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Abstract— The deficit in social interaction skills among
individuals with autism spectrum disorder (ASD) is strongly
influenced by personal experiences and social environ-
ments. Neuroimaging studies have previously highlighted
the link between social impairment and brain activity in
ASD. This study aims to develop a method for assessing
and identifying ASD using a social cognitive game-based
paradigm combined with electroencephalo-graphy (EEG)
signaling features. Typically developing (TD) participants
and autistic preadolescents and teenagers were recruited
to participate in a social game while 12-channel EEG
signals were recorded. The EEG signals underwent pre-
processing to analyze local brain activities, including
event-related potentials (ERPs) and time-frequency fea-
tures. Additionally, the global brain network’s functional
connectivity between brain regions was evaluated using
phase-lag indices (PLIs). Subsequently, machine learning
models were employed to assess the neurophysiological
features. Results indicated pronounced ERP components,
particularly the late positive potential (LPP), in parietal
regions during social training. Autistic preadolescents and
teenagers exhibited lower LPP amplitudes and larger P200
amplitudes compared to TD participants. Reduced theta
synchronization was also observed in the ASD group. Aber-
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rant functional connectivity within certain time intervals
was noted in the ASD group. Machine learning analysis
revealed that support-vector machines achieved a sensi-
tivity of 100%, specificity of 91.7%, and accuracy of 95.8%
as part of the performance evaluation when utilizing ERP
and brain oscillation features for ASD characterization.
These findings suggest that social interaction difficulties
in autism are linked to specific brain activation patterns.
Traditional behavioral assessments face challenges of sub-
jectivity and accuracy, indicating the potential use of social
training interfaces and EEG features for cognitive assess-
ment in ASD.

Index Terms— Electroencephalography, autism spec-
trum disorder, brain oscillations, functional connectivity,
support-vector machine.

I. INTRODUCTION

AUTISM spectrum disorder (ASD) is classified as a
neurodevelopmental disorder according to the American

Psychiatric Association’s Diagnostic and Statistical Manual
of Mental Disorders (DSM-5) [1]. The previous diagnoses
of autism, Asperger’s disorder, and pervasive developmental
disorder not otherwise specified are all encompassed as ASD
in this version. In the United States, about 1 in 54 children
has been identified with ASD according to statistics from the
Autism and Developmental Disabilities Monitoring Network
of Centers for Disease Control [2]. Children with ASD show
difficulty in social communication and interaction, as well
as repetitive patterns of behavior, interests, or activities [1].
Previous studies have suggested that there is impairment of
face processing and recognition in individuals with ASD which
also affects the ability of emotional expression [3], [4]. The
impairment of face processing and emotional expression might
be the main reasons that cause social cognition deficits.

A. Neuroimaging Evidence for ASD and Social
Interaction

Neurophysiological studies have supported deficits in gaze
perception, facial expression, and joint attention in autistic
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individuals [5], [6], [7]. Using functional magnetic resonance
imaging (fMRI), researchers have reported an atypical neural
network of joint attention in autistic individuals. Activation
of the precuneus and temporal-parietal junction (TPJ) plays
a critical role during the development of joint attention from
childhood to adolescence [8]. Autistic children and adolescents
have been reported to have reduced recruitment of the frontal,
temporal, and parietal regions, as well as the frontal-striatal
network, frontal-parietal attention networks, and visual pro-
cessing regions [9], [10], in addition to abnormal activation in
social cognition–related areas including the superior temporal
sulcus and TPJ [11] during gaze following. These studies
highlight the importance of frontal-parietal control and the
amygdala salience network [8], [12]. Although altered connec-
tivity in these networks has been suggested, more research is
needed to determine the characteristic alterations of functional
connectivity in ASD, including task-related investigations and
the critical period at which alterations occur [13].

