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Integration of Motor Unit Filters for Enhanced
Surface Electromyogram Decomposition

During Varying Force Isometric Contraction
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Abstract— Muscles generate varying levels of force by
recruiting different numbers of motor units (MUs), and as
the force increases, the number of recruited MUs gradually
rises. However, current decoding methods encounter diffi-
culties in maintaining a stable and consistent growth trend
in MU numbers with increasing force. In some instances,
an unexpected reduction in the number of MUs can even
be observed as force intensifies. To address this issue,
in this study, we propose an enhanced decoding method
that adaptively reutilizes MU filters. Specifically, in addition
to the normal decoding process, we introduced an addi-
tional procedure where MU filters are reused to initialize
the algorithm. The MU filters are iterated and adapted to
the new signals, aiming to decode motor units that were
actually activated but cannot be identified due to heavy
superimposition. We tested our method on both simulated
and experimental surface electromyogram (sEMG) signals.
We simulated isometric signals (10%-70%) with known MU
firing patterns using experimentally recorded MU action
potentials from forearm muscles and compared the decom-
position results to two baseline approaches: convolution
kernel compensation (CKC) and fast independent compo-
nent analysis (fastICA). Our method increased the decoded
MU number by a rate of 135.4% ± 62.5% and 63.6% ±

20.2% for CKC and fastICA, respectively, across different
signal-to-noise ratios. The sensitivity and precision for
MUs decomposed using the enhanced method remained
at the same accuracy level (p < 0.001) as those of nor-
mally decoded MUs. For the experimental signals, eight
healthy subjects performed hand movements at five dif-
ferent force levels (10%-90%), during which sEMG signals
were recorded and decomposed. The results indicate that
the enhanced process increased the number of decoded
MUs by 21.8% ± 10.9% across all subjects. We discussed
the possibility of fully capturing all activated motor units
by appropriately reusing previously decoded MU filters and
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improving the balance of activated motor unit numbers
across varying excitation levels.

Index Terms— Motor unit (MU), firing pattern, decom-
position, high-density electromyogram, action potential,
excitation level.

I. INTRODUCTION

OVER the past decades, there’s been a surge in method-
ologies for extracting individual motor unit activities

from sEMG signals. This noninvasive approach provides valu-
able insights into synaptic input through motor unit discharge
timings [1]. Proposed methods include template-matching [2],
mathematical modeling (PCA: Principal Component Analysis,
ICA: Independent Component Analysis, NMF: Non-negative
Matrix Factorization) [3], [4], [5], [6], and convolutive blind
source separation (BSS) [7], [8]. Deep learning approaches
have also been introduced to uncover hidden relations within
high-dimensional sEMG signals, especially in the era of big
data [9], [10], [11], [12]. Although various decomposition
algorithms have been proposed, it is observed that the number
of motor units did not exhibit the expected increase along
ascending force levels, contrary to the predictions of the size
principle [13]. Occasionally, higher force resulted in fewer
decomposed motor units [14]. The decomposition algorithm
encounters challenges when simultaneously decomposing both
larger and smaller motor units, particularly in scenarios with
high excitation levels and substantial recruitment of motor
units. This difficulty can be attributed to the significant size
difference among motor units, where the number of fibers
in larger motor units is dozens or even hundreds of times
greater than that in smaller ones [15]. Consequently, the
amplitude of motor unit action potentials exhibits substantial
variability. When larger motor units are activated, the signals
produced by smaller motor units become minimal due to heavy
superimposition and may be mistakenly classified as noise.

There has been considerable research on the reuse of MU
filters. Some studies have applied MU filters directly to new
signals [16], but this approach carries the risk of reduced
decoding accuracy. To address the complexity of sEMG
signals, some dynamic and real-time decoding studies have
employed active updates to MU filters [5], [17]. Specifically,
MU filters are derived from the initial filter and updated by
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subsequent small signal intervals to form the final decoding
filter. This method intentionally considers every incremental
change, making its long-term stability challenging to guaran-
tee. However, once the final MU filter is formed, it still lacks
a final adaptation process for accurately locating and decoding
the discharges of the motor unit represented by the MU filter.
We believe that it is not always necessary to update the MU
filter, and even if updates are made, it is difficult to ensure that
the update direction is correct. Instead, we need to appropri-
ately guide the algorithm to converge in a specific direction.

