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Visual Feedback Gain Modulates the Activation
of Task-Related Networks and the Suppression

of Non-Task Networks During
Precise Grasping
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Zhenpeng Shao, Xuezhi Zhou, Yehong Zhang, Zongya Zhao , and Yi Yu

Abstract— Visual feedback gain is a crucial factor
influencing the performance of precision grasping tasks,
involving multiple brain regions of the visual motor system
during task execution. However, the dynamic changes in
brain network during this process remain unclear. The aim
of this study is to investigate the impact of changes in
visual feedback gain during precision grasping on brain
network dynamics. Sixteen participants performed preci-
sion grip tasks at 15% of MVC under low (0.1◦), medium
(1◦), and high (3◦) visual feedback gain conditions, with
simultaneous recording of EEG and right-hand precision
grip data during the tasks. Utilizing electroencephalogram
(EEG) microstate analysis, multiple parameters (Duration,
Occurrence, Coverage, Transition probability(TP)) were
extracted to assess changes in brain network dynamics.
Precision grip accuracy and stability were evaluated using
root mean square error(RMSE) and coefficient of varia-
tion(CV) of grip force. Compared to low visual feedback
gain, under medium/high gain, the Duration, Occurrence,
and Coverage of microstates B and D increase, while those
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of microstates A and C decrease. The Transition probability
from microstates A, C, and D to B all increase. Additionally,
RMSE and CV of grip force decrease. Occurrence and Cov-
erage of microstates B and C are negatively correlated with
RMSE and CV. These findings suggest that visual feedback
gain affects the brain network dynamics during precision
grasping; moderate increase in visual feedback gain can
enhance the accuracy and stability of grip force, whereby
the increased Occurrence and Coverage of microstates B
and C contribute to improved performance in precision
grasping. Our results play a crucial role in better under-
standing the impact of visual feedback gain on the motor
control of precision grasping.

Index Terms— EEG, microstate, visual feedback gain,
precise grasping, brain network dynamics.

I. INTRODUCTION

DURING motor execution, the brain continuously com-
pares incoming sensory signals with predicted sensory

outcomes to adaptively guide and correct movements [1]. In
the process, visual feedback is a key source of information for
achieving precise motor control [2], which allows performers
to obtain information about the effectiveness of movement
execution by observing their own movements or changes in the
environment, which is crucial for the accuracy, coordination,
and adaptability of motor control. An important parameter
affecting motor performance through visual feedback is the
gain of visual feedback, initially introduced into the study of
motor control by [3]. As the visual feedback gain increases,
the spatial amplitude of the visual stimulus increases, and
more details of movement execution outcomes are captured by
the visual system. This enhanced visual information input can
activate the human visual cortex, enhancing visual sensation
and processing abilities [4]. Subsequently, abundant visual
motion information is projected to brain cortical areas related
to movement, integrated to optimize movement planning and
execution, thereby enhancing motor performance [5], [6].
Studies have shown that the gain of visual feedback is closely
related to motor performance, and increasing the gain of visual
feedback within a certain range can reduce movement errors
and variability, thereby improving motor performance [7], [8].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8378-4987
https://orcid.org/0009-0004-1044-7372
https://orcid.org/0000-0002-6282-8001


2874 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Neuroimaging studies have demonstrated that the improve-
ment in motor performance relies on the integrated network of
the brain’s visual motor system, including the visual cortex,
parietal cortex, motor cortex, premotor cortex, supplemental
motor area, and cerebellum [9], [10]. [11] recorded elec-
troencephalogram (EEG) signals during precise grasping tasks
under varying visual feedback gains and found that as the
visual feedback gain increased, task performance significantly
improved. Moreover, under higher visual feedback gains, there
was an increase in theta synchronization in the midfrontal
area and enhanced beta desynchronization in the sensorimotor
and posterior parietal areas. Reference [12] utilized func-
tional magnetic resonance imaging (fMRI) and found that
with increasing visual feedback gains, the mean force error
decreased, accompanied by increased BOLD signal activity
in the primary motor cortex, premotor cortex, parietal cortex,
extrastriate visual cortex, basal ganglia, and cerebellum [11],
[12]. Researchs exploring the impact of visual feedback gains
on brain activity during precise grasping are primarily focused
on specific brain areas or frequency bands, with a priori
hypotheses [13]. However, precise grasping tasks under visual
feedback involve multiple brain regions, necessitating a global
perspective on the brain, abandoning a priori hypotheses, and
considering the global response of brain network dynamics.

