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Abstract— Electroencephalogram (EEG) signals play an
important role in brain-computer interface (BCI) applica-
tions. Recent studies have utilized transfer learning to
assist the learning task in the new subject, i.e., target
domain, by leveraging beneficial information from previous
subjects, i.e., source domains. Nevertheless, EEG signals
involve sensitive personal mental and health information.
Thus, privacy concern becomes a critical issue. In addi-
tion, existing methods mostly assume that a portion of
the new subject’s data is available and perform alignment
or adaptation between the source and target domains.
However, in some practical scenarios, new subjects prefer
prompt BCI utilization over the time-consuming process of
collecting data for calibration and adaptation, which makes
the above assumption difficult to hold. To address the
above challenges, we propose Online Source-Free Transfer
Learning (OSFTL) for privacy-preserving EEG classifica-
tion. Specifically, the learning procedure contains offline
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and online stages. At the offline stage, multiple model
parameters are obtained based on the EEG samples from
multiple source subjects. OSFTL only needs access to
these source model parameters to preserve the privacy of
the source subjects. At the online stage, a target classifier
is trained based on the online sequence of EEG instances.
Subsequently, OSFTL learns a weighted combination of the
source and target classifiers to obtain the final prediction
for each target instance. Moreover, to ensure good transfer-
ability, OSFTL dynamically updates the transferred weight
of each source domain based on the similarity between
each source classifier and the target classifier. Compre-
hensive experiments on both simulated and real-world
applications demonstrate the effectiveness of the proposed
method, indicating the potential of OSFTL to facilitate the
deployment of BCI applications outside of controlled labo-
ratory settings.

Index Terms— Brain–computer interfaces, transfer learn-
ing, privacy preservation, online transfer learning, multiple
source domains.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) [1], [2], [3] are
systems exchanging information between the brain and

external devices. A BCI can recognize human intentions and
emotional states by decoding brain signals into computer-
readable information. In the literature, researchers have
extensively studied brain signals of different categories as
information sources for decoding valuable information, includ-
ing electroencephalogram (EEG) [4], magnetoencephalogra-
phy [5], and electrocorticography [6]. Specifically, EEG has
gained considerable attention among these modalities due to
its capacity for directly measuring cortical activities. It offers
a relatively high temporal resolution and is conducive to
noninvasive signal recording. EEG-based BCIs utilize dif-
ferent brain patterns, such as P300 [7], steady-state visual
evoked potentials (SSVEPs) [8], and motor imagery (MI)
[9]. Based on these paradigms, various BCI applications have
been developed, including the rehabilitation of people affected
by motor disabilities [10], external device control [11], and
concentration level analysis [12].

In recent years, transfer learning [13] has become a promis-
ing method for EEG classification. It leverages auxiliary
information from previous subjects to improve the learning
performance of the new subject. Specifically, transfer learning
mitigates the impact of insufficient training EEG data and
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reduces the individual differences between the source and tar-
get subjects. In general, existing transfer learning-based EEG
classification methods are multi-source methods [14], [15],
[16], i.e., exploiting knowledge from multiple source domains
to improve the learning performance of the target domain.
In this setting, there are two main learning strategies. The
first strategy combines the data from different source subjects
as a source domain [17]. For example, by combining the data
from existing subjects into one source domain, Liu et al. [17]
proposed reducing the distribution differences between the
source and target domains by minimizing the maximum mean
discrepancy [18]. This strategy can be improved since the
EEG signals vary across individuals, and the similarities
between each source subject and the target subject may
differ. Therefore, the second strategy allows different source
subjects to have different influences on the target subject [19],
[20]. For instance, Zhang and Wu [19] proposed estimating
the domain similarity by utilizing the scatter matrix and
Riemannian manifold, thus obtaining different weights for
different source subjects. In [20], Liu et al. proposed an
adversarial neural network using weighted fusion to repre-
sent the different correlations between the source and target
subjects.

However, since EEG signals contain sensitive personal
mental and health information, privacy concerns arise [21].
To address this issue, Zhang and Wu [22] proposed generating
a virtual intermediate domain to reduce the distribution gap
between different subjects. In [23], Zhang et al. introduced
black-box settings where source models are only available
for prediction querying and the model parameters are inac-
cessible. The above-mentioned methods mainly assume that
the EEG data of the target subject are provided in advance.
Nevertheless, in some practical cases, the target subject may
prefer prompt BCI utilization over the time-consuming process
of collecting data for calibration and adaptation, i.e., when
the target EEG samples arrive in an online manner, which
makes the above assumption inapplicable. Consequently, these
models cannot be adopted for online privacy-preserving EEG
classification.

Based on the above discussions, in this paper, we propose
a novel model named Online Source-Free Transfer Learning
(OSFTL), which simultaneously protects the privacy of the
source subjects and makes online predictions on the target
sequential trials. Specifically, the proposed learning proce-
dure consists of offline and online stages. At the offline
stage, we train multiple classifiers on the EEG samples
from multiple source subjects to obtain multiple source
model parameters. As a result, OSFTL only utilizes the
source parameters and does not need to access the raw
EEG data, thus preserving the privacy of the source sub-
jects. At the online stage, OSFTL trains a target classifier
based on the online sequence of EEG samples. Then, the
source classifiers and the target classifier are ensembled by
a weighted combination to achieve the final classifier. In addi-
tion, based on the similarities between each source classifier
and the target classifier, OSFTL dynamically updates the
transferred weight of each source domain to guarantee good
transferability.