Compared with fMRI, which has high spatial resolution and
helps to localize brain activities into distinct regions, electroen-
cephalography (EEG) and magnetoencephalography (MEG)
provide superior temporal resolution to explore the dynamics
of mechanisms contributing to cognitive functions. Studies
focused on brain oscillations often include time domain anal-
ysis of event-related potentials (ERPs) and time-frequency
analysis of event-related spectral perturbations (ERSPs), which
comprise the enhancement or reduction of brain oscillations
of different frequency bands, namely event-related synchro-
nization (ERS) or desynchronization (ERD). These regional
activities, including ERPs and ERSPs, can be denoted as
local cortical activations [14], [15], [16]. In contrast, global
brain functional connections are concerned with functional
connectivity between brain regions, mainly by estimating the
coherence, amplitude correlation, and phase synchronization
of brain signals [17], [18], [19], [20]. These techniques have
been utilized to investigate the highly dynamic brain oscil-
lations of mental disorders. Autistic individuals have largely
been reported with atypical ERPs, ERSPs, and functional
connectivity of EEG activities [6], [7], [21]. In ERP studies,
smaller amplitudes and delayed latencies were consistently
reported for facial emotional expressions in autistic individuals
compared to controls, specifically in ERP components of P1,
N170, P200, and P3 [7]. In previous time-frequency studies,
researchers have consistently reported altered mu rhythm sup-
pression (8–13 Hz) in autistic individuals [22], [23], which
may indicate the impairment of the mirror neuron system.

Brain connectivity has been studied in autistic individuals
during resting-state and task-related EEG and MEG, which
can provide valuable information about task-related neuronal
dynamics of functional networks. Functional connectivity
studies have indicated reduced long-range connectivity in
autistic individuals, whereas under-connectivity has mainly
been observed in low-frequency bands [21], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38]. This neuroimaging evidence can be seen as reliable neu-
rophysiological features for further investigation of cognitive
assessment in ASD.

B. Importance of Game-Based Social Cognitive Tasks
for Cognitive Assessment of Autism

Autistic individuals are commonly reported with a pref-
erence for computer technology with affect-free and highly
predictable interfaces [39]. Hence, game-based interacting
platforms for task-based cognitive investigation and behav-
ioral interventions have gained momentum in recent years.
The attempts to implement game-based interacting interfaces
for replacing traditional stimuli have reported significant
improvement in social functioning in ASD [40], [41]. Certain
single-player and role-play games, such as Fearnot [42],
the ECHOES project [43], JeStiMulE [44], GOLIAH [45],
ALTRIRAS [46], and SSIT [47], were proposed with the
possibility of intervening in emotional recognition and social
skills [48], [49], as well as newly developed multiplayer [50],
[51], [52], [53] and virtual reality games [54], [55], [56].
However, only a few studies have incorporated neurophysi-
ological features for measuring a player’s performance and
cognitive function [41], [43], [57]. Most of the previous
studies still utilized oral reports or questionnaires to verify
the effectiveness of these tasks/games. In future investigations
of game-based training platforms or assessment tools, the uti-
lization of neurophysiological signals as effective biomarkers
is essential for characterizing ASD.

In the past decade, more investigations have focused
on utilizing neurophysiological signals for characterizing
ASD [58]. High accuracies have been reported for cognitive
assessment or detecting the severity of ASD. However,
most of the previous studies have relied on resting datasets
and subject-dependent cross-validation methods, which may
overestimate the classification performance and are not
suitable for cognitive environments in real life.

In this study, we developed a social interacting game
designed for autistic preadolescents and teenagers. EEG
signals were recorded to evaluate brain oscillations, time-
frequency patterns, and functional connections during social
emotional expressions. In our previous studies [59], [60], [61],
we had shown that deficits in facial emotional expression and
joint attention may hamper the development of social cognition
in ASD. In the current study, we posited that local cortical
activation, specifically altered brain oscillations, and global
functional connectivity are observed during a social interacting
game in autistic preadolescents. We suggest that these neu-
rophysiological features may serve as reliable indicators for
characterizing ASD.

II. MATERIALS AND METHODS

A. Participants
A total of 24 participants were recruited for this study. The

group consisted of twelve typically developing (TD) pread-
olescents and adolescents (aged 11.83 ± 1.27 years, males
n = 7), and twelve autistic preadolescents and adolescents
(aged 14.71 ± 2.92 years, males n = 9). Participants with
a history of physiological and neurological diseases, as well
as head trauma, were excluded from this study. The autistic
participants were diagnosed based on the diagnostic criteria
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Fig. 1. Game-based social cognitive paradigm showing selections for
emotional expressions (A) and appropriate behaviors (B). Translation:
“Mom is upset because you’re not ready for school yet. What should you
do?” Left: “Hurry up and eat.” Right: “Respond and then go wash up.”