The force exerted by a muscle during a voluntary contrac-
tion depends on the recruitment of motor units and rate coding.
In the neural control field, the cumulative spike train (CST)
is commonly used to estimate force, representing the sum
of all motor unit firings and directly correlating with muscle
force [18], [19], [20]. The increase in the discharge rate of CST
is commonly attributed to two factors: the introduction of new
motor units and an inherent rise in the discharge frequency of
pre-existing motor units [21]. However, the decoding-related
loss of smaller motor units can lead to an insignificant or
even reduced increase of CST, particularly during higher force
exertion. This introduces notable errors in force estimation
based on CST. While a strong correlation between CST and
force may exist under normal conditions, abrupt increases in
applied force can result in significant deviations in the CST
trend [22], [23].

Our study introduces an enhanced strategy to address dis-
crepancies in motor unit decomposition across varying force
levels. By adaptively integrating prelearned motor unit fil-
ters from lower force levels into higher force analyses, our
approach demonstrates the ability to uncover more reliable
motor units at higher force levels. We validated our proposal
using both simulated and experimental signals. The results
showed a substantial increase in the number of decoded
motor units across varying SNRs and subjects. This research
advances our understanding of neuromuscular control and
enhances the accuracy of force estimation through cumulative
spike train analysis.

II. METHOD

A. Algorithm
The generation model of multi-channel sEMG signals can

be described as a convolutive mixture of a series of impulses,
representing the discharge pattern of motor units [24]:

yi (n) =

J∑
j=1

L−1∑
l=0

hi j (l) s j (n − l) + wi (n) (1)

where yi (n) is the i th sEMG channel, n is the discrete sample
point, wi (n) is the additive noise at channel i , hi j (l) is the
action potential of the j th motor unit recorded at channel i , L
is the sample length of the action potential, s j (n) is the spike
train of the j th motor unit, J is the number of active motor
units. The CKC method compensates for the unknown mixing
kernel hi j and estimates the spike train of the j th motor unit
using a linear minimum mean square error estimator as [25]:

ŝ j (n) = cT
s j ȳC−1

ȳ ȳ ȳ (n) (2)

where C ȳ ȳ = E(ȳ(n)ȳT (n)) is the correlation matrix of
measurements, ȳ is the extended sEMG signals by adding K
delayed versions, K is the extending length and was set as 10 in
this work. cs j ȳ = E(y(n)sT

j (n)) is cross-correlation vector,
and E(.) denotes mathematical expectation. The estimation
of the j th IPT in (2) requires the cross-correlation vector
cs j ȳ to be known in advance. In the first iteration step,
this unknown cross-correlation vector cs j ȳ is blindly chosen
and approximated by vector of measurements ĉs j ȳ = y(n1)

where the time instance n1 is assumed to discharge from the
j th motor unit. Specifically, the time instance n1 is determined
by the so called activity index [24]:

γ (n) = ȳT C−1
ȳ ȳ ȳ(n) (3)

where the activity index γ = {γ (n); n = 0, 1, . . .} can be
thought of as an indicator of global pulse train activity,
i.e., γ (nk) > 0 ⇔ ∃ j : s̄ j (nk) = 1. Similarly in the
fastICA algorithm [3], the time instant n1 was located to the
maximum of the squared summation of all whitened extended
observation and cs j ȳ was initialized at the same time instant.
The whitening process can accelerate the algorithm but it can
not distinguish the strength of the components. Consequently,
in cases where the amplitude of different motor units varies
significantly—by dozens to hundreds of times—the activity
index becomes severely biased towards larger motor units,
treating the activities from smaller motor units as physiological
noise. Although the activity index has proven efficient for
lower force signals, it becomes flawed at higher force levels
where sEMG signals are dominated by relatively large motor
unit action potentials (MUAPs). Proper initialization ensures
that each iteration of the loop contributes effectively towards
achieving the desired result.