The EEG microstate analysis method captures EEG signals
from all channels simultaneously, computes global represen-
tations of brain functional states, and investigates dynamic
changes in brain functional networks at the millisecond time
scale, offering high temporal resolution and reliability [14].
Microstates that remain relatively stable and quickly transition
within a certain period represent the brain’s response to stimuli
and information processing, reflecting dynamic changes in
brain networks [15]. Previous studies have utilized methods
such as simultaneous EEG-fMRI [16] or EEG source localiza-
tion [17] to explore the relationship between EEG microstate
and resting-state brain networks: Microstate A is associated
with activation of the auditory network; Microstate B is related
to activity in visual areas; Microstate C is linked to the default
mode network (DMN); Microstate D is associated with the
dorsal attention network (DAN) and the executive control net-
work (ECN) [18], [19], [20]. In recent years, researchers have
applied EEG microstate to task-related studies. Reference [21]
found 4 microstates under both sustained grasping and rest-
ing conditions, with highly consistent topographic maps of
three microstate (B, C, and D) across the two conditions.
Reference [22] found that the parameter of microstate C
changed significantly with the increase in grip force level.
These results indicate that EEG microstate analysis can be
used to investigate the dynamic changes in brain networks
when control conditions change during grip tasks, providing a
powerful tool for studying the impact of visual feedback gain
on the dynamics of brain networks during precision grasping.

The aim of this study is to investigate the impact of
changes in visual feedback gain during precision grasping
on the dynamics of brain networks using EEG microstate
analysis. To achieve this, we recorded the mechanics and
EEG signals during precision grip tasks under different visual
feedback gains (low, medium, high), and reported the changes

in precision grip performance and EEG microstate, as well
as their correlation. We hypothesize that with the increase in
visual feedback gain, grip accuracy and stability will improve,
leading to a significant enhancement in motor performance.
At the same time, EEG microstate parameters will undergo
significant changes. To our knowledge, this is the first study
to investigate the impact of visual feedback gain on the
dynamics of brain networks during precision grasping using
EEG microstate.

II. METHOD

A. Subjects
Sixteen graduate/undergraduate students (7 males, mean age

20.4 ± 2.2 years) voluntarily participated in this study. All
participants had no history of orthopedic, neurological, or cog-
nitive disorders that could affect task performance, and had
normal or corrected-to-normal vision. Before the formal exper-
iment, all participants were given sufficient rest and underwent
state adjustments to avoid fatigue or psychological factors that
could interfere with the experimental tasks. The Edinburgh
Handedness Inventory was used to ensure that all participants
were right-handed [23]. This study was approved by the Ethics
Committee of Xinxiang Medical University(XYLL20230015)
and conducted in accordance with the Helsinki Declaration,
with all participants providing written informed consent.

B. Experimental Paradigm
Participants sat on a chair with a backrest, maintaining

a specific posture: upright sitting position, shoulder joints
abducted by 30◦, elbow joints flexed by 90◦, forearms placed
horizontally on the table, and right hand grasping a cylindrical
grip force sensor. A screen was placed 60 cm away from the
participants’ eyes. To avoid environmental distractions around
the screen, the room lights were turned off, creating dim
lighting around the screen (Figure 1a).