The contributions of this paper are summarized as follows:
• We propose a novel model called OSFTL, which lever-

ages online transfer learning for privacy-preserving EEG
classification. Online prediction for EEG signals while
protecting the privacy of subjects is an under-researched
field, which makes this paper a decent contribution to the
BCI community.

• We develop a novel weighting strategy, which dynam-
ically captures the transferability of different source
domains by measuring the classifier discrepancy in an
online manner.

• Extensive simulated online experiments on two public
EEG datasets validate the effectiveness of the proposed
method. Moreover, we conduct a real-world online exper-
iment to further demonstrate the usability of the proposed
method in practical applications.

The remainder of this paper is organized as follows.
In Section II, we introduce the relevant recent studies in
brief. We describe our method in Section III. Sections IV
and V present the experimental results. In Section VI,
we provide relative discussions about the experimental results.
In Section VII, we make a conclusion to this paper.

II. RELATED WORK

A. Offline Transfer Learning

Many existing BCI-related transfer learning studies focus
on offline settings. The methods employed in these studies
include but are not limited to enhanced classical methods,
domain adaptation, and deep network transfer learning. For
example, Common Spatial Pattern (CSP) [24] is a well-known
method designed to extract spatial features from EEG sig-
nals. As transfer learning has become a popular strategy for
addressing the problem brought by individual differences,
researchers have developed enhanced methods to improve
the adaptability of CSP when applied to new subjects with
limited data. Regularized CSP methods, such as [25] and [26],
introduce regularization penalties in the objective function
to minimize the differences between inter-subject features.
In [27], Dai et al. proposed a transfer kernel CSP to learn
a domain-invariant kernel.

Domain adaptation [15] is a transfer learning technique that
aims to adapt the data distribution between the source and
target domains. Researchers have extensively applied domain
adaptation to cross-subject EEG classification. Li et al. [28]
proposed building a multi-task learning model using style
transfer mapping for emotion recognition. Lan et al. [29] pro-
posed handling a cross-dataset setting by applying maximum
independence domain adaptation. A similarity measure based
on the Kullback-Leibler (KL) divergence is proposed in [30]
to improve motor imagery BCI systems. In [31], Liang and Ma
proposed selecting subjects with similar features to the target
subject as transfer sources through Riemannian geometry
alignment. Joadder et al. [32] obtained the best feature set
across different subjects by applying joint feature selection
and feature fusion. Considering the conditional distribution
discrepancy, Dagois et al. [33] proposed selecting recorded
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data from subjects whose class conditional probabilistic dis-
tributions are close to the new subject for reducing calibration
requirements.

In recent years, researchers have also explored knowledge
transfer methods based on deep neural networks, including
fine-tuning [34], deep network adaptation [35], [36], and
generative model [37]. Wu et al. [34] proposed fine-tuning
a model pretrained on source domain data with different
amounts of target data. In [35], Li et al. developed a network
structure that obtains similar latent representations between the
source and target domains for effective BCIs. Chen et al. [36]
proposed a multi-subdomain adaptation network to solve the
time-related distribution shift problem that occurs in motor
imagery. In [37], Lee et al. handled the inter-task transfer
learning problem by generating motor imagery data from
motor execution data using a variational autoencoder.

Despite the success achieved by the above offline trans-
fer learning models, these models cannot make predic-
tions for data arriving in an online manner. Besides, the
above-mentioned approaches do not consider protecting the
subject privacy.

B. Online Transfer Learning
Unlike offline transfer learning, online transfer learning

(OTL) focuses on sequentially-arrived data. Before proceeding
to OTL, we briefly introduce online learning. Online learning
handles scenarios where data are not collected in advance as
a batch but arrive in a sequence. Perceptron algorithm [38]
is a well-known approach that updates classification models
when the label of the incoming sample is incorrectly predicted.
Passive Aggressive algorithm [39] updates the model based on
both the classification confidence and whether the algorithm
misclassifies the incoming sample.

By combining the concepts of online learning and transfer
learning, researchers proposed a framework called online
transfer learning [40]. In addition to learning from the online
data sequence, online transfer learning leverages knowledge
from offline source data. In [40], Zhao et al. proposed trans-
ferring knowledge from a single source domain to improve
the performance in the target task. Boosting-based methods
such as [41] employ multiple source domains by adjusting
the weights among source domains based on their similari-
ties to the target domain. Considering the case of multiple
source domains, Wu et al. [42] proposed exploiting knowl-
edge from the source domains using an ensemble strategy
on trained source classifiers. In [43], Yan et al. proposed
handling the online heterogeneous transfer learning problem
by leveraging labeled source data and unlabeled auxiliary co-
occurrence data. In [44], multi-source online transfer learning
is extended to deal with multi-class classification problems.
Kang et al. [45] studied transfer strategy under the partial
feedback setting where only the correctness of the predicted
label is provided.