In this study, we proposed an alternative initialization
method using the MU Filters decomposed from lower force
signals. According to the size principle and previous stud-
ies [16], MU filters transferred from low to high contraction
levels has been proven to be efficient. Consequently, only the
MU filters from lower contraction levels were used. The right
column represents the normal decomposition process for new
signals (Figure 1). We used two different basic decoding algo-
rithms (CKC [24] and fastICA [3]) in our study, but the process
is not limited to these methods. The left column illustrates the
proposed enhanced decomposition process. In this approach,
MU filters cs j ȳ acquired from lower force levels were used as
initialization vectors. For example, when decomposing signals
at the 70% force level, MU filters from the 10%, 30%, and
50% force levels were collected and utilized in this process.
After two iterative steps, we obtained the pulses converged
from the MU filters. Specifically, we applied fixed-point iter-
ation (same as fastICA) in the first iteration. Following this,
the spike train was estimated using Equation 2, and the MU
filter cs j ȳ was updated by cs j ȳ = E(y(n)sT

j (n)). This second
iterative process, derived from CKC, was repeated k times
until we achieved the final result. In this study, k was set to 5.
To avoid duplication, only pulses with a Rate of Agreement
(RoA) lower than 0.3 were accepted as new pulses. Compared
to direct reuse, our method includes two iterative processes
initiated from the MU filter. These iterations allow the MU
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Fig. 1. Flowchart diagram of signal processing: The signals were
first decoded by the normal decomposition process (right column) and
then applied in an enhanced decomposition process (left column). Only
pulses with RoA < 0.3 (compared to normally decoded pulses) were
kept.

filters to adapt to new signals, addressing inevitable changes
due to superimposition at higher levels and acquiring more
accurate results.

B. Simulated Signal
Simulated sEMG signals were created by convolving syn-

thetic motor unit spike trains (MUSTs) with experimentally
obtained motor unit action potentials. MUAPs were extracted
from previous experimental sEMG signals using high-density
electrode arrays [19]. All the MUAPs were experimentally
acquired from twelve subjects in the forearm muscles. Each
motor pool consisted of one hundred motor units, distributed
according to the size principle in [26], with recruitment
thresholds following an exponential function in size order.
Units with fewer muscle fibers were recruited first, initially
firing at 8 Hz up to a maximum of 35 Hz [27]. Seven
different muscle excitation levels were simulated: 10%, 20%,
30%, 40%, 50%, 60%, and 70%, resulting in 52, 73, 84,
93, 100, 100, and 100 active MUs, respectively. For each
excitation level, four signal-to-noise ratios (SNR: 20dB, 25dB,
30dB, ∞dB) were simulated. A total of 168 (7 Excitation
levels × 4 SNRs × 6 MU pools) simulations were conducted
using six different motor pools.

We also conducted a second simulation to illustrate the
difference in size and depth of motor units decomposed using
normal and enhanced decomposition methods in Figure 8.
In this simulation, 100 motor units were modeled based on
an anatomical framework consisting of a cylindrical volume
conductor with an anisotropic muscle layer, and isotropic bone,

subcutaneous, and skin layers [28]. The simulated muscle
tissue comprised over 4,000 fibers with an average diameter of
56 µm, with each motor unit consisting of 15 to 1,500 fibers.
The motor units had a normally distributed conduction velocity
of 4.0 ± 0.35 m/s, with the slowest velocity assigned to the
smallest motor unit, ranging from 3.01 m/s to 4.94 m/s. The
detection system used a grid of 11 × 17 circular electrodes
(diameter 1 mm) with an inter-electrode distance of 5 mm.
Motor units within the motor pool are distributed according to
the size principle [26]. The recruitment thresholds, activated
number, and firing frequency were determined by the rate
coding model in [27], consistent with the first simulation.

C. Experimental Signal

1) Participants: Eight healthy subjects (8 males; age:
27 ± 5 yrs; height:170 ± 12cm) participated in this experi-
ment. The subjects did not have any history of neuromuscular
disorders and gave written informed consent before participat-
ing in this study. The experiment protocol was in accordance
with the Declaration of Helsinki and approved by the local
ethic committee (approved number B2020026I).