To determine the maximum voluntary contraction (MVC)
grip strength, participants were instructed to generate maxi-
mum grip force within 5 seconds, with verbal encouragement
provided. The average of three trials of maximum grip strength
was set as MVC. To prevent muscle fatigue, a 60-second
rest was given between each attempt. In this study, 15%
of MVC was set as the target grip strength. The screen
displayed a target line (red/green) and a real-time grip force
line (white). To ensure accurate viewing angle, the target
line remained at the center of the screen, while the grip
force line moved relative to grip force changes. Each trial
of the precision grip tracking task comprised four stages
(Figure 1b, c): Rest (10s) - the target line was red, and no
grip force was applied; Up (4s) - the target line turned green,
indicating gradual force application to avoid large fluctuations
during initial force application; Constant (10s) - participants
aimed to align the grip force line with the target line as
closely as possible; Down (2s) - gradually reducing the grip
force to zero. Participants performed a total of 10 trials
under a visual feedback gain. Participants were instructed to
minimize head and body movements during the task to reduce
motion artifacts and electromyographic interference. Prior to
the formal experiment, participants are required to undergo at
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Fig. 1. Experimental Setup and Data Acquisition Diagram. (a) Experi-
mental setup: Participants hold the grip force sensor in the prescribed
posture and perform precise grip force tracking tasks with visual feed-
back from the screen. (b) Grip force tracking diagram: The four stages
of the precise grip force tracking task: Rest, Rise, Sustain, and Descend.
The red line indicates rest, the green line indicates the application of
grip force, and the white line represents real-time grip force. (c) Grip
force trajectory diagram: The grip force trajectory formed during one
trial, observed only by the experimenter on the monitoring screen.
(d) Conceptual diagram of visual feedback gain: As the visual
feedback gain increases, the displacement variation displayed on the
screen increases. (e) Data acquisition: Participant’s EEG and grip
force data are collected separately through EEG acquisition system and
LabVIEW system.

least four trials until they understand and can independently
complete the tasks without verbal prompts.

Three visual feedback conditions were selected: 0.1◦, 1◦,
and 3◦ angles representing low, medium, and high feedback
gains, respectively (Figure 1d). Visual feedback gain was
manipulated by varying the amplitude of grip force fluctua-
tions on the screen, implemented using Equation (1) [24]:

α = 2 tan−1
(

H1

D

)
. (1)

Here, H1represents half of the amplitude of force fluctuations
displayed on the screen, D denotes the distance from the
subject’s eyes to the screen, and α stands for the human eye’s
visual angle. According to previous studies [12], [25], [26],
the standard deviation of force output was estimated to be
0.3 N, and this value was multiplied by 6 to approximate the
full range of force fluctuations (±3SD), thus yielding H1 as
3SD. However, the results of the aforementioned studies were
based on pinch force tasks, whereas the current study focused
on grip force tasks. Therefore, we compared the differences
in standard deviations (SDs) between pinch and grip forces at
the same force levels and found that the grip force SD was
approximately four times greater than that of pinch force (see
Supplementary Material for details).

C. Data Acquisition
EEG signals during the task were recorded using

a 64-channel electroencephalography (EEG) acquisition

Fig. 2. Flow chart of EEG preprocessing and microstate analysis.
(a) EEG preprocessing. (b) Microstate analysis.

system (NeuSen W, neuracle, China) (Figure 1e). Electrode
impedance was adjusted to below 10 k�, with a sampling
rate of 1000 Hz, and offline saved for subsequent processing.

Grip force data from participants were collected using a
cylindrical mechanical sensor with a resolution of 0.025 N
(Figure 1e). The force signals were transmitted via optical
fiber cables to an NI USB-6210 data acquisition card, with
a sampling rate of 1000 Hz, and displayed and saved in the
LabVIEW system.

D. Data Preprocessing
Standard preprocessing of EEG data collected (Figure 2a)

was conducted. Firstly, electrode channel localization was per-
formed to match the recorded EEG data with channel position
information. Secondly, redundant electrodes, including ECG,
HEOR, HEOL, VEOU, and VEOL, were removed. Thirdly,
EEG data were bandpass filtered between 1-30 Hz [27], and
a 50 Hz notch filter was applied to eliminate power line
interference. Fourthly, the EEG sampling rate was reduced
to 256 Hz to reduce data volume and enhance computational
speed. Fifthly, segments containing only EEG data during the
sustained force phase (10s) were extracted. Sixthly, indepen-
dent component analysis (ICA) was performed to eliminate
artifacts caused by eye, cardiac, and muscle activities, with
manual inspection for further exclusion. Finally, EEG data
were re-referenced to a spatial zero-mean distribution.