of the DSM-5 and ICD-10 and recruited from the National
Taiwan University Hospital. All participants underwent neu-
ropsychological tests to assess their nonverbal abilities. The
Test of Nonverbal Intelligence, Fourth Edition (TONI-4), was
used to measure their problem-solving and abstract reasoning
capabilities [62]. The study was approved by the Research
Ethics Committee at the National Taiwan University Hospital,
Taiwan (REC no. 201709023RIPD and 202111075RINA),
and written informed consent was obtained from the legal
representatives of all participants prior to the experiment.

B. Game-Based Social Interacting Interface

We developed a game-based training interface specifically
designed for autistic preadolescents and teenagers to enhance
their learning in areas such as recognizing facial emotional
expressions and improving social interaction skills. The Unity
game engine (Unity Technologies 2018.1.14f) was utilized to
create the games synchronized with a mobile EEG system.
The interface incorporates interactive scenarios with various
topics and real-life scenes, which were divided into events to
meet the requirements of an EEG experimental paradigm.

The game-based interface consists of two modules (see
Fig. 1). The first module introduces a complex version of the
facial emotional recognition game, encompassing fundamental
techniques of facial expressions and joint attention (Fig. 1A).
The second module builds upon the first one by incorporating
role-playing and first-person scenarios that closely simulate
real-life social interactions (Fig. 1B). To accommodate the
ages and preferences of the participants, appropriate rewards,
such as vouchers, were offered at the end of the game.

Fig. 2. Example of a trial presented in the game-base social cognitive
paradigm with scenarios. Translation of the Description of Scenarios:
After entering the school, you met a classmate, and you walked towards
the classroom together. Translation of the Selection of Appropriate
Behaviors: You see what appears to be her phone on the ground behind
her. What will you do? Left: Pick up her phone and give it back to her.
Right: Ignore her.

The game is an individual interactive computer game lasting
for 30 minutes. It includes 84 trials of facial emotion recog-
nition and 45 trials of selecting appropriate social/cognitive
behaviors. The event triggers are communicated through the
lab streaming layer to synchronize with the wireless EEG
system. The primary objective of the game is to assess the
participants’ abilities in facial emotional recognition and social
behavioral reactions. As depicted in Fig. 2, each trial consists
of a 12-second description of the scenario. Participants are
then requested to make eye contact with the character on the
screen and select the correct facial emotional expression based
on the social situation (1-3 seconds). Finally, participants are
prompted to choose an appropriate behavior or reaction in
response to the character’s social behaviors (7-10 seconds).
In this study, the facial emotional recognition module is
included for further behavioral and EEG analysis, while the
social interaction module is utilized to enhance the realism of
the experimental situation.

C. EEG Recording and Signal Processing
While the participants were actively involved in the task,

their EEG signals were recorded using a portable and
dry-electrode EEG headset (Quick-20 Dry EEG Headset,
Cognionics, Inc., San Diego, CA). The recording followed the
10-20 system, capturing EEG signals from 12 specific scalp
locations, namely F3, F4, F7, F8, Fz, C3, C4, P3, P4, P7, P8,
and Pz. A reference electrode was placed on the left earlobe,
namely the A1 electrode. The EEG signals were sampled at a
rate of 500 Hz and amplified.

To ensure proper synchronization, the stimulus triggers were
precisely aligned with the EEG data streams and stored in a
unified file utilizing the Lab Streaming Layer data acquisi-
tion and synchronization framework. Subsequently, MATLAB
R2024a (The MathWorks, Inc., Natick, Mass, USA) was
employed for the analysis of the EEG data. After applying
band-pass filtering ranging from 0 to 50 Hz, Artifact Subspace
Reconstruction (ASR) utilizing Independent Component Anal-
ysis (ICA) was employed to distinguish artifacts from brain
signals. The parameter ‘k’ in ASR was set to 20 to achieve
optimal results [63], [64], [65], [66]. ASR was performed
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on the data after removing bad channels, followed by recon-
struction through interpolation. This approach enabled us to
identify and remove artifact components and trials specific to
each participant. Before proceeding with the separation of the
original signals, epoching was conducted on the continuous
signal, and baseline subtraction was performed to reduce
mutual information [67]. Signal epochs were then extracted
from -200 to 1200 ms, where 0 ms indicates the stimulus
onset of the face stimuli (Fig. 2). Subsequently, epochs with
signal amplitudes exceeding ±100 were removed due to poor
behavior. Following artifact removal, the cleaned and epoched
EEG data underwent Morlet wavelet transformation to extract
event-related potentials or time-frequency features. For each
channel location, group- averaged ERSPs were computed rela-
tive to a baseline. To assess the differences in brain oscillations
between the two groups across different frequency bands,
the Anderson-Darling test was initially applied to evaluate the
normality of the data. Subsequently, a comparison between the
results from the two groups for each time-frequency interval
was conducted using a Wilcoxon rank-sum test.