2) Experimental Protocol: The experimental session
involved a series of grasping tasks targeting the hands,
designed to fully activate the motor pool across a broad force
range. Conducted on the dominant forearm, the experiment
measured the myoelectrical activity of forearm muscles using
high-density sEMG. Participants were seated in front of a
computer screen, with their dominant forearm grasping an
S-shaped transducer (CCT transducers model TF 022, range
100 kg, sampling rate 10,000 Hz). During the familiarization
phase, each task was carefully explained to the subjects.
Before the experiment, their maximum voluntary contraction
(MVC) was measured for 3 repetitions. Subsequently, the
participant performed isometric contractions (make a fist)
at five different force levels (10%, 30%, 50%, 70%, 90%),
each level repeated four trials. The task required control of
a cursor to trace a trapezoidal force curve displayed on the
screen. Each session included a 1-second ramp-up to the
targeted force level, followed by an 8-second flat phase, and
a 1-second ramp-down. Each trial lasts 10 seconds and a
5-second rest interval. During the experiment, participants
were often asked if there was any fatigue, in such cases
30-60 seconds of rest was provided.

3) Signal Acquisition: High-density sEMG signals were
recorded from the forearm extensor muscles of the dominant
arm with four disposal adhesive grids of 64 equally spaced
electrodes (13 × 5 columns; 1 mm diameter; 4 mm inter-
electrode distance; ELSCH064NM4, OT Bioelettronica, Italy).
Before electrode application, the skin was shaved and then
cleaned with alcohol. The sEMG signals were recorded in
monopolar mode, bandpass filtered (10-900 Hz), and digi-
tized at a sampling rate of 2048 Hz using a multichannel
acquisition system (EMG-Quattrocento; 400-channel EMG
amplifier, OT Bioelettronica, Italy). For more detail please
refer to our previous work [29]. The grasping force was
measured with a customized s-shape transducer and sampled
at 10000 Hz.
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D. Signal Processing
The raw high-density sEMG signals were digitally band-

pass filtered (20 - 500 Hz, fourth-order Butterworth) before
decomposed offline with normal (CKC and fastICA) and
enhanced decomposition method. CKC and fastICA allowed a
highly reliable identification of motor unit firing patterns over
a broad range of voluntary contractions. For the simulated
signals, all decomposed pulses were compared to the ground
truth (simulated firings). Only pulses with a rate of agreement
(RoA [30], [31]) greater than 0.3 were kept for further anal-
ysis. Sensitivity and precision were also used to evaluate the
decomposition accuracy:

RoA j =
C j

A j + B j − C j

Sensi tivi t y =
T P

T P + F N

Precision =
T P

T P + F P
(4)

where C j denotes the number of discharges correctly identified
for the j th motor unit, A j and B j are the numbers of
discharges from decomposition and simulation (ground truth).
The TP (true positive), FN (false negative) and FP (false
positive) indicate the number of correctly identified discharges,
the number of non-identified discharges, and the number of
misidentified discharges, respectively.

For the experimental signal, only pulses with pulse-to-noise
ratio (PNR [17]) greater than 25dB, silhouette (SIL [3]) greater
than 0.8, coefficient of variation (CoV [32], [33]) below 40%
and spike count (SC) greater than 5Hz were selected for
further analysis. Motor unit action potentials were extracted
via spike-triggered averaging (STA) the high-density sEMG
in 30ms windows, centered at the spike instants [34], [35],
[36]. It is worth noting that only the fastICA algorithm was
used for the experimental signals because, in our case, fastICA
decoded a greater number of motor units compared to CKC:

P N R j = 10 · log(
E(ŝ j (n) |ŝ j (n)≥r )

E(ŝ j (n) |ŝ j (n)<r )
) (5)

where E(x |ŝ j (n)≥r ) and E(x |ŝ j (n)<r ) denote the mean across
all time moments in which the j th motor unit is estimated to
have or not have discharged, respectively.

During the enhanced decomposition that we proposed, one
key point is to avoid duplicates. For example, in a simulated
trial of 50% excitation level, a total of 100 motor units
were activated, but the normal algorithm only managed to
decode 38 of them. To acquire as many reliable motor units
as possible, we proceeded with the enhanced decomposition
procedure. We gathered all the MU filters (155 in total)
that were successfully decoded during lower excitation levels
(i.e., 32 at 10%, 43 at 20%, 39 at 30%, and 41 at 40%)
and set them as the initialization vectors for the algorithm
to converge. The resulting pulses were first compared to each
other, and one of each pair with RoA > 0.3 was discarded
because it is very likely that one motor unit was activated
and decoded in several trials. We then compared the resulting
pulses to the ground truth, focusing on the part that the
normal decomposition failed to decode. If RoA > 0.3, it was

considered successfully decoded. For the experimental signals,
pulses were considered successfully decoded if they satisfied
the filtering criteria mentioned earlier and had a RoA less than
0.3 compared to those decomposed using normal methods.