OTL has found applications in the field of biomedical signal
classification. Ye et al. [46] incorporated hypergraph [47], [48]
and OTL scheme to address cross-subject ECG-based emotion
recognition. In [49], synthetic fMRI data generated by the

generative adversarial network are used to warm up the online
transfer learning model, reducing the need for target samples
to train an online model with good performance. In [50],
Zhang et al. combined offline discriminative feature extraction
and OTL to address the time-varying problem of EEG signals.
However, most existing OTL methods for EEG classification
cannot preserve the privacy of subjects.

C. Source-Free Transfer Learning
Source-free transfer learning studies the paradigm of trans-

fer learning where source data are inaccessible for privacy
preservation, while the pretrained source models are avail-
able. In [51], Liang et al. employed the mutual information
maximization strategy to handle the absence of guidance from
source data. Ahmed et al. [52] further extended the algorithm
proposed in [51] for the case of multiple source domains.
Unlike [51] and [52], Yang et al. [53] focused on utilizing
the local correlation between the target samples based on the
observation that target samples form clusters in the pretrained
source model’s feature space. Zhang et al. [54] proposed
dividing the target samples into source-like and target-specific
groups and using a different adaptation strategy for each
group. Concerning privacy preservation in BCIs, Ju et al. [55]
proposed a privacy-preserving framework named federated
transfer learning for EEG classification. In [22], Zhang and
Wu proposed generating a virtual intermediate domain to
reduce the distribution gap between different domains. In [23],
Zhang et al. further introduced black-box settings, in which
source models are available only for prediction querying,
and the model parameters are inaccessible. Although the
above-discussed models protect the subjects’ privacy, they
cannot make online predictions for EEG samples arriving in
a sequence.

III. METHODOLOGY

A. Problem Definition
In this paper, we consider an online privacy-preserving

EEG classification scenario where the samples of the target
subject arrive in an online manner. In particular, the data
of the source subjects are not provided and only the source
model parameters are accessible. Given n source domains (i.e.,
subjects) DS

= {DS1 ,DS2 , . . . ,DSn } and a target domain
DT containing m samples, let {xT

t , yT
t }

m
t=1 be the target data

sequence, the goal of this paper is to make a prediction for
the t-th sample based on the previous t −1 target samples and
the parameters of the source domains.

B. Feature Extraction
A Butterworth bandpass filter is employed to filter the

EEG data and obtain four frequency bands, namely the delta,
theta, alpha, and beta bands (1–4, 4–8, 8–14, 14–30Hz).
Subsequently, the power spectral density (PSD) of all channels
is calculated for each frequency band using Welch’s approach
to obtain feature representations. The reasons for using PSD
as the feature are two-fold. First, PSD is widely used to
represent the energy distribution of the brain. Physically, the
PSD reflects the relationship between the power and frequency
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Fig. 1. An overview of the proposed method. At the offline stage, source domain classifiers are trained using the EEG data collected from the
source subjects. The locks imply that the source data are not accessible after obtaining the source classifiers. At the online stage, the target
classifier for a new subject and the transferred weights of the source domains are jointly updated.

of the signal. Although CSP is a successful algorithm that is
widely used in MI-based BCI, computing CSP filters requires
collecting a batch of target subject data, which is not practical
in the online scenario where no target data are available in
advance. Therefore, we do not choose CSP as the feature
extraction method. Second, the computation of PSD can be
performed on a single EEG trial with low computational effort,
making it a proper way to extract features from the online data
sequence.

C. The Proposed Method
Fig. 1 illustrates an overview of the proposed method,

which consists of offline and online stages. At the offline
training stage, we separately learn on the source domains
to obtain subject-specific classifiers { f Si }

n
i=1 with the cor-

responding model parameters being {wSi }
n
i=1. In particular,

we train the source classifiers using Passive Aggressive (PA)
algorithm [39]. At the online learning stage, we conduct
knowledge transfer by allowing the obtained source classifiers
to contribute differently to the classifications on the target
domain. It has been shown in [15] that revealing the different
contributions of the source domains to the target domain is
beneficial for transfer learning. As a result, we do not treat all
the source classifiers equally and seek to develop a dynamical
weighting strategy to study the different contributions of the
source domains.

At the online learning stage, the main objective is to find a
target classifier f T with weight vector wT while making use of
the pretrained source classifiers by measuring the similarities
between the target domain and each source domain. In the
online scenario, the target classifier receives a new data sample
xT

t at round t and makes a prediction ŷT
t . Then, the classifier

receives the ground-truth label yT
t , obtaining a loss based

on the prediction result and the true label. We apply the
PA algorithm for model updating. At round t , we obtain
the updated target weight vector wT

t+1 for the next round by

solving a constrained optimization problem:

min
wT

1
2
∥wT

− wT
t ∥

2
+ Cξ,

s.t.