The phase lag index (PLI) of artifact-corrected EEG
signals was employed to quantitatively evaluate functional
connectivity, which represents the interaction between two
brain regions [68]. PLI is a widely used measure that
provides quantitative phase relationships between signals and
has been proposed as an important index in various cognitive
processes [69]. To determine the functional connectivity of
brain oscillations within specific frequency bands of interest,
PLI was computed between pairs of EEG channels, with the
detailed methodology described in references [68], [70]. Prior
to computing PLIs, the time courses of each channel pair
were filtered using a narrow-band convolution filter centered
at a specified EEG frequency range (e.g., delta, theta, alpha,
and gamma). The resulting PLIs were then averaged over
100 ms intervals and compared between the two groups.

Statistical analyses were conducted to assess the differences
in behavioral results, ERPs, ERSPs, and PLIs between TD
individuals and autistic preadolescents. The Wilcoxon
rank-sum test was utilized for the group comparison.
MATLAB R2024a (The MathWorks, Inc., Natick, Mass,
USA) was used for all statistical analyses.

D. Machine Learning for Characterizing ASD
The machine-learning based assessment consists of three

parts: feature engineering, classification, and performance val-
idation. A filter method of analysis of variance (ANOVA)
univariate test was used to determine the optimal num-
ber of features for the subsequent classification processes.
The neurophysiological features mentioned, including the
ERP components, time-frequency features, and PLI, were all
subjected to the ANOVA test for feature sorting and the
optimization of parameters. The optimal number of neuro-
physiological features used for classification was defined by
varying the F-value of the ANOVA test.

To optimize the classification framework, the performance
of six different classifiers, including the k-Nearest Neighbor
(kNN) with a neighbor number of ten (k = 10), Binary
Decision Tree (BDT), Gentle Adaptive Boosting (GAB),

and Support Vector Machine (SVM) with three kernels of
polynomial, radial, and sigmoid function, were assessed and
compared. The optimization for classification was resolved
using the SVM toolbox function LibSVM [25] and the
Statistics and Machine Learning Toolbox incorporated in
MATLAB R2024a.

The leave-one-out cross-validation (LOOCV) method was
used to ensure subject-independent validation of classification
performance. The categorization performance of the proposed
framework is measured using sensitivity, specificity, and accu-
racy, which are fundamental metrics in classification tasks.
Sensitivity, often referred to as the true positive rate, represents
the proportion of actual positive cases that are correctly
identified by the framework. It is calculated as the number
of true positives divided by the sum of true positives and
false negatives. Specificity, also known as the true negative
rate, measures the proportion of actual negative cases that are
accurately classified by the framework. It is computed as the
number of true negatives divided by the sum of true negatives
and false positives. Accuracy quantifies the overall correctness
of the classification results by considering both true positive
and true negative cases relative to the total number of cases.
It is determined by the ratio of the sum of true positives and
true negatives to the total number of cases.

III. RESULTS

A. Task Performance
The average TONI-4 nonverbal ability test score for TD

preadolescents was 115 ± 15, while for preadolescents with
autism it was 102 ± 15. There was no significant difference
observed between the two groups (p = 0.105). In terms of
reaction time, the average response time in the social interac-
tion game for autistic preadolescents was 2.28 ± 0.58 seconds,
significantly slower than the TD preadolescents who had an
average response time of 1.64 ± 0.39 seconds (p = 0.019).
The mean accuracy rates for TD and autistic preadolescents
were 98% ± 2% and 93% ± 7%, respectively. The accuracy
between the two groups differed significantly (p = 0.018).