We also calculated the correlation between the normalized
force signal and CST. As force increases, if the number of
motor units decreases significantly due to heavy superimposi-
tion, the level of neural excitation no longer correlates directly
with force level. This can impact the accuracy of CST-based
force estimation tasks during varying force levels.

E. Statistical Analysis
Statistical analyses were performed using IBM SPSS Statis-

tics v26 for Windows (SPSS Statistics, IBM Corporation).
The Shapiro-Wilk test was used to assess the normality of
the distribution of data. All the variables in the analysis did
not deviate from a normal distribution. A repeated-measure
ANOVA was performed to determine if the mean decom-
posed number of motor units differed between different trials.
In order to estimate the strength of neural drive between dif-
ferent muscle areas, we used one-way ANOVA to compare the
mean decomposed motor unit number from different electrode
grids. Data were reported as means and S.D. Significance was
accepted for P-values less than 0.05.

III. RESULT

The results in Table I present the average number of decom-
posed motor units for the simulated signal across six motor
pools. All motor units were (RoA > 0.3, Rate of Agreement)
matched to the ground-truth firing trains. The results were
reported for four different SNRs and across seven excitation
levels. Most importantly, the comparison between the num-
ber of motor units before and after enhanced decoding was
conducted for both CKC and fastICA algorithms. The number
increase rate for each SNR level was calculated and presented
in Figure 2. we achieved an average increase rate of 135.4% ±

62.5% and 63.6% ± 20.2% for CKC and fastICA, respectively.
There was no significant difference between different SNRs.
The bar chart in Figure 2 also illustrates individual examples
comparing the number of motor units decoded before and after
enhancement. The comparisons are made at different force
levels. No change is observed at the 10% excitation level, as it
represents the lowest force level.

We also compared the sensitivity (SE) and precision (PR)
before and after enhanced decomposition in Figure 3. As the
force level increases, due to the effect of superimposition, both
sensitivity and precision show an overall decreasing trend if
MU filters were directly reused. However, the sensitivity and
precision of motor units acquired from the enhanced procedure
did not exhibit a significant drop. This result supports our
hypothesis that during the reuse of MU filters, the algorithm
undergoes a certain adaptive process, leading to accurate
results. The adaptive process of MU filters to new signals is
illustrated with a representative example in Figure 4. After
being introduced as the initialization vector to the algorithm,
the MU filter undergoes a series of iterations. It is assumed that
with varying levels of superimposition, the MU filters might
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Fig. 2. Number of motor units decomposed and the increase rate over distinct excitation levels throughout multiple SNRs from simulated signals.
The results were demonstrated as average (solid line) and standard deviation (shaded area). The x-axis denotes excitation levels, and the y-axis
represents the number of motor units decomposed using the CKC and fastICA algorithms at 20 dB and ∞ dB SNR. The increase rate (right
column) denoted the ratio of increase in the number of motor units after enhanced decoding. It increased along excitation levels and was compared
across 4 SNRs in the bar plot. There was no significant difference in the increase rate across different noise levels (P > 0.05).

TABLE I
DECOMPOSED NUMBER OF MOTOR UNITS FROM

SIX SEPARATE DATABASES

have changed slightly. Sensitivity, precision, and RoA were
monitored during these iterations. Significant improvements
in SE, Pr, and RoA were observed compared to directly
reusing the MU filters. We also compared the maximum and
minimum PP amplitudes of MUAPs before and after enhanced
decoding, as shown in Figure 5. The results indicated that
the minimum PP amplitudes were significantly lower for the
enhanced decoding (P < 0.05), while there was no statistical
difference between the maximum PP amplitudes for both
methods.

For the experimental signal, the detailed number of decom-
posed motor units is presented in Table II. This number

represents the total number of motor units decoded across
the four electrode grids. Individual examples were illustrated
in Figure 6, along with the overall increase rate observed
after the enhanced process for all subjects during varying
force contractions. Our method managed to decode 21.8% ±

10.9% more motor units for all the subjects. The increase rates
for each subject were: 16.3%, 15.5%, 8.1%, 16.9%, 26.7%,
42.9%, 17.8%, 29.8%. It is evident that as the force level
increases, the increase ratio also rises. The increase rates for
the 70% and 90% levels were significantly higher than that of
the 30% level.

