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Digital Biomarker for Muscle Function
Assessment Using Surface Electromyography

With Electrical Stimulation and a
Non-Invasive Wearable Device

Kwangsub Song , Hyung Eun Shin , Wookhyun Park , Daehyun Lee, Jaeyoung Jang , Ga Yang Shim ,
Sangui Choi , Miji Kim , Hooman Lee , Member, IEEE, and Chang Won Won

Abstract— Sarcopenia is a comprehensive degenerative
disease with the progressive loss of skeletal muscle mass
with age, accompanied by the loss of muscle strength
and muscle dysfunction. Individuals with unmanaged sar-
copenia may experience adverse outcomes. Periodically
monitoring muscle function to detect muscle degeneration
caused by sarcopenia and treating degenerated muscles is
essential. We proposed a digital biomarker measurement
technique using surface electromyography (sEMG) with
electrical stimulation and wearable device to conveniently
monitor muscle function at home. When motor neurons
and muscle fibers are electrically stimulated, stimulated
muscle contraction signals (SMCSs) can be obtained using
an sEMG sensor. As motor neuron activation is important
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for muscle contraction and strength, their action potentials
for electrical stimulation represent the muscle function.
Thus, the SMCSs are closely related to muscle function,
presumptively. Using the SMCSs data, a feature vector
concatenating spectrogram-based features and deep learn-
ing features extracted from a convolutional neural network
model using continuous wavelet transform images was
used as the input to train a regression model for measuring
the digital biomarker. To verify muscle function measure-
ment technique, we recruited 98 healthy participants aged
20–60 years including 48 [49%] men who volunteered for
this study. The Pearson correlation coefficient between
the label and model estimates was 0.89, suggesting that
the proposed model can robustly estimate the label using
SMCSs, with mean error and standard deviation of -0.06 and
0.68, respectively. In conclusion, measuring muscle func-
tion using the proposed system that involves SMCSs is
feasible.

Index Terms— Digital biomarker, muscle mass, muscle
strength, stimulated muscle contraction signal, deep neural
network.

I. INTRODUCTION

SARCOPENIA is a muscle degenerative disorder related
to age or disease and is defined as decreased skeletal

muscle mass and strength and/or reduced muscle function [1].
Additionally, with muscle degeneration, the condition of the
myelin sheath in motor neurons deteriorates and the number
of motor neurons and axons decreases with muscle degenera-
tion [2]. Hence, muscle quality, which is a good indicator of
muscle function, is impaired by muscle degeneration [3], [4],
[5]. As muscle degeneration progresses, decrease in muscle
mass occurs after the age of 35 years, and muscle mass and
strength steadily reduce. The peak age and rate of decrease
in skeletal muscle mass are different for each individual [3],
[6]. Muscle degeneration owing to aging or disease, causes
a decrease in myofunction [7], thereby increasing the risk of
accidents in daily life. With no intervention, falls and fractures
may occur due to a balance disorder caused by sarcopenia [8],
[9], [10]. Hence, to prevent muscle degeneration the muscle
function could be periodically checked to provide appropriate
exercise recommendations to patients for improving their
muscle health. [11], [12].
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Muscle function in patients has been typically measured
using the muscle strength test and timed up-and-go test con-
ducted by an expert in the hospital [6], [13], [14]. However,
muscle function may not be accurately evaluated by relying
solely on muscle strength. Therefore, recent studies have
been conducted from the perspective of muscle quality to
assess muscle function [15], [16]. The motor unit consists
of a motor neuron and the muscle fibers that it innervates
through its axon terminals, encompassing the neuromuscular
junctions connecting the neuron to the muscle fibers. Muscle
motor neurons, muscle fibers, and muscle fiber firing rate play
crucial roles in muscle contraction; therefore, their condition
is closely related to muscle strength. Although individuals
within a certain group may have the same muscle mass,
differences in muscle strength can occur based on the structure
of their motor units. Therefore, to evaluate motor unit function,
we propose a muscle quality index as a digital biomarker
(muscle strength/muscle mass).

In addition, accurately measuring muscle strength using
professional equipment, such as the microFET and Biodex,
is challenging and inconvenient without an expert [17], [18].
Because professional equipment is expensive, patients can-
not periodically measure their muscle strength. Also, for
older individuals with hypertension, muscle strength test may
increase the risk of hemorrhagic stroke [19], [20], [21]. There
is an increasing demand for easy and convenient methods to
monitor muscle function at home for health promotion [22],
[23], [24], [25].