B. ERP Features
The averaged ERPs between the two groups were compared

during the condition of facial emotional recognition in the
social training game, as shown in Fig. 3. The largest difference
in the average ERPs was observed in the parietal regions,
specifically at the Pz and P7 electrodes. Significant differences
were observed at the time intervals around 160-220 and
550-750 ms, namely the P200 component and late positive
potential (LPP), indicating divergent neural responses between
the two groups.

Regarding the P200 component, which reflects the visual
complexity in language processing or memory processing,
increased amplitudes were observed between 160 and 220 ms
after the onset of stimuli at the P7 electrode in autistic
preadolescents and adolescents (Fig. 3A). The grand aver-
ages of the P200 waveform at the P7 electrode and the
corresponding mean amplitudes are depicted in the lower
portions of Fig. 3A. In comparison to TD participants
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Fig. 3. The average ERPs during the module of facial emotional
recognition in the social interacting game (upper row) and statistical
results (lower row) within the following time intervals in the parietal
regions: (A) 160-220 ms (P200 component) at the P7 electrode, and
(B) 550-750 ms (LPP component) at the Pz electrode.

(-4.17 ± 1.99 µV), the autistic preadolescents (-1.65 ±

2.50 µV) exhibited a tendency towards larger P200 amplitudes
(p = 0.030), suggesting disruptions in their facial feature
processing.

The LPP component is associated with attention allocation
towards emotionally salient stimuli [71], [72], [73]. The grand
averages of the LPP component at the Pz electrode and the
corresponding mean amplitudes are presented in the lower
portion of Fig. 3B. Autistic participants displayed smaller LPP
amplitudes (3.10 ± 3.68 µV) compared to TD participants
(7.50 ± 4.61 µV, p = 0.035), suggesting difficulties in
attentional allocation toward the target among autistic pread-
olescents and adolescents.

C. Time-Frequency Analysis of Brain Oscillations
The average ERSPs of time-frequency analysis in the

frontal, central, and parietal regions of the TD and autistic
preadolescents were compared in Fig. 4. The largest difference
was observed at the C4, P3, P4, and Pz electrodes. The
increments and decrements of the power, namely ERS and
ERD, in different frequency bands and time intervals relative
to the pre-stimulus baseline are represented by red and blue
colors. Theta synchronization is observed around the frontal
regions in the first 500-ms window after the stimulus onset
in TD preadolescents. Delta synchronization in the frontal,
central, and parietal regions was also observed especially in
the autistic group. Alpha and beta desynchronization, which
indicate the intention of motor activity, were found in the time
interval after 200 ms.

A significant difference in ERSPs was observed between
the two groups in the delta (1-4 Hz) and theta (5-8 Hz)
frequency bands (Fig. 5). Autistic preadolescents exhibited
greater theta synchronization in the parietal regions of elec-
trodes P3 (Fig. 5A; p = 0.046), P4 (Fig. 5B; p = 0.023), and

Fig. 4. The average ERSP results of time-frequency analysis from
TD (left column) and autistic participants (right column) in the central
and parietal regions. The largest difference was observed at the (A) C4,
(B) P4, (C) Pz and (D) P3 electrodes.

Pz (Fig. 5C; p = 0.023), particularly evident around 230 to
300 ms after stimulus onset. Additionally, a slightly larger
delta synchronization was observed in the autistic group in
the right central regions (Fig. 5D), although this difference
was not statistically significant.

D. Functional Connectivity

ASD preadolescents demonstrate altered connectivity
patterns in both the theta (Fig. 6A) and alpha (Fig. 6B)
frequency bands, with the most pronounced difference
between the two groups observed between 300 and 500 ms
in the alpha frequency band (≥ 5 channel pairs). These
findings align with previous EEG studies investigating
functional connectivity during various cognitive tasks, which
have consistently indicated hypo-connectivity in autistic
individuals.
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Fig. 5. The ERSP results of time-frequency analysis within the following
time intervals in the central and parietal regions: (A) 232 - 274 ms
(delta and theta band) at P3, (B) 260 - 304 ms (theta band) at P4,
(C) 260 - 304 ms (theta band) at Pz, and (D) 252 - 704 ms (delta band)
at C4.