Two sets of motor units were characterized by their action
potentials and discharge rates, each of which was decoded
from the same initial MU filter (Figure 7). Motor units acti-
vated during 30 % MVC can be tracked at higher force levels,
ranging from 50 % to 90 %. There was a slight increase in
discharge rates as force developed. The simulation in Figure 8
indicated the normally decoded motor units (blue ones) tend
to have higher recruitment thresholds, and the number of blue
motor units decreases with increasing force contractions. After
enhanced decoding, the total number of decoded motor units
increases with force contractions. The lower figure indicated
that blue motor units tend to have larger sizes and bigger PP
values compared to the orange ones.

The correlation between force and CST is shown in Figure 9
with two individual examples. The lower part of the figure
demonstrates how our method improves the correlation across
subjects without any additional training. After fully exploring
the decoded number of motor units, the force-CST correlation
increased by 64.6%, from 0.41 to 0.64, averaged across all
subjects.

IV. DISCUSSION

A. Unveiling the Characteristics of Overlooked Motor
Units

The total number of motor units in different muscles in
the human body generally ranges from a few hundred [15]
(e.g., 119 in the First Dorsal Interossei to 774 in the Biceps
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Fig. 3. Sensitivity and precision of motor units decoded from normal and enhanced procedures. The results were presented across four SNR
levels with averages (solid lines) and standard deviations (shaded areas). The sensitivity and precision showed no significant differences between
normal and enhanced results for both CKC and fastICA methods (P > 0.05). The sensitivity and precision when directly reusing the MU filters
(directReuse) dropped significantly compared to the enhanced method (P < 0.05).

TABLE II
DECOMPOSED NUMBER OF MOTOR UNITS FROM EIGHT SUBJECTS

Fig. 4. Representative example of the automatic adaptation of MU
filters to new signals. At each iteration, sensitivity, precision, and RoA
improved, particularly between the 3rd and 5th iterations. Within a total
of fewer than 8 iterations, we acquired the final firing patterns for the MU
filters in the new signal using peak detection.

Brachii). Among these, the contraction of muscles is regulated
by the number of activated motor units. When a motor unit
is activated, its action potential can be detected by sEMG
electrodes [37]. Therefore, to achieve a comprehensive under-
standing of muscle activation, it is crucial to decode as many

Fig. 5. Comparison of motor unit peak-to-peak (PP) amplitudes
decomposed from normal and enhanced procedures across varying
excitation levels. Two normal decomposition methods, CKC and fastICA,
were compared. The minimum PP value represents the lower limit of a
motor unit that the algorithm can decode, while the maximum PP value
represents the upper limit. The results are presented as averages (solid
lines) with standard deviations (shaded areas).

active motor units as possible from sEMG signals. Motor unit
decomposition algorithms have consistently been a popular
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Fig. 6. Number of decomposed motor units and increase rate from the experimental signal of eight subjects. The results (left column) were
demonstrated as average (solid line) and standard deviation (shaded area). We also compared the increase rate (right column) across four different
force levels, representing the ratio of increase in the number of motor units after enhanced decoding. The symbol ∗ indicates P < 0.05.

Fig. 7. Motor unit action potentials and firing properties across different force levels from experimental signals. A and B represent two motor unit
sets that were successfully decoded from the same MU filter four and three times, respectively, across different excitation levels.