To address these issues, we propose a digital biomarker
measurement technique using a wearable device to assess
muscle function. To assess muscle function, obtaining infor-
mation on the condition of the muscle motor neurons, fibers,
and fiber firing rate is necessary, as muscle function is
closely related to these components. Hence, we recorded the
response signals of motor neurons and muscle fibers activated
by electrical stimulation, defined as stimulated muscle con-
tractions, using a surface electromyography (sEMG) sensor.
The resultant stimulated muscle contraction signal (SMCSs)
includes information about motor neurons and muscle fibers
but excludes the muscle fiber firing rate. The muscle fiber
firing rates observed during voluntary muscle contraction has
different characteristics compared to the SMCSs recorded
during involuntary muscle contraction induced by electrical
stimulation. Moreover, owing to motor neuron and muscle
fiber degeneration, the cross-sectional area decreases, leading
to impaired muscle function. This affects the response signals
of the motor neurons and muscle fibers stimulated by electrical
stimulation. Hence, the SMCSs include response signals of the
motor neuron and muscle fiber [26] such as M-wave, H-wave,
F-wave, and so on, and it includes bioinformation related with
the skeletal muscle contraction [27], [28], [29]. Thereafter,
we propose a muscle function assessment technique based on
an artificial intelligence (AI) model using the SMCSs. First,
the signal was processed through feature extraction after the
SMCSs were recorded by the EMG sensor. While recording
the SMCSs, the sEMG sensor captured the response signals
from the motor neurons and muscle fibers, as well as the
artifact noise generated by electrical stimulation. To improve

the performance of the proposed system, it is necessary to
remove the artifact noise. However, because artifact noise
occurs almost simultaneously with the response signals from
motor neurons and muscle fibers, and the sampling frequency
of the sEMG is not high enough to distinguish between them,
it is difficult to separate artifact noise from the response signals
and removing artifact noise might distort the response signals,
the preprocessing step to remove artifact noise was excluded.
The input of the AI model consisted of muscle contraction
pattern (MCP) features extracted based on spectrograms, con-
tinuous wavelet transform (CWT) features extracted based on
deep learning, and body information. Finally, we trained the
digital biomarker estimation model using an input vector to
assess the muscle function. We also attempted to verify the
performance of the proposed technique.

II. TECHNICAL CONCEPT

A. Stimulated Muscle Contraction Signal (SMCS)
When the sEMG sensor records the myoelectric signal

along with voluntary muscle contraction, the relationship
between the amplitude of the sEMG and muscle strength
is nonlinear [30], [31]. In addition, the results of conven-
tional sEMG tests are influenced by the participant’s volition;
therefore, objectively determining muscle function is chal-
lenging. To address this issue, muscle contraction is induced
by electrical stimulation, and the sEMG signal is simultane-
ously recorded to analyze the MCP, which appears differently
according to muscle function (Fig. 1.A). To achieve various
biosignals, the SMCSs were collected using various frequency
parameters of electrical stimulation. The results are shown
in Fig. 1.B; the SMCSs can be transmitted through a mobile
device connected by Bluetooth, and the signal passes through
the proposed AI algorithm to assess muscle function.

B. System Prototype for Recording SMCSs
As shown in Fig. 1.A, the novel system presented in this

study involves an sEMG sensor to record the SMCSs using
an electrical stimulation generator installed in the wearable
device. The proposed approach consists of a hardware system
for recording the SMCSs and a software system for controlling
the hardware system. The mobile device is first connected
to the cradle and then to the wearable device via Bluetooth,
as shown in Fig. 1. The wearable device can be controlled
using the recording button of the application on the mobile
device. Finally, the SMCSs are saved to the server after the
signal is transmitted to the mobile device.

C. Usage
As shown in Fig. 1.A, the electrode pads are attached to

the rectus femoris, and the wearable device of the cradle
is connected to them via a magnetic button. After the user
downloads the application in their device, such as a tablet
or smartphone, the they connect the wearable device to it
via Bluetooth. While generating the electrical stimulation at
the rectus femoris, the user must not move while collecting
data. As the algorithm does not require voluntary muscle
contraction, which occurs because of the user’s volition, the
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Fig. 1. Concept of the proposed system. (A) Outline of the stimulated
muscle contraction signals (SMCSs) data acquisition method. The red
and blue lines are related to the surface electromyography (sEMG) sen-
sor and electrical stimulation, respectively. The figure shows the concept
of the SMCSs data recording. While the electrical signal stimulates the
target muscle, the muscle response signal is recorded by the sEMG
sensor in the wearable device, as indicated by the red line. (B) The
connection structure to use the wearable device.

user maintains the relaxed state of the muscle after contraction.
Finally, when data recording is completed, the data are saved
in local storage in the participant’s mobile phone or tablet.