Fig. 6. The results of brain functional connectivity calculated by
phase-lag indices in the (A) theta and (B) alpha frequency bands. The
red lines indicated the significant lower phase synchronization of autism
than the TD group. Hypo-connectivity is observed in the alpha band dur-
ing the first 700 ms following stimulus onset in autistic preadolescents
and teenagers, particularly notable within the time interval of 400 to
500 ms.

E. Results of Machine Learning for Characterizing ASD

The performance of the six machine-learning-based clas-
sification methods was compared using subject-independent
LOOCV for validation. The optimal number of local and
global features used for classification was determined by
adjusting the F-value. The overall performance of the six clas-
sifiers, including sensitivity, specificity, accuracy, and average
feature number, is presented in Table I.

The performance of the six classifiers was evaluated sep-
arately using the local features of brain activations and
oscillations, global features of brain functional connectivity,
and all neurophysiological features. Table I illustrates that
SVM exhibited a sensitivity higher than 90%, while BDT and
GAB showed lower sensitivity. Conversely, GAB and SVM

TABLE I
SUBJECT-INDEPENDENT PERFORMANCE OF CLASSIFYING METHOD

FOR CHARACTERIZING AUTISM (kNN: k-NEAREST NEIGHBORS;
BDT: BINARY DECISION TREE; GAB: GENTLE ADAPTIVE

BOOSTING; SVM: SUPPORT VECTOR MACHINE)

demonstrated high specificity values, exceeding 90%, while
kNN and BDT had the lowest specificity values, below 75%.

In summary, the SVM-based approach using a sigmoid
kernel function achieved the highest sensitivity of 100% and
overall performance, with an accuracy of 95.8% when only
local features were utilized.

IV. DISCUSSION

This study proposes a social cognitive game synchronized
with portable EEG systems to extract local and global
features of brain activities, aiming to characterize autistic
preadolescents and teenagers. The future potential of this
investigation lies in evaluating the effectiveness of social
training through cognitive assessment. In comparison
to previous studies that claim high accuracies of ASD
detection [58], the importance of this study is discussed in
the following three aspects. Firstly, the neurophysiological
features extracted in this study are provided based on the
neural mechanism of social cognitive activities. The features,
including local cortical activations and global functional
connections, are verified based on previous neuroscience
studies. Secondly, the validation method used for classification
in the current study is subject-independent. We utilized our
own dataset with LOOCV to ensure that the performance
is not overestimated by the influence of subject-dependent
data, and reasonable accuracy was achieved in this study.
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Finally, a game-based social interacting game is provided
based on the preference of autistic teenagers. In contrast to
resting state analysis or traditional paradigms for cognitive
evaluation, the game-based design is closer to a real-life
social environment, allowing for the further application of
cognitive assessment.

A. Features of Local Brain Activations and Oscillations
We mainly focused on two ERP components, P200 and

LPP, associated with local brain activations during social
interaction. Our previous findings already addressed evidence
regarding the role of P200 in the attention characteristics
of ASD, suggesting that P200 parameters are associated
with difficulties in attention switching [74]. Therefore, ASD
individuals with P200 gating deficits imply altered attention
allocation in ASD, consistent with previous studies on ASD
and P200 [75]. The second ERP component, LPP, is a centro-
parietally distributed positive component often observed after
300 ms of stimulus onset. The decreased amplitudes of the
LPP component in ASD may reflect aberrant dynamic alloca-
tion of increased attention [71], [72], [73].

B. Features of Global Functional Connectivity
Hypo-connectivity was observed in autistic individuals in

the current study. Decreased functional connections were
reported in the alpha frequency bands, especially within the
first 700 ms after the stimulus onset of social emotional
recognition. Over the past decade, brain connectivity has been
extensively studied in autistic individuals using resting-state
and task-related fMRI, EEG, and MEG studies [13], [21].
Abnormal functional connectivity has been found in resting-
state fMRI studies, with evidence suggesting that ASD
is characterized by instances of both under- and over-
connectivity [13], [76]. In comparison to fMRI, connectivity
analysis of EEG/MEG can provide valuable information about
task-related neuronal dynamics of functional networks. EEG
and MEG studies have also indicated reduced long-range
connectivity in individuals with ASD, while the status of
local connectivity remains unclear [21]. Our finding of alpha
hypo-connectivity during the social interacting game supports
the notion of decreased long-range functional connectivity in
autistic preadolescents and teenagers. This finding also verifies
that patterns of global brain functional connections can serve
as reliable features for characterizing ASD.