Grip force data were filtered using a 20 Hz low-pass filter
to remove artifacts and extract grip force data during the
sustained force phase for analysis.

E. Data Analysis
1) EEG Microstate Analysis: The study found that EEG

data lasting 90-120 seconds demonstrates high reliability in
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microstate analysis [28]. In our study, each participant’s EEG
data during the sustained force phase under one visual feed-
back gain condition, totaling 100 seconds (10s * 10 trials),
were analyzed. Microstate analysis was conducted using the
microstate analysis toolbox based on the EEGLAB tool-
box [29]. The analysis process comprised four key steps
(Figure 2b). Firstly, the global field power (GFP) of EEG sig-
nals at a certain moment was calculated based on the potential
values of individual electrode channels of each participant. The
definition of GFP is shown in Equation (2).

G F P =

√∑n
i=1 u2

i
n

. (2)

Here, i represents each electrode, n denotes the total number
of electrodes, and u represents the measured voltage of each
channel. Further, the time series of maximum GFP values are
extracted. In the second step, the improved k-means clustering
algorithm [30] is applied to cluster the time series of maximum
GFP values for each participant. We set the number of clusters
to range from 3 to 8 and employed the KL cross-validation
criterion [30], resulting in the optimal number of clusters
being 4. Subsequently, the program randomly selects four
brain topographies as initial cluster centers. It then compares
the remaining topographic maps with these initial cluster
centers and labels the topographic maps most related to each
initial cluster center. New cluster centers are calculated, and
this process is repeated until the percentage of all EEG signals
represented by the cluster centers no longer improves. The four
cluster centers obtained at this point are referred to as the
“template maps” [29]. In the third step, the “template maps”
for each visual feedback gain condition are computed based
on all participants’ data, resulting in four categories of brain
topographies labeled as microstate A, B, C, and D within the
group. In the fourth step, spatial correlation is utilized to fit
the four categories of “template maps” and the original EEG
data. Each time point of the original EEG data is labeled with
the microstate showing the highest correlation, resulting in
the temporal evolution of brain topographies. Subsequently,
microstate feature parameters are further extracted for analysis.

For each participant under each visual feedback gain condi-
tion, we calculated the following features of EEG microstate:

(a) Duration: The average duration of maintaining a stable
state when a certain microstate appears, reflecting the stability
of underlying neural components.

(b) Occurrence: The average number of occurrences of a
certain microstate per second, reflecting the trend of activation
of potential neural generators.

(c) Coverage: The time coverage of a certain microstate
during the total analysis time, reflecting the relative time
coverage of underlying neural generators compared to others.

(d) Transition Probability (TP): The probability of transition
from one microstate to another. For example, the transition
probability from microstate A to microstate B is defined as
the number of transitions from A to B divided by the total
number of transitions from A to the other three microstate [31].
It reflects the sequential activation of neural networks.

2) Grip Strength Data Analysis: To assess grip perfor-
mance, we computed the root mean square error (RMSE)

and coefficient of variation (CV) of real-time grip force.
RMSE is used to measure the deviation between observed
values and true values, reflecting the accuracy of grip force.
CV is used to measure the dispersion of data, reflecting
the stability of grip force. Their definitions are shown in
equations (3) and (4):

RM SE =

√∑n
i=1

(
Xobs,i − Xmodel ,i

)2

n
. (3)

where, Xobs,i is the observed value of the sample, and Xmodel,i
is the simulated value (true value) of the sample.

Cv =
σ

µ
. (4)

where, σ is the sample standard deviation and µ is the sample
mean.