III. MATERIALS AND METHODS

We performed a stability test on the wearable device before
the experiment. To minimize the noise that might occur from
the electrode pad, one pad was used by one participant when
the SMCSs were collected using a wearable device. Because
we designed the SMCSs, which was composed of the MCP
by electrical stimulation, the muscle contraction signal by
volition must not be included in the SMCSs. The clinical
researcher observed whether the participants contracted their
muscles. If the participant contracted their muscles by volition,
we recorded the SMCSs.

A. Hardware Description
Our experimental system consists of a cradle and two

modules. The modules generate electrical stimulation signals
based on parameters provided by a user application and send
the measured EMG signals back to the application. The cradle
is responsible for recharging the modules’ batteries, providing
information about the available modules to the user appli-
cation, and indicating the operational status of the modules
externally.

The modules consist of custom-designed circuits, four elec-
trodes, a bi-colored light-emitting diode (LED), a battery,
and charging pins. All components are housed in a self-
manufactured polycarbonate case with dimensions of 50 ×

59 × 23 mm. The four magnetic electrodes, attached to a
hydrogel pad, slightly protrude from the bottom of the case.
The charging pins are accessible on the back, and the module
weighs approximately 40g. The module is powered by a 3.7V,
250 mAh lithium-ion polymer battery, which is charged with
a DC voltage of 4.2V and a current of 450 mAh.

The embedded microprocessor (STM32L451CE, STMi-
croelectronics) communicates with a Bluetooth low-energy
module (NRF52840, Nordic Semiconductor) using UART
communication at 115,200 bps. This setup enables the module
to receive commands from a user application connected via
Bluetooth 5.0 and control the module’s circuitry. The circuitry
generates an electric stimulation signal consisting of three
serial pulse-waveforms (1.40 ms, bi-phased, 50% pulse width)
at frequencies ranging from 5 to 100 Hz, with a maximum
peak-to-peak amplitude of 100V (measured with a 500 ohm
noninductive resistor). This signal is delivered through the
stimulation electrodes. The EMG signal, collected by the
EMG electrodes, is amplified and filtered through a band-pass
filter with cutoff frequencies of 9 and 760 Hz (analog signal
conditioning). The microcontroller measures this signal at a
rate of 1000 samples per second using 8-bit analog-to-digital
conversion and transmits the data to the user application.

The cradle consists of custom-built circuits, LEDs, a flexible
numeric display (FND), a piezo-electronic buzzer, charging
pins, and a DC jack. All components are enclosed in a
self-manufactured polycarbonate case, with a dimension of
189 × 85 × 57 mm. The four pogo pins are exposed on
the top, and the 5V DC jack is on the back of the cradle.
Weighing approximately 270g, the cradle charges the modules
via the pogo pins and operates its embedded microprocessor
(STM32F401RE, STMicroelectronics).

The processor interfaces with two Bluetooth low-energy
modules (NRF52840, Nordic Semiconductor). One Bluetooth
module connects to our experimental modules, monitoring
their operational status, while the other awaits a connection
from the user application. Both Bluetooth modules use UART
communication with the microprocessor at 921,600 bps and
115,200 bps, respectively. The cradle displays the status of
the connected modules using LEDs and indicates the operation
of our experimental devices by showing numeric texts on the
FND and emitting beep sounds through the buzzer, based on
commands received from the user application.

B. Software Description
The software process consisted of a data collection stage

and a digital biomarker estimation stage. First, for the data
collection stage, an Android-based application was created to
run on a mobile device, such as a smartphone or tablet. The
wearable device connected via Bluetooth to the mobile device
then recorded the SMCSs using the application, and the data
were saved in local storage.

After removing the offset value from the SMCSs, features
were extracted to estimate the digital biomarkers. Six electrical
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Algorithm 1 Peak Detection
Goal:
1. iP detection of each frequency bin of the spectrogram
2. iN detection of each frequency bin of the spectrogram
Procedure:
Input is spectrogram Xn(i, j)
for n = 5Hz, . . ., 30Hz do

for j = 1, . . . , 32 do
for i =2:99 do

if (Xn(i, j) − Xn(i − 1, j) > 0 and Xn(i + 1, j) − Xn(i, j) < 0) then
iP = i

Xn(i, j) = −Xn(i, j)
for i =2:99 do

if (Xn(i, j) − Xn(i − 1, j) > 0 and Xn(i + 1, j) − Xn(i, j) < 0) then
iN = i

Fig. 2. Complete block diagram of the proposed technique.

stimulation frequencies were used to record the SMCSs, and
before extracting features, the SMCSs were divided into six
segments based on these frequencies. The feature extraction
process, as depicted in Fig. 2, consisted of four stages and
was iteratively performed until all segments of the SMCSs
were processed. To analyze changes of the frequency compo-
nents over time in the response signals of the neuromuscular
system during electrical stimulation, we then extracted features
that could express the MCP through spectrogram analysis.
As shown in Fig. 2, the envelope for each frequency bin was
calculated after the SMCSs were converted into spectrogram
Xn(i, j). The pairs of positive peaks iP and negative peaks
iN were added, and the samples between the pairs were
interpolated. At this point, the peak detection was performed
based on Algorithm 1.

