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Cochlear Implant Artifacts Removal in
EEG-Based Objective Auditory

Rehabilitation Assessment
Qi Zheng , Yubo Wu, Jianing Zhu , Leqiang Cao, Yanru Bai, and Guangjian Ni , Member, IEEE

Abstract— Cochlear implant (CI) is a neural prosthesis
that can restore hearing for patients with severe
to profound hearing loss. Observed variability in
auditory rehabilitation outcomes following cochlear
implantation may be due to cerebral reorganization.
Electroencephalography (EEG), favored for its CI
compatibility and non-invasiveness, has become a staple
in clinical objective assessments of cerebral plasticity
post-implantation. However, the electrical activity of CI
distorts neural responses, and EEG susceptibility to these
artifacts presents significant challenges in obtaining
reliable neural responses. Despite the use of various
artifact removal techniques in previous studies, the
automatic identification and reduction of CI artifacts while
minimizing information loss or damage remains a pressing
issue in objectively assessing advanced auditory functions
in CI recipients. To address this problem, we propose an
approach that combines machine learning algorithms—
specifically, Support Vector Machines (SVM)—along with
Independent Component Analysis (ICA) and Ensemble
Empirical Mode Decomposition (EEMD) to automatically
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detect and minimize electrical artifacts in EEG data. The
innovation of this research is the automatic detection of
CI artifacts using the temporal properties of EEG signals.
By applying EEMD and ICA, we can process and remove
the identified CI artifacts from the affected EEG channels,
yielding a refined signal. Comparative analysis in the
temporal, frequency, and spatial domains suggests that
the corrected EEG recordings of CI recipients closely align
with those of peers with normal hearing, signifying the
restoration of reliable neural responses across the entire
scalp while eliminating CI artifacts.

Index Terms— Cochlear implant, artifact removal, elec-
troencephalography (EEG), support vector machines SVM,
ensemble empirical mode decomposition (EEMD).

I. INTRODUCTION

COCHLEAR implants (CI) are the most effective interven-
tion for severe to profound hearing loss. Over one million

individuals with hearing impairments globally have regained
functional auditory perception with the aid of CIs, approx-
imately 50% of whom are children [1]. Post-implantation,
the clinicians are required to regularly calibrate the threshold
levels (T values) and comfortable levels (C values) settings in
accordance with auditory assessment test results [2]. Accurate
postoperative auditory evaluations are crucial for guiding clin-
icians in developing treatment plans. Currently, clinical assess-
ments of hearing post-CI implantation predominantly rely
on speech-based or non-speech behavioral tests [3], [4], [5].
However, the accuracy of these behavioral results can be
greatly affected during the period when CI recipients are
acclimating to newly introduced electrical auditory speech
signals after device activation. It underlines the importance of
objective methods that assess neural responses without patient
cooperation [6].

Electroencephalography (EEG) provides researchers and
clinicians with a direct observation method of neuron
responses to auditory stimuli with high temporal resolution.
Cortical Auditory Evoked Potentials (CAEP) and Mismatch
Negativity (MMN) hold significant clinical potential for eval-
uating advanced auditory function recovery in CI users and
are considered biomarkers for their auditory rehabilitation
[7], [8], [9]. With advancements in neuroscience research,
an increasing focus is placed on investigating brain plasticity
in CI users. Functional Magnetic Resonance Imaging (fMRI)
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and Positron Emission Tomography (PET) are robust tools
for studying brain structure and function. However, the strong
electromagnetic fields of fMRI are incompatible with CI, and
PET requires radioactive tracers to track brain activity [10].
EEG emerges as the most suitable objective method for explor-
ing brain plasticity in CI users, especially during the phase of
learning new input sounds. Multidimensional objective indices
based on EEG’s time-frequency-spatial domains can provide
more information on the neural mechanisms during auditory
rehabilitation in CI users, enhancing our understanding of cere-
bral functional reorganization following new auditory input.