{
l(wT , (xT

t , yT
t )) < ξ,

ξ > 0.
(1)

Here l(wT , (xT
t , yT

t )) = max(1 − wT xT
t yT

t , 0) is the hinge-
loss function. This loss function penalizes the model when the
prediction of the current sample is wrong (wT

t xT
t yT

t < 0) and
the prediction is correct but the margin wT

t xT
t is small. Since

the margin represents the model’s confidence to the prediction,
we can obtain a model that gives correct predictions with
high confidence by the loss function. The above optimization
problem has a closed-form solution:

wT
t+1 = wT

t + τt xT
t yT

t , (2)

where τt = min{C,
l(wT ,(xT

t ,yT
t ))

∥xT
t ∥

} is the coefficient. C is
a positive parameter introduced to control the influence of
τt , resulting in a gentler update strategy. Following [40]
and [42], we only update the target parameter vector, while
the source parameters remain unchanged. The newly obtained
target classifier f T

t will be used to update the classifier in the
t + 1 round. We will explain how to determine the transferred
weights of the sources in each round by leveraging the updated
target parameter vector.

In the online learning scenario, we face the challenge
of insufficient target data, which may lead to unsatisfactory
performance of the target classifier obtained from the previous
learning process. To overcome this limitation, we aim to
transfer knowledge from the source domains to assist the target
classifier. To avoid negative transfer and determine the most
suitable source domains for the target domain, it is essential
to conduct a similarity analysis between the source and target
domains. However, classical measures of distribution similar-
ity, such as KL divergence and maximum mean discrepancy,
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are not applicable in the online scenario of BCI application.
This is because these measures require computations on a
batch of data. In the online scenario, a new EEG trial arrives
at each round, making it impossible to represent the complete
distribution of the target domain features. To address this
problem, we assume that source domains with weight vectors
similar to those of the target classifier also share common
information with the target domain. This shared information is
beneficial for enhancing the target classification task. In order
to incorporate the source classifiers differently in the prediction
output, we use a weighted ensemble result of the source and
target classifiers as the final prediction. Initially, the transferred
weights {uSi }

n
i=1 for the n source domains are set to be the

same, i.e., uSi = 1/n for ∀i ∈ [1, n]. At round t , we have:

γi = ∥wSi − wT
t ∥

2, i ∈ [1, n], (3)

where γi represents the Euclidean distance between the param-
eter of the i-th source classifier and the target classifier.
Furthermore, the transferred weights {uSi }

n
i=1 are updated at

each round according to γi and normalized by the softmax
function:

uSi =
e−λγ 2

i∑n
k=1 e−λγ 2

k
, (4)

where λ is a hyperparameter. By normalizing the transferred
weights, it can be ensured that all classifiers’ predictions have
the same scale and are within the range of 0 to 1, while∑n

i=1 uSi = 1 can be ensured as well. In this way, the influence
of each classifier on the final ensemble result will be more
balanced. These transferred weights reflect the contribution a
source classifier makes to the final prediction. The parameter
λ controls how much the transferred weights are affected
when the relative source classifier is different from the target
classifier. Then, combining the predictions from all source
classifiers {ŷSi

t }
n
i=1 weighted by uSi and the prediction made

by f T , the final prediction ỹt at round t can be written as:

ỹt =

n∑
i=1

uSi ŷSi
t + ŷT

t . (5)

The target parameter vector wT discussed above can only
make linear predictions of the samples. Considering that the
PSD features may not be linearly separable in the original
feature space, we adopt the kernel method for our method.
A kernel function represents the inner product of two samples
mapped to a higher-dimensional space where the samples from
different classes can be separated by a linear hyperplane, i.e.,

K(xi , x j ) = φ(xi ) · φ(x j ), (6)

where φ(·) is the mapping function. By utilizing the kernel
function, the computational effort introduced by calculating
the inner product of two vectors in a high-dimensional space
can be reduced. Notice that at the (t + 1)-th round, the
parameter vector wT

t can be written as a linear combination
of the received samples multiplied by the corresponding loss
values and labels:

wT
t+1 =

t∑
i=1

αi xT
i , (7)

where αi = li yT
i is the coefficient and li is the loss obtained

at round i . The prediction made at round t + 1 is:

wT
t+1 · xt+1 =

t∑
i=1

αi (xT
i · xt+1). (8)

To adopt the kernel method, we replace the inner product
between two samples with the kernel function and obtain a
nonlinear prediction function:

f (xT
t+1) =

t∑
i=1

αiK(xi , xt+1), (9)

where we choose the Gaussian kernel K(xi , x j ) =

exp(−
∥xi −x j ∥

2

2σ 2 ) with σ being the bandwidth.

IV. SIMULATED ONLINE EXPERIMENT

A. Datasets
We evaluate the proposed method on two publicly available

datasets, namely BCI Competition IV-2b (referred to as BCI
IV-2b) [56] and Clinical Brain-Computer Interface Challenge
2020 (referred to as CBCIC) [57]. Within each dataset, we con-
sider the data from each subject as a domain. By selecting one
domain as the target domain and the remaining domains as the
source domains, we construct multiple transfer learning tasks.
In a practical scenario, the target domain can be a new subject
or a new data session from an existing subject.

• BCI IV-2b: This dataset consists of five sessions (three
training sessions and two testing sessions) from nine
right-handed subjects performing right-hand and left-hand
imagery. Following [58], the three training sessions are
used in this study. The three training sessions include
a total of 400 trials. Session 1 and session 2 con-
tain 120 trials for each without feedback, while session
3 includes 160 trials recorded with feedback. All the
data comprise six channels (three EEG channels and
three EOG channels) recorded at a sampling frequency
of 250Hz, and only EEG channels are used in this study.