In Algorithm 1, i and j are the frame and frequency-
bin indices of the spectrogram, respectively. Additionally,
n denotes the frequency of the electrical stimulation. Next, the
amplitudes of iP and iN were added, and the samples between
the pairs were linearly interpolated, as shown in Fig. 2 [32].
Finally, after the interpolation, the envelope signal E(i,j) was
obtained. The offset of the envelope signal was normalized to
the mean and standard deviation (SD) of the envelope signal.

E(i, j) = (E(i, j) − µE ( j))/σ E ( j) (1)

where µE ( j) and σE ( j) represent the mean and SD, respec-
tively, of the extracted envelope for each frequency bin. The
autocorrelation of the envelope was calculated to express the
MCP, and the outcome value of the autocorrelation function
was employed as the feature vector. In addition, the slope
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of the autocorrelation was calculated to extract the variation
in the MCP. As the offset of the envelope may include
essential information, we repeatedly extracted features using
an envelope that included the offset. Furthermore, to reduce
the feature dimension, features were selected if their absolute
correlation with the digital biomarker was > 0.35. Because we
carry out three-fold cross validation, the selected features were
determined by a voting procedure using all folds. In summary,
when each feature was selected from all the folds, it was
included in the input vector of the model.

To improve model performance, the input vector was con-
catenated with a convolutional neural network (CNN)-based
feature vector. As shown in Fig. 2, after the SMCSs pass
through the CWT procedure, the CWT image was used as
the CNN input. To extract the major characteristics from
SMCSs, the signal recorded by the first electrical stimulation
was transformed using the CWT procedure. Various wavelet
functions were available for CWT transformation; however,
SMCSs were converted into CWT images using a Gaussian
wavelet of order three. Indeed, we tried all other wavelet
functions, and the Gaussian wavelet of order three demon-
strated the best performance. Its superior performance may
be attributed to the selected wavelet function exhibiting a
pattern most similar to that of the SMCSs, compared with
other wavelet functions. The CWT images were used as
inputs for the convolutional layer, from which feature vectors
related to digital biomarkers were extracted. The convolutional
layer consists of five layers, and the outcome of the final
layer was a max-pooling process. The kernel size and stride
length were set to 2, and batch normalization was performed
between the convolutional layers. The filter dimensions were
set as 16, 32, 64, 128, and 256. After the transformed signal
passed through the convolutional layers, the output vector
of the convolutional layers was concatenated with the MCP
features, as shown in Fig. 2. Finally, when feature extrac-
tion was complete, the feature vector was combined with
the body information for use as the input of the regression
model.

The input vector and label digital biomarkers were normal-
ized using the mean and SD to minimize the scale difference
between the features [33]. There were two stages in training
the multilayer perceptron (MLP) model: parameter initializa-
tion and fine-tuning. In the parameter initialization stage, the
parameters of the MLP model were randomly initialized with
a mean of zero uniform distributions. Fine-tuning was then
performed using a back-propagation technique to determine
the weight matrix and bias vector obtained during the pre-
ceding training stage [34]. Backpropagation was performed
to update the weight matrix and bias vector obtained in
the previous stage. We employed the exponential linear unit
function as the activation function [33], [35] and used the mean
squared error as the loss function [33]. The number of hidden
layers and units were set to two and (64, 64), respectively.
To minimize overfitting, the dropout was set to 0.5 [36], [37].
Finally, the trained model can estimate digital biomarkers
using a feedforward procedure. At this point, the output
of the model was denormalized to convert the normalized
value [33].

Fig. 3. Photos of the equipment used in the study. (A) Cradle for the
wearable device. (B) Wearable device. (C) Equipment for the muscle
function test (leg muscle dynamometer). (D) Electrode pad. (E) Bioelec-
trical impedance analysis equipment.