Nevertheless, EEG recordings are easily contaminated by
electromagnetic interference from CIs [11], with simultaneous
recording of CI artifacts. These artifacts sometimes exceed
the neural activity of interest by several orders of magnitude.
CI artifacts are often time-locked with brain responses to
sound stimuli, severely distorting the neural responses induced
by auditory stimuli [12], with relevant features often drowned
in CI noise. Such interference obscures researchers’ targeted
features, particularly when investigating auditory rehabilitation
biomarkers in CI users. More crucially, CI artifacts pose
challenges in studies investigating auditory plasticity in CI
users based on whole-head EEG signals. Therefore, further
developing studies that extract neural activity changes in CI
users from EEG and eliminate CI artifacts’ interference with
whole-head signals is of paramount importance.

The researchers have employed various preprocessing strate-
gies to reduce CI artifacts. Initially, when focusing only on
CAEP components recorded at the midline, a re-referencing
technique was proposed to maximize the signal-to-noise
ratio [13]. For unilateral CI users, re-referencing to the mastoid
on the opposite side of the implant and for bilateral CI
users, to the tip of the nose. Some have also attempted to
minimize artifacts by disconnecting or removing electrodes
proximal to the CI during experimentation or preprocessing.
Yet, these methods do not fully mitigate CI artifacts. and
can lead to considerable data loss, limiting the exploration of
auditory plasticity post-implantation and negatively impacting
whole-head signal neural source estimation. Hofmann and
Wouters proposed a linear interpolation method to attenuate
CI artifacts [14], which Deprez et al. found to be effective
only for electrodes on the side opposite the implant and only
when the interval between stimulus pulses is longer than
the duration of the pulse artifact. Later, Mc Laughlin et al.
proposed a single-channel artifact attenuation method, weak-
ening high-frequency and direct-current CI artifacts in the
Late Auditory Evoked Potentials (LAEPs) of 22 adult CI
subjects [15]. However, when BinKhamis et al. used linear
interpolation and template subtraction, they obtained clean
data from only 2 out of 12 CI users’ EEG recordings [16].
Increasingly, studies use Independent Component Analysis
(ICA) to remove CI artifact components. ICA, part of blind
source separation [17], has been widely applied in EEG
preprocessing for artifact removal, such as electrooculogram
(EOG), electromyography (EMG), electrocardiogram (ECG),
and head movements [18], [19]. However, CI artifacts often
mix with other neural activities in the same component, and the
actual Independent Components (ICs) related to CI artifacts

can number in the dozens [20]. Removing too many CI-related
ICs can directly distort whole-head signals while removing
too few can affect the accuracy of source estimation in brain
plasticity studies.

A growing body of electroencephalographic (EEG) research
is utilizing more ecological stimuli, such as speech stimuli,
to examine cerebral functional reorganization. However, the
limitations of using only ICA become apparent with complex
stimuli, making it difficult to eliminate CI artifacts completely.
Each CI manufacturer has its own coding strategy, resulting
in different CI artifacts in EEG recordings. Additionally,
due to individual differences and slight positional shifts of
the EEG cap, the number of leads with residual CI arti-
facts varies. Moreover, for CI users, the characteristics of
stimulus-evoked components are constantly evolving during
the rehabilitation phase as they acclimate to new auditory
inputs post-implantation. Investigating cerebral plasticity is
pivotal to comprehending the auditory function reconstruction
post-CI implantation. Consequently, we have developed a
semi-automatic method that effectively eliminates CI artifacts
induced by different auditory stimuli from whole-lead EEG
signals. This method minimizes information loss while reduc-
ing artifacts with minimal supervision, providing an artifact
elimination tool for clinical assessment on cerebral plasticity
in CI users.

In this investigation, we conducted artifact elimination
experiments on high-density EEG data from CI patients, aim-
ing to validate the direct applicability of the artifact elimination
tool in clinical evaluations of advanced auditory functions.
Given the scarcity of literature on CI artifacts removal in EEG
recordings and the limited priori knowledge of engineering
techniques among clinicians, we devised an automated model
to identify artifact characteristics and segregate channels
affected by CI artifacts in high-density EEG. The implemented
machine learning approach yielded a commendable accuracy
rate (approximately 95%). For processing channels contam-
inated with CI artifacts, we utilized EEMD-ICA method,
adept at adjusting to the data’s inherent nonlinearity and non-
stationarity. And guidelines are provided for removing ICs
containing only CI artifacts. This method ensures thorough
artifact removal while maintaining data integrity, accurately
mirroring the characteristics of the original neural signals, and
ultimately resulting in corrected EEG recordings.