• CBCIC: The EEG signals from ten hemiparetic stroke
patients with no prior experience of using a BCI sys-
tem are recorded with 12 electrodes at a sampling rate
of 512 Hz. A total of 120 trials are available. During
each trial, the subjects perform 2-class (left or right hand)
motor imagery tasks.

B. Compared Methods
To demonstrate the performance of our method, we choose

several methods as the comparative methods. We compare our
method with the Passive Aggressive algorithm [39] since it
is a classical online learning algorithm. However, PA does
not exploit knowledge from the source domains, so a variant
of PA, namely PAIO (PA initialized with the old classifier),
is added to the comparative methods. PAIO is considered
a single-source method. We also compare our method with
HomOTL [40] and HomOTLMS [42]. HomOTL transfers
knowledge from a single source domain via a mistake-driven
Hedge algorithm. In HomOTL, the source or target classifier
will receive a weight discount if it makes an erroneous
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TABLE I
ERROR RATES (%) OF DIFFERENT METHODS ON THE BCI IV-2B DATASET

TABLE II
ERROR RATES (%) OF DIFFERENT METHODS ON THE CBCIC DATASET

prediction. HomOTLMS extends the OTL problem to the
multi-source setting and uses the Hedge algorithm to learn
the transferred weights of source domains. For the two single-
source methods, i.e., PAIO and HomOTL, we combine all
the source domains into a new source domain for offline
training. Besides, we consider source-only cases that use
source classifiers to make predictions for the target samples
directly. Specifically, we consider two cases, denoted by SO-c
and SO-s, respectively. SO-c represents the combination case,
where we combine all the source domains to train a single
source classifier. SO-s represents the separated case, where
we train a classifier for each source domain and report the
best result among them.

C. Experimental Settings

Under the online learning setting, the model learns from the
data sequence and provides predictions for each received data
sample. This stands in contrast to conventional approaches,
where predictions are made on a different testing dataset
subsequent to the batch training process. We use each PSD
feature to train the model and obtain a prediction result given
by the model. The prediction error rate of the model on
all data from the target subject is used as the evaluation
criterion. We further process the extracted PSD features using
the Gaussian kernel function. Different kernel parameters,
denoted as σ1 and σ2, are set for the source and target domains,
respectively. The regularization parameter C for all methods
is set to 1.0 for simplicity and fairness. Additionally, to ensure
stability and obtain an average result, we randomly permute

the EEG trials of the target subject 20 times. This enables the
model to receive the EEG trials in 20 different random orders
and produce a stable average result.

D. Experimental Results
Tables I and II present the results of our method and the

comparative methods on the BCI IV-2b and CBCIC datasets,
respectively. The best result among all the methods for each
target domain is highlighted in bold. The performance of each
method in a specific task is evaluated by the average error
rate of the 20 random permutations. To analyze the perfor-
mance differences further, we conduct paired t-tests within the
20 results of each task to determine whether our method is sig-
nificantly different from the comparative methods. We choose
a fixed significance level of 0.05. If the p-value is lower than
the fixed level, we will support that the performance difference
between the two methods is significant.

On BCI IV-2b, OSFTL achieves better performance than
the comparative methods in all the tasks, except for sub-
ject 07. Additionally, OSFTL outperforms all comparative
methods when considering the average result across all the
tasks. Furthermore, OSFTL demonstrates a comparatively
lower standard deviation when compared to the second-
ranking method. This observation suggests that our approach
remains stable across varying orders of incoming target data.
Besides, the results of the paired t-tests confirm that the
performance advantage of our method is statistically signif-
icant (p < 0.05). We also find that all transfer learning
methods (PAIO, HomOTL, HomOTLMS, OSFTL) outper-
form PA which does not leverage information from source
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TABLE III
ROBUSTNESS STUDY IN TERMS OF ERROR RATE ON THE CBCIC DATASET WITH 2, 3, AND 4 NOISE DOMAINS

domains. This validates the importance of knowledge transfer
in MI classification. Moreover, when comparing our method
with HomOTL and PAIO, a significant pattern emerges.
In contrast to these two approaches, our method considers
the similarity between each source domain and the target
domain while enabling distinct source domains to contribute
differently. This is a crucial factor for achieving improved
performance.

On CBCIC, OSFTL outperforms all the comparative meth-
ods in all the tasks except for subject 03, and also achieves
the best average result. Again, we use a paired t-test to
guarantee the significance of the results, with a significance
level of 0.05. The results show that our method performs
significantly better than the comparative methods in all the
tasks except for subjects 03 and 07. In all the tasks where
OSFTL outperforms the others, as well as the average result,
we observe a comparatively smaller standard deviation com-
pared with the second-ranked method. It is worth noting that
although HomOTLMS is a multi-source method, it still yields
similar average results as HomOTL on CBCIC. However,
OSFTL performs well under multi-source conditions. This
difference in performance can be attributed to the nature of
the CBCIC dataset which has a relatively small number of
EEG trials. HomOTLMS employs the Hedge strategy [59] to
modify the weights of the source classifiers, where a source
classifier suffers a mild weight discount each time it makes a
wrong prediction. Therefore, HomOTLMS needs an adequate
amount of online received data to obtain reliable transferred
weights. Different from HomOTLMS, OSFTL captures source
classifiers that are beneficial to knowledge transfer directly
through the classification parameters, thus assigning appropri-
ate weights to them.