IV. EXPERIMENT PROTOCOL

A. Participants
A total of volunteering 98 participants (community-dwelling

adults aged 20–60 years), including 48 (49%) men and 50
(51%) women, were recruited from the Kyung Hee University
Medical Center, South Korea, for SMCSs data collection. All
participants signed a written consent form. The exclusion cri-
teria were as follows: (1) chronic kidney failure (or end-stage
renal disease) or receiving hemodialysis; (2) cancer within
the last 5 years or undergoing chemotherapy; (3) receiving
hormone therapy; (4) myocardial infarction or stroke in the
past 6 months; (5) with a pacemaker; (6) physical disabilities
(in the upper or lower limbs); (7) pregnant or breastfeeding
women, or planning to become pregnant during the trial
period; (8) unable to comply with the study requirements by
the investigator’s judgement; and (9) low literacy levels.

B. Experimental Equipment and Setup
To collect the SMCSs, the wearable device (ExoPill,

Exosystems, Republic of Korea; Fig. 3.A and 3.B) was
attached using an electrode pad (StiMus Electrode, HUREV
Corp., Republic of Korea; Fig. 3.D) in the rectus femoris as
shown in Fig. 4.A, and the EMG sensor, including the SMCSs,
was recorded. After the SMCSs were collected using a 5Hz
electrical stimulation for 8 s, each participant rested for 2 s.
We then collected the signal with the frequency of electrical
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TABLE I
THE CLINICAL CHARACTERISTICS OF THE PARTICIPANTS. VALUES ARE PRESENTED AS MEDIANS (25TH AND 75TH PERCENTILES [%]) OR N (%).

p-VALUES WERE CALCULATED USING THE MANN–WHITNEY TEST FOR CONTINUOUS VARIABLES AND THE CHI-SQUARED TEST OR FISHER’S
EXACT TEST FOR CATEGORICAL VARIABLES. TYPES OF DISEASES INCLUDED ALLERGY, RESPIRATORY, CARDIOVASCULAR, GASTROINTESTINAL,

LIVER/BILIARY, RENAL/URETHRAL, MUSCULOSKELETAL, METABOLIC/ENDOCRINE, SKIN, REPRODUCTIVE, AND MENTAL/NERVOUS.
ABBREVIATIONS: ASMI, APPENDICULAR SKELETAL MUSCLE MASS INDEX; BMI, BODY MASS INDEX

stimulation set at 10Hz. Finally, we sequentially collected the
signal using electrical stimulation at 30Hz. If electrical stimu-
lations at a frequency of 35Hz or higher are used, the intervals
between electrical stimulations become too short, making it
difficult to observe the response signals of the muscle motor
neurons and muscle fibers. Therefore, we limited the maxi-
mum electrical stimulation frequency to 30Hz. The SMCSs
were recorded for 1 min using a mobile device connected to a
wearable device via Bluetooth. To verify the digital biomarker
from the SMCSs, we compared the digital biomarker with
muscle strength per unit of muscle mass using a leg muscle
dynamometer (BS-LS, Inbody, Republic of Korea; Fig. 3.C)
for lower limb muscle strength and bioelectrical impedance
analysis equipment (Inbody770, Inbody, Republic of Korea;
Fig. 3.E) for muscle mass. The equipment was approved as a
medical device by the Ministry of Food and Drug Safety in
Korea. Muscle strength was determined using the maximum
value of the two measurements for each participant.

C. Statistical Analysis
After analyzing the normal distribution using the

Kolmogorov– Smirnov test, the Mann–Whitney U test
for continuous variables and Fisher’s exact test for categorical
variables were used to evaluate the characteristics of the
participants. To evaluate the performance of the proposed
technique, we first trained a deep-learning-based regression
model that assessed the quantitative value of muscle function.
To validate the performance of the regression model, we used
Bland–Altman plots, mean errors (MEs) with SDs, and
Pearson’s correlation coefficient r -values. We assessed the
difference between the estimation results and the labels
measured using the reference equipment. All statistical
analyses were performed using the SPSS software (version
28.0; SPSS Inc., Chicago, IL, USA) and MATLAB R2020b.

D. Ethics
This study was approved by the Clinical Research

Ethics Committee of Kyung Hee University Medical Center

(Institutional Review Board number: 2021-04-065), and
informed consent was obtained from all participants before
data collection.