C. Characterizing Autism With A Game-Based Task and
Fusion of Local and Global Features

Neurophysiological signals have been widely incorporated
in characterizing autism in recent years [58]. Table II shows
that previous studies targeting ASD in different age groups
have utilized various tasks, features, and classifiers for
detecting autism. Accuracies ranging from 70% to 99% have
been reported for identifying ASD. However, many of these
studies did not mention the dependency of subjects in their

TABLE II
COMPARISON WITH EXISTING METHODS (KNN: K-NEAREST

NEIGHBORS; DT: DECISION TREE; IMF: INTRINSIC MODE

FUNCTIONS; ET: EYE-TRACKING; TF: TIME-FREQUENCY FEATURES;
FC: FUNCTIONAL CONNECTIVITY;; SVM: SUPPORT VECTOR

MACHINE; ANN: ARTIFICIAL NEURAL NETWORK)
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cross-validation methods, which can lead to an overestimation
of classification performance. In recent years, several studies
have focused on the practical application of identifying
children with ASD and have clarified that their validation
methods are subject-independent [77], [78], [79], [80]. These
studies have reported more reasonable performances with
accuracies ranging from 70% to 95%. In this study, our
focus was on preadolescents and teenagers with ASD for
the cognitive assessment of their social cognitive abilities.
We reported a reasonable performance with an accuracy of
95.8% and a sensitivity of 100% using the SVM classifier
and subject-independent LOOCV validation.

It is worth mentioning that many of the previous studies
have reported their performance by using online databases or
conducting resting EEG experiments (Table II). Only a few
studies have reported their datasets with task-related stimuli
for characterizing ASD [79], [81], [82], [83], [84]. Consistent
with these studies, our focus was on the assessment of ASD
during cognitive tasks to maximize the differences in the
effects during specific social cognitive control of ASD.

Furthermore, there is wide variation in the feature extraction
methods used in previous studies, as shown in Table II. Most
studies focused on spectral parameters of frequency domain
information, while some incorporated time-frequency analysis
and provided corresponding parameters. Only a few studies
considered global brain network parameters and utilized func-
tional connectivity measurements as features. To the best of
our knowledge, this is the first study that combines both local
brain activities and global functional networks as features to
create a knowledge-based feature space.

A major limitation of this study is the small sample size
of autistic preadolescents and teenagers. Individuals with a
severe degree of ASD may encounter challenges in compre-
hending games designed for their chronological age group.
Consequently, achieving a large sample size and balanced
age distribution between the ASD and TD groups has proven
difficult. However, despite this constraint, our findings in TD
and ASD preadolescents and teenagers revealed significant
differences in local brain activations and global functional
connectivity. Despite the small sample size, the findings are
reliable and consistent with those of previous studies, even
when using a more complex serious game platform.

V. CONCLUSION

In contrast to relying solely on behavioral questionnaires,
we designed a social interaction game with EEG recorded dur-
ing facial emotional recognition for the cognitive assessment
of preadolescents with ASD. By analyzing the altered local
features of brain activations and oscillations, namely ERPs
and ERSPs, our study reveals that abnormal EEG responses
can serve as reliable biomarkers for evaluating cognitive
functions associated with social information processing and
emotion recognition in autistic preadolescents and teenagers.
We observed significant differences in the amplitudes of the
P200 and LPP components, as well as increased theta and
delta synchronization in autistic individuals. Aberrant global
features of brain functional connectivity were also observed,

with consistent findings of hypo-connectivity of autistic
individuals during social-related cognitive tasks.

For characterizing ASD, our computer-aided assessment
using SVM with both local features achieved high perfor-
mance, reaching an accuracy of 95.8% in the cognitive
assessment of autism. This study demonstrates the potential
of incorporating EEG as an objective indicator for assessing
cognitive performance and even computer-aided diagnosis
during real-life scenarios of game playing. The flexibility and
portability of EEG make it a promising tool compared to other
neuroimaging techniques in this context.
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