E. Robustness Study
In practice, it cannot be guaranteed that all source domains

will benefit the target task. To verify our method’s ability to
find source domains that can effectively assist the target task,
we introduce noise domains to the CBCIC dataset and compare
the results of our method with those of HomOTLMS. Specif-
ically, we increase the number of noise domains from 2 to 4,
generate noise samples from Gaussian noise, and randomly
label them as left or right hand to form the noise domains.
The noise domains contain an equal number of samples of

both classes. Table III shows the error rates of subject 04 on
the CBCIC dataset for both methods across the original dataset
and the dataset with noise domains. Table III further shows the
performance variations observed between the normal and noisy
datasets. To accurately measure the change in performance,
we calculate the difference in performance by 1 = (En −

Eo)/Eo, where En and Eo represent the model’s error rate in
the original dataset and the noisy dataset, respectively. From
Table III, we observe that as the number of noise domains
increases, both methods suffer from performance degradation.
However, across all numbers of noise domains, OSFTL shows
lower performance degradation compared to HomOTLMS.

F. Online Prediction Performance
We study the behaviors of the test methods under varying

numbers of training samples to analyze the ability of online
transfer learning methods to adjust the model according to
the incoming data. We present the results on the BCI IV-2b
dataset in Fig. 2, where the error rates of most online transfer
learning methods gradually decrease as the number of samples
increases. This trend suggests that online transfer learning
methods are well-suited for online motor imagery-based BCI
scenarios. Among all the methods, our method eventually
reduces the error rate to a minimum on most tasks, which
aligns with the results presented in Table I. Furthermore,
for most subjects, OSFTL maintains the lowest and most
consistently decreasing error rate once the number of samples
reaches the range of 50 to 100. These results demonstrate the
effectiveness of the proposed model.

G. Comparison with Offline Source-Free Transfer
Learning Methods and Test Time Adaptation Methods

To provide a detailed analysis of OSFTL, we compare
it with existing offline source-free transfer learning meth-
ods and test time adaptation methods [60]. Specifically,
for offline source-free transfer learning methods, we choose
Source HypOthesis Transfer (SHOT) [51] and Lightweight
Source-Free Transfer (LFST) [22] as compared methods.
SHOT is a method based on deep neural networks. It ini-
tializes the target domain model using the parameters of the
source domain model and employs information maximization
and pseudo-labeling strategies to achieve source-free transfer
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Fig. 2. Average error rates of different methods with the increase of target domain samples on several representative subjects on the BCI IV-2b
dataset.

TABLE IV
COMPARISON IN TERMS OF ERROR RATE WITH OFFLINE SOURCE-FREE TRANSFER LEARNING AND TEST TIME ADAPTATION METHODS

Fig. 3. Parameter sensitivity study of the proposed model.

learning. LFST is a multi-source method. It constructs a
virtual intermediate domain by selecting samples with small
prediction inconsistencies from the source domain models
and utilizes feature adaptation to reduce the domain discrep-
ancy. For test time adaptation methods, we adopt Tent [61],
T3A [62], and T-TIME [60] as compared methods. Tent opti-
mizes the model’s transformation parameters in the test time
through prediction entropy minimization. T3A utilizes both
pseudo-labeling and prototype updating to adapt to the online
data. T-TIME considers both conditional entropy minimization
and label marginal distribution regularization to trim the trivial
solution where all test data are classified into a single class.

Following [60], we perform Euclidean Alignment [63]
before training and combine all the source data into one
domain for SHOT and test time adaptation methods. We also
adapt incremental Euclidean Alignment [60] for test time
adaptation methods. For SHOT and test time adaptation
methods, we use EEGNet [64] as their backbone. Table IV
presents the error rates (%) on the CBCIC dataset. Compared

with test time methods, OSFTL shows small standard devi-
ations, indicating that it is more stable under different data
permutations. Furthermore, both multi-source methods, i.e.,
OSFLT and LSFT, achieve better performance, demonstrating
the importance of multi-source knowledge transfer. Note that
the proposed OSFTL method is a shallow model that requires
a smaller amount of parameters than neural network-based
models.

H. Parameter Sensitivity Study
The proposed OSFTL model involves a tunable parameter

λ. Fig. 3 presents the parameter effect on classification per-
formance under different λ values over all the tasks generated
from the BCI IV-2b and CBCIC datasets. We observe that
our method is relatively stable when λ is smaller than 1 on
both datasets. We also study the effect of two Gaussian kernel
parameters, i.e., σ1 and σ2, by taking all the tasks on the
CBCIC dataset as examples. Fig. 3 shows the results of the
average error rates over all tasks with varied parameter values.
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TABLE V
ABLATION STUDY IN TERMS OF ERROR RATE ON THE CBCIC DATASET

TABLE VI
ERROR RATES UNDER DIFFERENT DISTANCE MEASURES

We set σ1, σ2 ∈
{
2−5, . . . , 25}. It can be observed that our

method obtains the best result when σ1 = 2−2 and σ2 = 2−2.