V. RESULT

A. Experimental Configuration
The clinical characteristics of the participants included

in our study are summarized in Table I. The median age
was 39.0 years (29.3–50.8 years) for men and 39.5 years
(28.8–48.3 years) for women, and this was not significantly
different. However, median height (173.2 cm vs. 161.5 cm,
p < 0.001), body weight (71.1 kg vs. 55.2 kg, p < 0.001), and
body mass index (23.5 vs. 21.3, p < 0.001) were significantly
higher in men than in women. In addition, appendicular
skeletal muscle mass index (8.1 vs. 6.3, p < 0.001), right
leg muscle mass (9.2 vs. 6.4, p < 0.001), knee extension
force (53.3 vs. 37.0, p < 0.001), and knee flexion force
(33.9 vs. 25.1, p < 0.001) were significantly higher in men
than in women. Men were more likely to be smokers than
women (20.8% vs. 4.0%, p < 0.001). To mark the labels
for the SMCSs, we used a leg muscle dynamometer for the
muscle function test, as shown in Fig. 3.C. We first measured
the muscle strength of the lower limb muscles using the
equipment and then collected the SMCSs using a wearable
device to produce digital biomarkers. Before collecting the
SMCSs, the wearable device was validated for reliability and
for performance of electrical stimulation and sEMG by the
Korea Testing Laboratory (issue number: 23-045628-01-1).

B. Experimental Results
To verify the performance of the proposed technique, the

participants were divided into three groups to evaluate the
performance of the model using three-fold cross validation.
Each fold was assigned as a training, validation, or test
set, and experiments were conducted for all combinations.
Consequently, the experimental sets were divided into set 1-1,
set 1-2, set 2-1,. . ., and set 3-2. The biological structure
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Fig. 4. Photos showing the data collection procedures. (a) Stimulated muscle contraction signals collection. (b) Muscle strength measurement.

TABLE II
PEARSON CORRELATION BETWEEN THE FEATURES AND LABELS FOR THE DIGITAL BIOMARKER TO EVALUATE PERFORMANCE OF THE FEATURES

ACCORDING TO SEX AND ELECTRICAL STIMULATION FREQUENCY. PEARSON CORRELATION BETWEEN THE FEATURES AND LABEL WAS
EXPRESSED AS THE MEAN VALUE. ABBREVIATIONS: AVG, AVERAGE; SD, STANDARD DEVIATION; MCP, MUSCLE

CONTRACTION PATTERN, OE, ORIGINAL ENVELOPE; NE, NORMALIZED ENVELOPE

of muscles differs between women and men; therefore, the
proposed model was trained separately for each sex using
the proposed method. First, the participants were sorted in
descending order based on their label for the digital biomarker,
and the participant number was sequentially marked for each
participant. To fairly divide the database, the procedure was
performed after the database was divided into two groups
according to sex. When the operation result of the participant
number module three was zero, the participant belonged to
the test group, while the remaining were in the training and
validation groups. Thus, we performed six experiments for
all the cross-validations. In each experiment, the model was
ultimately selected when the SD of the error between the
model prediction and label was the lowest for training the
model for 50 epochs. In addition, because the performance of
the model was saturated at 50 epochs, the final epoch of the
training model was conducted until the 50th epoch.

Finally, we extracted the feature vector to estimate the
digital biomarker and analyzed the correlation between the
MCP features and labels for the digital biomarker, as shown
in Table II and Appendix. Some of the extracted features
were fairly or moderately correlated with digital biomarker
labels [38]. Next, to train the CNN model, the SMCSs passed
through the CWT procedure, in which the wavelet function
was a third-order Gaussian derivative wavelet. To verify the
performance of the MLP-based model trained using only
MCP features, we verified the MCP feature-based model
in which body weight, height, sex, age, and CWT images

were not included in the input vector. We then evaluated the
performance of the MCP and CWT feature-based models,
in which the input vector was constructed using the output
of the convolutional layer and MCP features. For all feature-
based models, the input vector of the model consisted of body
information, MCP features, and the output of the convolutional
layer before the MLP layers.

Consequently, all feature-based models, which included
body information, MCP features, and the output of the con-
volutional layer in the input vector, demonstrated the best
performance on average. Although the performance of the
other models was slightly lower than that of all the feature-
based models, the MCP and CWT feature-based models
demonstrated stable performances. The experimental results
are summarized in Table III and Appendix. As shown in
Table III and Appendix, when we compared the MCP and
CWT feature-based models with all feature-based models, the
SDs and r -values of the MCP and CWT feature-based models
were lower than those of all the feature-based models. We also
assessed the p-value for the Pearson correlation coefficient to
analyze whether there was a statistically significant correlation
between the label and model estimation.

Although all feature-based models demonstrated the best
performance on average, the MCP and CWT feature-based
models were stable for all experimental sets in terms of the
SDs and r -values. Fig. 5 shows the scatter and Bland–Altman
plots of the estimation results. The scatter plot confirmed that
the estimated digital biomarker results and labels for the digital
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TABLE III
EVALUATION OF THE MODEL PERFORMANCE BY COMPARING ESTIMATED MODEL VALUES WITH THOSE OF THE DIGITAL BIOMARKER LABEL.