Fig. 8. The simulation results comparing motor units decoded before and after enhanced decoding. The colors blue and orange represent
motor units decoded before and after enhanced decoding, respectively. The upper figure compares discharge patterns across five different force
contractions, with each motor unit arranged based on its first discharge time. The lower figure compares the size, peak-to-peak (PP) amplitude,
and motor unit depth at 30% and 50% force contractions. Each solid circle represents a motor unit, with the radius indicating its size. Large and
superficial motor units exhibit a larger peak-to-peak amplitude.

topic in recent years. Compared to conventional methods,
an increase in the number of decoded motor units serves as an

important performance metric. Although decoding algorithms
consistently contribute to an increase in the number of decoded
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Fig. 9. The experimental force-to-CST curve and their correlation
across all subjects. The upper figure shows two example trials of the
neural response CST to the exerted force recordings (10% - 90%).
CST1 and CST2 represent the cumulative spike trains before and after
enhanced decoding, respectively. The rest phases between different
force levels during the experiments were removed for simplicity. The
lower figure illustrates the correlation between force and CST for all
subjects calculated across all force levels. The correlation between
CST2 and force was significantly higher than that of CST1 (P < 0.001).

motor units at specific force levels, these results are relatively
discrete. In other words, varying force involves continuous
activation of motor units across the entire motor pool, there is
a notable lack of performance assessment for algorithms under
continuous force variations. Consequently, when the exerted
force continuously changes, the neural activity extracted from
decoded motor units does not show a corresponding continu-
ous response. In particular, when the exerted force increases
substantially, a significant gap between force signal and neural
activity is observed [22].

One possible reason for this phenomenon is the inability of
current decoding algorithms to overcome severe superimposi-
tion as force increases. When force excitation increases, larger
motor units with higher PP values are recruited (Figure 8). The
amplitude of large motor units can be several to tens of times
greater than that of smaller motor units. This causes current
algorithms to mistakenly treat the activity of smaller motor
units as noise. Without prior knowledge directing the algorithm
to actively seek out these smaller motor units, decoding them
becomes quite difficult. However, this assumption relies on the
fact that these smaller motor units are indeed being activated.
The widely recognized size principle provides a basis for this
reuse, as it supports the idea that smaller motor units are
recruited first and should be detectable if appropriately filtered.

B. Neural Responses to Varying Force Levels
The force generated by a muscle during voluntary contrac-

tion is determined by the recruitment of motor units and the
rates at which they discharge action potentials, known as rate
coding. The nervous system regulates muscle force by mod-
ulating both motor unit recruitment and rate coding over the
muscle’s operational range [37]. During neural interfacing, the
current demand for decoding algorithms is to comprehensively
address both motor unit recruitment and rate coding. In terms
of rate coding, once the decoding algorithm has acquired
the MU filter (or separation vector), real-time computation of

discharge rates becomes feasible. Most voluntary movements
involve motor units firing action potentials between 10–30 pps,
with discharge rates often adjusting by 5–10 pps during tasks
like submaximal contractions. However, concerning motor
unit recruitment, decoding algorithms encounter a challenge,
as they cannot predict in advance how many MUs within the
MU pool are activated and subsequently decoded. The lack
of prior knowledge about the active motor unit quantity can
significantly impact our understanding of the neural system’s
force control. Accurately predicting the number of activated
motor units during varying force levels can be challenging,
given that even the gold standard invasive electrode can
only capture the activity of motor units at specific points.
Although the estimation of motor unit numbers in this study is
inherently an approximation, this approach brings meaningful
improvements to the current findings.

C. Limitations
There are several limitations to this study. First, although

reusing MU filters from low to high contraction levels has
been proven efficient for multiple muscles, there are still some
scenarios where motor unit recruitment does not follow a fixed
order [38]. In such cases, our enhanced process might not be
effective enough. Secondly, despite successfully identifying
many active motor units, we still cannot decode all of the
activated motor units in the muscle. On the one hand, sEMG
has a limited pick-up volume [39], allowing us to detect only
a small portion of the active motor units in the muscle using
surface electrodes. On the other hand, heavy superimposition
remains an issue, preventing precise decoding of all motor
units. Thirdly, muscle force is determined by both motor
unit recruitment and discharge modulation [27]. While our
method improves force estimation from CST, its impact on
force estimation accuracy is limited, as factors such as twitch
response and other elements also play a significant role in
force generation.

V. CONCLUSION

In summary, we introduced an adaptive method to enhance
motor unit decomposition by manually adjusting the initial-
ization direction of our algorithm. This approach successfully
decoded a substantial number of reliable MUs by reutilizing
MU filters in a novel manner. Our results demonstrated sig-
nificant improvements in the number of decoded MUs and the
correlation between force and cumulative spike trains. This
method shows promise for accurately decoding MUs across
varying force levels, enhancing the reliability of sEMG signal
analysis.
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