F. Statistical Analysis
This study employed the Ragu toolbox [32] for Topographic

Analysis of Variance (TANOVA) to investigate whether there
were statistical differences in microstate topographies among
conditions. Statistical analysis was performed using SPSS19.
The Shapiro-Wilk test was used to assess the normality of
the data, and all data met or approximately met the normal
distribution. One-way repeated measures analysis of vari-
ance (ANOVA) was conducted to assess the between-group
differences in microstate parameters (Duration, Occurrence,
Coverage, TP) and grip force parameters (RMSE, CV), with
a significance level set at 0.05 and Bonferroni correction
applied to control for multiple comparisons. To quantify the
relationship, Pearson correlation tests were conducted between
microstate parameters and mechanical parameters under each
visual feedback gain. False Discovery Rate (FDR) correction
was applied for multiple comparisons of p-values, with a
significance level set at 0.05 for correlation.

III. RESULT

A. EEG Microstate Topographic Map
According to the improved k-means clustering algorithm

and KL cross-validation criteria, the optimal number of
microstate under low, medium, and high visual feedback
gain conditions was 4, namely A, B, C, and D. As shown
in Figure 3, the obtained four microstate topographies were
similar to the classical microstate topographies reported pre-
viously [33], [34], with microstate A showing a left posterior
to right anterior pattern, microstate B showing a right posterior
to left anterior pattern, microstate C showing a symmetric
distribution between the two hemispheres, from occipital
to frontal regions, and microstate D showing frontal-central
activity. No inter-group differences in microstate topographies
were found using TANOVA (P >.05). To evaluate the extent
to which microstates explain the original EEG data, the
Global Explained Variance (GEV) for the Low, Med, and
High groups were 75.1±4%, 71.2±4%, and 70.4±3%, respec-
tively. No significant differences were found for microstate
GEV(P > .05).
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TABLE I
STATISTICAL COMPARISON OF PARAMETERS (DURATION, OCCURRENCE, COVERAGE) FOR THE SAME MICROSTATE UNDER DIFFERENT VISUAL

FEEDBACK GAIN CONDITIONS

TABLE II
COMPARISON OF TP DIFFERENCES UNDER DIFFERENT VISUAL FEEDBACK GAINS

Fig. 3. The topographies of EEG microstate under low (a), medium (b),
and high (c) visual feedback gain conditions. Microstate A, B, C, and D
are arranged from left to right.

B. EEG Microstate Parameters

The metrics of Duration, Occurrence, Coverage, and TP
of EEG microstate were extracted to investigate the dif-
ferences in brain network dynamics under different visual
feedback gain conditions. The results revealed that, compared
to the low visual feedback gain condition, the Duration of
microstate B and D significantly increased under medium/high
gains, while the Duration of microstate A and C decreased
significantly. There were no significant differences in the

Duration of microstate A, B, C, and D between medium
and high visual feedback gain conditions (Figure 4a). Occur-
rence (Figure 4b) and Coverage (Figure 4c) exhibited similar
trends. The specific statistical results are shown in Table I.
However, although the parameter values of microstate C
decreased under medium/high visual feedback gains, they
remained significantly higher than those of microstate A and
D under each visual feedback gain condition (Figure 5). The
above results suggest that microstate B and C may still play
a positive role in visual motion.

The results of TP are shown in Figure 6. Compared to
low visual feedback gain, in medium/high gain conditions,
the TP from microstate A, C, and D to B significantly
increased, while the TP from other microstate to A/C sig-
nificantly decreased. Meanwhile, the TP from microstate B
to D significantly increased. The specific statistical results
are shown in Table II. Additionally, under low visual feed-
back gain, the proportion of TP to microstate C was the
highest, reaching 143.92%, while the proportions of TP to
microstate A, B, and D were relatively low, at 89.47%,
90.72%, and 75.89%, respectively (Figure 6b). Compared to
low visual feedback gain, in medium/high gain conditions,
the proportion of TP to microstate B significantly increased,
rising to 151.84% and 155.37%, respectively; the proportion
of TP to microstate D slightly increased, reaching 89.82%
and 85.32%, respectively; whereas the proportion of TP to
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Fig. 4. The comparison of parameters for the same microstate under
different visual feedback gain conditions: (a) Duration,(b) Occurrence,
and (c) Coverage.

microstate A significantly decreased, dropping to 48.93% and
46.77%, respectively; the proportion of TP to microstate C also
notably decreased, declining to 109.41% and 112.54%, respec-
tively (Figures 6c, d). However, we observed a phenomenon
similar to Figure 4: compared to low visual feedback gain,
under medium/high visual feedback gain conditions, the TP
from other microstate to C decreased (Figure 6), but the
proportion of TP tao microstate C remained higher than that
to microstate A and D (Figures 6c, d). This result once again
indicates the potentially important role of microstate B and C
in visual motion.