ABBREVIATIONS: BI, BODY INFORMATION; ME, MEAN ERROR; STDE, STANDARD DEVIATION OF THE ERROR, CWT;
CONTINUOUS WAVELET

Fig. 5. Experimental results of the regression models for the digital biomarker labels (=muscle strength/muscle mass). The plots show all results
of the three-fold cross validation. (a) Scatter plot of the MCP feature-based model (MCP only) results. (b) Scatter plot of the MCP and CWT
feature-based model results. (c) Scatter plot of all feature-based model results. (d) Bland–Altman plot of the MCP feature-based model results.
(e) Bland–Altman plot of the MCP and CWT feature-based model results. (f) Bland–Altman plot of all feature-based model results. In the
Bland–Altman plot, the means of the errors are shown on the x-axis and the differences in the errors are shown on the y-axis. Abbreviations:
CWT, continuous wavelet transform; MCP, muscle contraction pattern.

biomarker were highly correlated. Fig. 5.D, 5.E, and 5.F show
that the deviation in the model performance was small because
of the random distribution of the results of the Bland–Altman
plot.

VI. DISCUSSION

We propose a digital biomarker estimation technique to
assess muscle function based on the proposed model using
the SMCSs. When the muscle was electrically stimulated, the
sEMG sensor captured the muscle response signal. To record
various pieces of information, an electrical stimulation set
was employed at frequencies of 5Hz, 10Hz, 15Hz, 20Hz,
25Hz, and 30Hz. We calculated the spectrum-based muscle
response pattern to extract the features of the digital biomarker.
We assumed that the MCP produced by electrical stimula-
tion had different characteristics according to the function of
each muscle. Consequently, we observed moderate correlation
between the features and labels. We trained the regression

model based on the CNN using the input vector, including
the CWT image, extracted features, and body information,
to estimate the digital biomarker. To verify the performance of
the proposed model, we conducted three-fold cross validation
with objective measurements [39], [40]. For this verification,
we analyzed the mean errors (MEs) with SDs of the errors
(STDEs), Pearson correlation r -values, and Bland– Altman
plots between the assessed and label values. The proposed
model demonstrated high performance in terms of the objec-
tive measurements. For the three models, the SD of the average
STDE in the test database was 0.04, and a low variance
between the models was confirmed. Therefore, we confirmed
that the models performed fairly well in measuring digital
biomarkers. Ultimately, in the proposed system, complex
computations such as deep learning and feature extraction
are processed on the server side, allowing users to be free
from computational burdens. In addition, to confirm the effect
of the MCP- and CNN-based CWT features, we trained the
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TABLE IV
PEARSON CORRELATION BETWEEN THE FEATURES AND LABELS FOR THE DIGITAL BIOMARKER TO EVALUATE PERFORMANCE OF THE FEATURES

ACCORDING TO SEX AND ELECTRICAL STIMULATION FREQUENCY. PEARSON CORRELATION BETWEEN THE FEATURES AND LABEL WAS
EXPRESSED AS THE MEAN VALUE. ABBREVIATIONS: AVG, AVERAGE; SD, STANDARD DEVIATION; MCP, MUSCLE CONTRACTION

PATTERN, OE, ORIGINAL ENVELOPE; NE, NORMALIZED ENVELOPE

regression model without body information and CNN-based
CWT features to confirm the performance of only the MCP
features. Although the performance of all feature-based models
increased compared with those of the MCP and CWT feature-
based models, the MCP and CWT feature-based models could
robustly assess muscle function without body information.
Thus, all feature-based models exhibited the best performance,
and we proved that muscle function can be assessed using the
SMCSs.

The electrical stimulation frequency ranged 5–30Hz in
increments of 5Hz. To prevent an excessively long data
collection period, we increased the electrical stimulation fre-
quency by 5Hz. There may be significant electrical stimulation
frequencies between 1Hz and 30Hz that were not used in the
study; therefore, further research is required to explore these
possibilities.