I. Ablation Study
We perform ablation studies to analyze the ensemble strat-

egy of the proposed method. Specifically, we take the tasks
on the CBCIC dataset as examples and present the results in
Table V, where we denote the case of using uniform weights
without updating by OSFTL-u. We observe that OSFTL out-
performs OSFTL-u, which validates the effectiveness of the
ensemble strategy by measuring distances between the source
and target classifiers. We also perform a t-test to show that
OSFTL significantly outperforms OSFTL-u on eight tasks.

J. Influence of Different Distance Measures
Since OSFTL employs a distance-based weighting strategy,

it is meaningful to investigate the influence of different dis-
tance measures on the method’s performance. We study the
performance of OSFTL using Euclidean distance, cosine sim-
ilarity, and Chebyshev distance. Table VI presents the average
results of subjects. We can observe that using the Euclidean
distance yields the best results on the CBCIC dataset and
comparable results with the cosine similarity on the BCI IV-2b
dataset. The results of cosine similarity may be attributed to
the fact that cosine similarity only considers the direction of
vectors and is insensitive to the magnitude of vectors. Cheby-
shev distance may not be appropriate for capturing the domain
discrepancy, resulting in its less satisfactory performance.

K. Influence of Euclidean Alignment
We analyze the influence of Euclidean Alignment (EA)

[63] on OSFTL and present the average results in Table VII.
EA is a transfer learning method specially designed for BCIs.
EA aligns the covariance matrices of all EEG trials from a
subject such that the arithmetic mean of all covariance matrices
is equal to the identity matrix. Many cross-subject methods

TABLE VII
ERROR RATES OF OSFTL USING EA AND IEA

TABLE VIII
EFFECT IN TERMS OF ERROR RATE OF INTERACTIONS

OF INDIVIDUALS’ DATA

for BCIs employ EA before conducting subsequent machine
learning, such as [19], [22], and [60]. Following [60], we apply
EA and Incremental EA (IEA) to OSFTL. IEA is a variant of
EA designed for online scenarios. EA uses all available trials
of a subject as its reference matrix. IEA utilizes an incremental
average strategy and uses the average of currently received
covariance matrices to replace the original reference matrix in
EA. Table VII shows that OSFTL may not be very beneficial
from EA and IEA.

L. Interaction of Different Individuals’ Data
Typically, EEG data are collected from multiple subjects,

resulting in multiple source domains for transfer learning.
However, combining the source domains can incorporate
interactions among individual data, possibly improving perfor-
mance. Here, we investigate whether combining the sources,
instead of independent training, could improve the perfor-
mance of OSFTL. Specifically, we combine every three
source domains into a new source domain for each target.
Table VIII indicates that the combination case experiences
performance degradation. According to [45], noise or negative
knowledge generated by one source domain can effectively
be corrected by other source domains. Combining data from
different individuals reduces the number of independent source
domains, potentially weakening the ability to correct negative
knowledge.

V. REAL-WORLD ONLINE EXPERIMENT

A. Experimental Setup
Six subjects, denoted as S01, S02, . . ., and S06, with-

out known neurophysiological anomalies participate in the
real-world online experiment. None of the subjects have
previous experience with brain-computer interfaces. All the
subjects are right-handed. Prior to the experiment, we provide
the subjects with detailed information about the experimental
paradigm and the tasks they are required to perform. They
also watch a demonstration of the experiment to familiarize
themselves with the procedure. The experiments are carried
out in a quiet and comfortable environment. The subjects are
instructed to sit in a comfortable and stable chair with their
hands resting naturally on the armrests. There is a monitor
1.2 meters in front of the seat, which is used to guide the
subjects to perform motor imagery tasks.
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Fig. 4. The timing diagram of a single trial during offline data acquisition.

Prior to the online experiment, we collect motor imagery
data from all the subjects, which serve as the source domains.
During the online experiment, each subject is treated as a new
target subject. All data, except the current target subject’s data,
are treated as the source domains to assist in the new task.
Each source domain contains 100 trials of EEG signals which
consist of 50 trials of left-hand imagery tasks and 50 trials of
right-hand imagery tasks. Each trial begins with a preparation
stage for 3s with a fixation cross presented in the middle of the
screen. Then, a prompt appears on the screen for 4s, indicating
that the subject should imagine left-handed or right-handed
movement, during which the subject continues to perform the
corresponding imagery task. Subsequently, before the next trial
starts, there is a pause stage of 2–3s. Fig. 4 shows the timing
diagram described above.

In the online experiment, the subjects are instructed to con-
trol the movement of an object on the screen by performing the
corresponding motor imagery according to the given cue. Each
round of the experiment consists of an imagery period and a
rest period. At the beginning of the imagery period, an image
of a soccer ball is placed in the center of the screen. Colored
squares representing goals are placed on both sides of the
screen, and text at the top of the screen indicates the specific
imagery task the subject should perform. The subject’s task is
to imagine the movement according to the given cue. As the
subject performs a movement attempt, the online decoder
provides a real-time prediction of the subject’s imagery. Based
on these predictions, the soccer ball image moves a certain
distance in the corresponding direction. It takes four moves
for the ball to reach either side of the screen from its initial
position. The duration of the imagery period is uncertain and
varied depending on how much time the subject takes to move
the ball to the goal. Consequently, the length of the online
data sequence within an imagery period is also uncertain. This
setup reflects the practical application scenario of BCI, where
the duration of the task depends on the user’s performance.
After the soccer ball moves to either side, the imagery period
ends regardless of whether it enters the correct goal. This
allows the model to receive class-balanced training samples.
After a rest period of 4 seconds, the next round begins, and
the cue instructs the subjects to perform the imagery tasks by
moving the ball in the opposite direction to which it had gone
in the previous round.