C. Grip Performance
We analyzed grip parameters, including RMSE and CV,

to assess the impact of visual feedback gain on grip accuracy

Fig. 5. The comparison of parameters for different microstate under the
same visual feedback gain condition: (a) Duration,(b) Occurrence, and
(c) Coverage.

and stability. The results revealed a significant decrease in
RMSE with increasing visual feedback gain (Figure 7a). The
CV under medium/high visual feedback gain was significantly
lower than that under low visual gain, with no significant
difference between medium and high visual feedback gains
(Figure 7b). This indicates that increasing visual feedback
gain can significantly improve grip accuracy. Grip stability
was significantly higher under medium/high visual feedback
gain compared to low visual feedback gain.

D. Correlation Between Microstate and Grip Strength
Parameters

It was found from the above results that microstate B and
C may play a positive and crucial role in visual motor tasks.
Therefore, we conducted Pearson correlation analyses between
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Fig. 6. Microstate TP and flow proportion under low, medium, and high
visual feedback gain conditions. (a) Statistical analysis of microstate TP
differences under different visual feedback gain conditions. Flow direc-
tion and proportion of TP under low (b), medium (c), and high (d) visual
feedback gain conditions.

Fig. 7. Grip parameters RMSE(a) and CV(b) under different visual
feedback gain conditions.

microstate B and C parameters and grip parameters under
each visual feedback gain condition (Figure 8). The results
revealed a negative correlation between the Occurrence and
Coverage of microstate B and C and RMSE, as well as CV.
Specifically, under medium visual feedback gain, the Coverage
of microstate B showed a significant negative correlation with
CV (R = −0.6273, PF DR = 0.0279). This suggests that as
the Occurrence and Coverage of microstate B and C increase,
RMSE and CV decrease, indicating a positive effect on the
accuracy and stability of precise grip force.

However, under all three gain conditions, the Duration of
microstate B and C shows predominantly positive correlations
with RMSE and CV. Specifically, under low visual feedback
gain, the Duration of microstate C shows a significant positive
correlation with CV (R = 0.6692, PF DR = 0.0138). These

Fig. 8. Correlation between microstate and grip parameters. (a) Corre-
lation of microstate B parameter with RMSE and CV. (b) Correlation of
microstate C parameter with RMSE and CV.

Fig. 9. The correlation between TP to microstate B and RMSE, as well
as CV.

results suggest that the longer the Duration of microstate, the
poorer the accuracy and stability of grip force, which may be
less favorable for improving motor performance.

As the TP from microstate A, C, and D to B significantly
increases under medium/high visual feedback gain, we further
analyzed the correlation between the TP from other microstate
to B and precise grip force parameters (Figure 9). The
results revealed a negative correlation between the TP from
microstate C to B and RMSE, as well as CV. This indicates
that the transition from microstate C to B may contribute to
improving grip performance.

IV. DISCUSSION

To investigate the impact of visual feedback gain on
the dynamics of brain networks during precise grasping,
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we utilized the emerging neuroimaging method of EEG
microstate to analyze the performance of precise grip and the
changes in microstate under low, medium, and high visual
feedback gains.

In this study, increasing visual feedback gain actually
enhanced the stimulating effect of precise grip force variation.
Although the absolute force output of precise grip is the
same (15% MVC), the different visual feedback gains in fact
artificially increase the resolution of force variation under
medium/high visual feedback gain conditions, amplifying the
error of precise grip force output, allowing subjects to see
more details of force output for precise dynamic adjustments.
Therefore, under medium/high visual feedback gain condi-
tions, the RMSE and CV of precise grip are significantly lower,
and motor performance is significantly improved.Meanwhile,
under medium/high visual feedback gain conditions, there
are significant changes in EEG microstate, with signifi-
cant increases in parameters of microstate B and D, significant
decreases in parameters of microstate A and C, and significant
increases in transitions to microstate B. This indicates that
visual feedback gain may improve precise grip control through
dynamic adjustments to brain networks.

