a future
direction.

Recently, the emergence of large models in natural language
processing has driven progress in various tasks, attracting
a growing research interest. Although in the early research
stages, some researchers have begun to extend large models
to the medical field, resulting in medical large models that can
help clinicians and patients [150]. For example, a recent study
proposed a medical large model for dental diagnosis [151].
However, there are currently no medical large models for FPE,
and training large models is still very challenging. Therefore,
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how to costly and effectively train and utilize large medical
models can be a promising direction in FPE.

VII. CONCLUSION

Facial palsy evaluation with high performance is beneficial
to facial functional treatment and rehabilitation, which plays
an important role in the field of healthcare. This paper reviews
the state-of-the-art development of AI-based facial palsy
evaluation, from databases to approaches. Furthermore, this
paper also provides a detailed discussion of current research
challenges and potential future directions. Overall, although
AI-based facial palsy evaluation has been developed over the
past years, it is still in its infant stage, and many problems
remain yet to be solved. We hope that this survey will provide
helpful guidelines to researchers conducting research in the
future.
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