B. Data Acquisition
EEG data are acquired from 32 scalp sites (extended 10-20

system) using a cap with active Ag/AgCl electrodes (Quick-
cap32). Wet electrodes are used in the cap, and the electrode
impedance is modulated to less than 5K�. The EEG data
are collected on 12 electrodes distributed across the motor

TABLE IX
ONLINE ERROR RATES OF THE PROPOSED METHOD IN THE TWO

SESSIONS ON SIX SUBJECTS

Fig. 5. Error rates of the proposed method with the increase of target
domain samples on six subjects.

cortex, namely F3, FC3, C3, CP3, P3, FCz, CPz, P4, FC4, C4,
CP4, and P4. Two electrodes placed on the bilateral mastoid
are chosen as references. A Neuroscan Synamps2 amplifier
amplifies the EEG signals. All EEG data are collected at a
sampling rate of 1000 Hz. The same filtering setting is applied
as in the simulated experiment.

To address the problem of handling data sequences of
varying lengths as mentioned in the previous subsection,
we implement a sliding window approach. The window has a
fixed length of 4 seconds, which corresponds to 4000 sample
points for each electrode. Every 1s, newly received sample
points from each electrode will be added to the window
while the oldest 1000 sample points are discarded. The data
in the window are then served as the model input. This
strategy allows the model to work on continuous data series
and increases the number of available training samples. Once
the model receives a total of 200 training samples from the
window, the online experiment ends with the error rate during
this period calculated for evaluating its performance. In order
to adapt the subjects to the online experiment, we provide two
sessions for each subject. This allows the subjects to become
familiar with the experimental setup and the tasks involved.

C. Experimental Results
Table IX presents the error rate results of all six subjects

in both sessions. Our method records an average error rate of
0.383 ± 0.0343 in the first session and 0.363 ± 0.0336 in the
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second session. The results indicate that our method’s average
performance of the six subjects in a practical scenario is close
to the performance of the simulated online experiment. It is
important to note that we exclude each subject’s own data
from the source domains, which means that the experiment
is conducted without subject-specific calibration. This further
demonstrates the usability and effectiveness of our method in
real-world scenarios. Fig. 5 illustrates the change in the error
rate of our method in session 2 of all subjects as the num-
ber of samples increases. It can be seen that although the
model is error-prone on different subjects at the beginning
of the experiment, the error rate gradually decreases as the
model continuously updates its classification parameters and
the relative transferred weights based on the data sequence.
This observation is consistent with the simulated experiment.
In addition, the model itself is continuously optimized as
the number of samples increases. Therefore, the classification
ability of the model will be stronger after a certain period of
time in the data collection.

VI. DISCUSSION

As shown in Fig. 2, at the beginning of the online learning
stage, the performance improvement of some tasks is evident
and the performance improvement of other tasks is not.
We interpret this observation as follows. For some tasks, it is
difficult for online learning methods to optimize under the data
sequence, possibly due to the instability of online learning or
the inadequate number of samples. Thus, the performance of
these methods may not change a lot during the learning pro-
cess. However, it is still possible to improve the performance
through knowledge transfer. The improvement brought by
knowledge transfer can be observed in the initial phase because
the learned source classifiers could be beneficial for making
correct predictions. Tables I and II also show that OSFTL
has performance improvement compared with SO-c and SO-s,
indicating that the online learning process is beneficial. For
the self-collected dataset, it may be more challenging to train
an ideal target classifier due to the subjects’ lack of experience
in MI and the difficulty of the online task.

During the online learning process, the target classifier
may give a completely erroneous prediction to the incoming
sample, which may lead to a wrong ensemble result. However,
the more significant the discrepancy between the prediction
and the true label is, the greater the loss incurred by the model
according to the hinge loss function. Thus, subsequent model
updates are able to rectify an incorrect prediction.

VII. CONCLUSION

In this paper, we consider both the privacy-preserving prob-
lem and the cross-subject problem for online BCI applications.
To utilize the information in existing auxiliary data, we build
offline classifiers for each source subject. Out of concern for
privacy preservation, classifiers trained on source subjects’
data are used to improve the performance of the target task
instead of using the data directly. Subsequently, we trained
a target classifier on the EEG data sequence from the target
subject. At the online stage, we conduct online knowledge

transfer by combining the source and target classifier using
a weighting strategy. In each round, we dynamically update
the weights based on the distance of classifier vectors to
reflect the transferability for each source subject in an online
fashion. Experimental results demonstrate the effectiveness of
our method.

Currently, OSFTL has some limitations, primarily in terms
of feature extraction methods and BCI paradigms. In the
future, to expand the usability of our method, different feature
extraction methods can be considered. It is also worthwhile
to investigate the usability of our method on other EEG
paradigms, such as P300 and SSVEP.
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