A. The Visual Feedback Gain Affects the
Microstate Parameters

For the parameters of microstate B, we found that under
medium/high gain, the Duration, Occurrence, and Coverage
of this microstate were significantly higher than those under
low gain. This is consistent with the findings of [35], who
found a significant increase in the Duration and Coverage of
microstate B during a visual task involving maintaining the
orientation of objects in space. Microstate B is believed to be
associated with vision, with its neural generators originating
from the occipital lobe’s visual network, involving visual
spatial attention and processing [16], [17], [18], [19]. In our
visual motion task, as the visual feedback gain increases, the
human eye can observe more subtle motion information, more
visual information is captured, the processing capacity of the
visual network is enhanced, thus the microstate B reflecting
the brain’s visual spatial attention and processing capacity
becomes more active. Similar results have been reported
in other studies employing visual-related paradigms, where
the Occurrence and Coverage of microstate B significantly
increased after visual stimulation or during open-eye states
compared to resting-state or closed-eye conditions [36], [37].

Parameters of microstate C are significantly lower under
medium and high visual feedback gain conditions compared to
low visual feedback gain. This may be because microstate C
is believed to be associated with the DMN [18], [19], [38].
DMN is a task-negative network, meaning it is activated
when the brain is in a wakeful resting state but attenu-
ated during externally goal-directed tasks [39], [40]. In this
study, as the visual feedback gain increases, task intensity
rises, brain activity enhances, and microstate C is suppressed.
Reference [35] similarly found a significant decrease in the
Duration and Coverage of microstate C during a visual spatial
motion task. However, interestingly, microstate C parameter
values remain higher than A and D at medium/high gain.

This may be because the DMN serves as the central hub of
brain organization and function, playing a fundamental role
in brain function [41], and it always starts from a highly
active baseline, making minimal adjustments during activity
to accommodate the demands of specific tasks [42].

Microstate D exhibits a trend like microstate B, with
its parameters significantly increasing under medium/high
visual gain. Reference [13] found that in visually feedback-
controlled finger pinch force, the Duration and Occurrence of
microstate D significantly increase compared to the resting
state. Microstate D is believed to be associated with DAN
and ECN [16], [17], [18], [19], [38]. With the increase in
visual feedback gain, more motor stimuli are projected to the
motor-related cortex for frequent integration and optimization,
enhancing the interaction between the brain and the peripheral
environment, thus making microstate D, reflecting the attention
and executive control abilities of the brain, more active.
We found that microstate A parameters are like those of
microstate C. Reference [43] made a similar discovery, observ-
ing a decrease in the Duration of microstate A under open-eye
conditions compared to closed-eye conditions. Considering
that microstate A is associated with the auditory network [16],
[17], [18], [19], with its neural generator originating from
the temporal lobe cortex, in visual motor tasks unrelated to
auditory information, microstate A may be suppressed by
the brain’s cognitive control capacity to prioritize resource
allocation for task-related information processing [44].

TP between microstate provides information on the over-
all temporal sequence and network dominance. Our results
revealed TP from other microstate to B significantly increased
under medium/high gain. Moreover, there was a significant
mutual increase in TP between microstate B and D. Visual
motion involves a complex dynamic closed-loop mecha-
nism [45]: integration of perception and decision-making,
movement planning and execution, feedback, and adjustment.
Therefore, the increased TP between microstate B and D may
reflect the frequent alternation of corresponding functional
networks [46], to adapt to task requirements and achieve
precise and coordinated motion control. This suggests that
the visual network, DAN and ECN play a key role in visual-
motion integration [13].