The proposed system differs from conventional sEMG tests
regarding analyzing the response signals of muscle motor neu-
rons and muscle fibers through electrical stimulation. While
the conventional sEMG test evaluates noise owing to the influ-
ence of the participant’s will, the SMCSs collected through the
proposed system is significantly mitigated against the influence
of will through consistent stimulation. Furthermore, sEMG
signals recorded through large-area hydrogel electrodes are
complex and difficult to analyze because of the combined
action potentials generated by multiple motor units composed

of motor neurons and muscle fibers during muscle contraction.
To mitigate the issue of signal complexity, previous studies
employed high-density (HD) sEMG sensors to analyze muscle
conditions quantitatively [41]. HD sEMG sensors with smaller
electrode areas can analyze the response signals of fewer
motor units than those with larger electrodes, allowing for
a relatively accurate analysis. A previous study proposed
digital biomarkers to assess muscle aging using HD sEMG
sensors and experimentally validated that these biomarkers
were related to muscle aging [41]. Analyzing muscle aging
quantitatively using conventional sEMG tests was challenging;
therefore, the system proposed in the previous study [41] is
more desirable than existing methods. This system shared a
similar objective with that proposed in this study in terms of
mitigating the signal complexity of conventional sEMG tests.
In contrast, the system proposed in our study was distinguished
by its convenience, as it could be measured without the need
for movement, unlike the participants MCP features. Although
the performance of all feature-based models increased com-
pared with those of the MCP and CWT feature-based models,
the MCP and CWT feature-based models could robustly assess
muscle function without body information. Thus, all feature-
based models exhibited the best performance, and we proved
that muscle function can be assessed using the SMCSs.

The electrical stimulation frequency ranged from 5Hz to
30Hz in increments of 5Hz. To prevent an excessively long
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TABLE V
EVALUATION OF THE MODEL PERFORMANCE BY COMPARING ESTIMATED MODEL VALUES WITH THOSE OF THE DIGITAL BIOMARKER LABEL.

ABBREVIATIONS: BI, BODY INFORMATION; ME, MEAN ERROR; STDE, STANDARD DEVIATION OF

THE ERROR, CWT; CONTINUOUS WAVELET

data collection period, we increased the electrical stimulation
frequency by 5Hz. There may be significant electrical stimu-
lation frequencies between 1Hz and 30Hz that were not used
in the study; therefore, further research is required to explore
these possibilities.

The proposed system differs from conventional sEMG tests
regarding analyzing the response signals of muscle motor neu-
rons and muscle fibers through electrical stimulation. While
the conventional sEMG test evaluates noise owing to the influ-
ence of the participant’s will, the SMCSs collected through
the proposed system is significantly mitigated against the
influence of will through consistent stimulation. Furthermore,
sEMG signals recorded with large-area hydrogel electrodes
were complex and difficult to analyze because of the combined
action potentials generated by multiple motor units and the
combined signals from motor neurons and muscle fibers during
muscle contraction. To mitigate the issue of signal complexity,
previous studies used high-density (HD) sEMG sensors to ana-
lyze muscle conditions quantitatively [41]. HD sEMG sensors
with smaller electrode areas can analyze the response signals
of fewer motor units than those with larger electrodes, allowing
for a relatively accurate analysis. A previous study proposed
digital biomarkers to assess muscle aging using HD sEMG
sensors and experimentally validated that these biomarkers
were related to muscle aging [41]. Because it is difficult to
quantitatively analyze muscle aging using conventional sEMG
tests, the system proposed in the previous study [41] is more
desirable than existing methods. This system shared a similar
objective with that proposed in this study in terms of mitigating
the signal complexity of conventional sEMG tests. In contrast,
the system proposed in this paper was distinguished by using
standardized neuromuscular system bio-signals recorded under
the same stimulus, unlike the HD sEMG test. Furthermore, the
proposed system is expected to demonstrate high performance

if the sEMG sensors used in this study are replaced with
the sensors used in the previous study [41]. In this study,
we validated the feasibility of the proposed system by col-
lecting the SMCSs data once for each participant. However,
further research on the system stability verification should be
conducted to observe the performance of the proposed system
with repeated measurements for the same participant.

Our proposed technique has several strengths. From a user’s
perspective, muscle function can be assessed at home without
prior knowledge of the equipment. When a medical doctor
provides remote care to a patient, the medical doctor can
remotely check the muscle function of the patient. From an
insurance perspective, if a patient has a muscle-related disease
requiring treatment, the patient can use this technique to show
how treatment has improved their symptoms, given difficulties
in assessing muscle function of patients during short visits.
If the patient’s condition is poor during the muscle function
test, muscle function might be underestimated.

VII. CONCLUSION

In this study, we propose a technique for a digital
biomarker for assessing muscle function, by using the SMCSs.
We employed the SMCSs to record response signals in our
clinical study, and our AI model demonstrated a high corre-
lation between the label and model estimation. In conclusion,
the ease and convenience of the proposed technique make
it beneficial for patients who may encounter difficulties with
mobility and muscle strength measurements.

APPENDIX

The Pearson correlations between the extracted features
and the label are summarized in Table II, and more detailed
statistical information on the correlation results is summarized
in Table IV. The performance of the proposed AI model is
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summarized in Table III, and the detailed experimental results
are summarized in Table V.
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