B. Relationship Between Grip Performance and
Microstate B, C Parameters

As microstate B and C may play crucial roles in visual
motion, we conducted a correlation analysis between their
parameters and RMSE, CV. The results revealed Occurrence
and Coverage of microstate B and C are negatively correlated
with RMSE and CV, indicating their positive impact on
visual motion performance. In our motor paradigm, the visual
network plays a crucial role. With the increase of gain, the
functionality of the visual network strengthens, microstate B
becomes more active, and both grip accuracy and stability
significantly improve. Although microstate C represents a task-
negative network and is suppressed during task execution,
it still plays a fundamental role as a hub of brain structure and
function [41]. Therefore, microstate C occupies a crucial posi-
tion under medium/high gain, as reflected in TP. TP towards
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microstate C is significantly higher than towards A and D, and
TP from microstate C to B is negatively correlated with RMSE
and CV, indicating that microstate C contributes to improved
motor performance.

However, the Duration of microstate B and C mostly shows
a positive correlation with RMSE and CV, indicating that the
longer the average Duration of maintaining stable states when
microstate occur, the worse the grip performance. A plausible
explanation might be that visual motion involves complex
dynamic adjustment mechanisms [45], requiring coordinated
activation among various brain networks for dynamic alter-
nation. If certain functional networks remain continuously
activated, indicating the persistent existence of microstate
representing these networks, it may interfere with the dynamic
adjustment mechanisms of various networks during visual
motion [47], [48], thereby impeding the improvement of motor
performance.

C. The Dynamic Response of Brain Networks Is
Constrained as Visual Feedback Gain Increases

It is worth noting that there were no significant differ-
ences in the parameters of each microstate between the
medium/high gain ((Figure 4)), a phenomenon also observed
in CV (Figure 7b). One possible explanation is that brain
resources are limited. Within a certain range of gains, as visual
feedback gain increases, the dynamic response of brain net-
works significantly improves, enhancing activation of the
visual motor system [12], enabling better completion of tasks,
and improving grip stability. However, beyond this range,
an excessive amount of visual motion information imposes
a heavy burden on the reception and processing of the brain’s
visual motor system, limiting the dynamic response of brain
networks, and grip stability no longer improves. This suggests
that grip stability may depend more on the dynamic response
of brain networks.

D. Limitations and the Future directions
While the current study presents significant findings, sev-

eral limitations need to be acknowledged and addressed in
future research. Firstly, the current study only analyzed brain
network dynamics and precise grip performance at three
visual angles: 0.1◦ (Low), 1◦ (Med), and 3◦ (High). However,
previous research found that when the visual angle is <1◦,
small changes in the spatial amplitude of visual feedback
are accompanied by a substantial reduction in force error,
while at visual angles >1◦, large changes in the spatial
amplitude of visual feedback result in a slight reduction or
no improvement in force error [12]. Therefore, future studies
should categorize visual angles into more levels to further
investigate the broad impact of visual feedback gain on brain
network dynamics. Secondly, the EEG data used in this study
lasted for 100 seconds, which has high reliability in EEG
microstate analysis [28]. However, using longer task durations
in the future could further validate the robustness of the results.
Finally, the current study relies solely on EEG signals, which
may not comprehensively capture our findings. Future research
should incorporate fMRI and source localization techniques to

gain a deeper understanding of the brain networks represented
by each microstate [16], [17].

V. CONCLUSION

To investigate the impact of changes in visual feedback
gain on the dynamic of brain networks during precision
grip, we recorded the mechanics and EEG signals during
precision grip tasks under different levels of visual feedback
gain (low, medium, high), and analyzed the EEG signals
using microstate. The results showed that while precision
grip performance significantly improved under medium/high
gain, there were significant changes in EEG microstate. The
findings of this study reveal that visual feedback gain may
improve precision grip control by dynamically adjusting brain
networks, indicating that moderate increases in visual feedback
gain can significantly enhance the accuracy and stability of
grip force. These findings are of significant importance in
the field of rehabilitation medicine, especially in developing
treatment strategies for patients with hand motor disorders.
By adjusting visual feedback gain, it is possible to improve
patients’ hand motor performance, thus enhancing their daily
living and work capabilities.
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