II. MATERIAL AND METHODS

A. Dataset
Data collection occurred in an electromagnetic anechoic

chamber over three distinct sessions, each utilizing a different
auditory stimulus: pure tones, syllables, and tonal sounds. The
objective was to assess the auditory perceptual abilities of
CI recipients in response to a range of speech complexities
post-implantation. Utilizing an auditory oddball paradigm, the
study focused on a singular deviant stimulus during each
session. Two auditory stimuli were presented: a 1 kHz tone
(200 ms) (S) and a 1.5 kHz tone (200 ms) (D), the Mandarin
syllables “ba” (305 ms) (S) and “pa” (305 ms) (D), and the
Mandarin tones “bā” (305 ms) (S) and “bà” (305 ms) (D), with
‘S’ signifying the standard and ‘D’ the deviant. The stimuli
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Fig. 1. CI Artifact Removal Algorithm Overview. Following initial preprocessing, EEG data are classified into two categories using SVM: channels
unaffected and affected by CI artifacts. Channels free from CI artifacts undergo removal of common artifacts such as EOG, EMG, ECG artifacts.
Those impacted by CI are processed using the EEMD-ICA algorithm to extract CI artifacts, resulting in a refined full-lead EEG signal.

occurred at random intervals ranging from 600 to 800 mil-
liseconds. Sessions commenced with an initial sequence of
10 standard stimuli, succeeded by 1000 trials comprising
85% standard and 15% deviant stimuli. Detailed experimental
protocols can be accessed in published papers [21]. In this
study, EEG data were gathered from 66 children with CI,
aged 3 to 7 years, and 25 normal hearing peers. The dataset
includes 23 recordings elicited by pure tone stimuli, 16 by
syllable stimuli, and 27 by tonal stimuli. Participants were
engaged in passive listening to the auditory sequences while
viewing their preferred silent cartoons. Following sound field
calibration, auditory inputs were delivered at 70 dB SPL to
guarantee detectability by all participants.

Electroencephalogram (EEG) data were captured using a
128-channel saline electrode cap, part of the Geodesic Sensor
Net (GSN), amplified by a Net Amps 400 amplifier, and
recorded at a sampling rate of 1kHz. The electrode array
adhered to the standard international 10-20 system placements,
supplemented with additional sites, incorporating the reference
electrode at Cz and the ground electrode situated between CPz
and Pz.

B. Conventional Data Preprocessing
The experimental data underwent digital band-pass filtering

within the 0.1-30 Hz range, supplemented with a 50 Hz
notch filter to attenuate low-frequency drift and high-frequency
noise. The filtered continuous EEG data were then divided
into epochs ranging from 100 ms before the stimulus to
500 ms after, with each epoch undergoing baseline correction.
Epochs exhibiting electrical activity surpassing 100 microvolts
were excluded. Comparative studies on the performance of
ICA algorithms demonstrated that Infomax had a minimal
negative effect on EEG recordings with CI artifacts during the
noise reduction process [22], [23]. Consequently, the Infomax
algorithm was employed to compute ICs, with the ADJUST
algorithm subsequently setting the threshold at 0.9 to facilitate
the automatic elimination of EOG, EMG, ECG artifacts.
During this phase, CI artifacts were not processed.

C. Artifact Processing Methods
Analysis of single-lead signals indicated substantial distor-

tion in electrodes proximal to the CI external device, attributed
to CI electrical activity. It was observed that the interference
in electrode recordings decreased as the distance from the CI
implant increased. Moreover, electrodes situated further from
the CI implant demonstrated a higher signal-to-noise ratio
and clearer event-related potential (ERP) features. In addition,
up to dozens of CI-related ICs were identified, encompass-
ing those exclusively composed of CI artifacts and others
combining CI artifacts with pertinent physiological activi-
ties. Completely removing all CI-related ICs risked distorting
relevant physiological activities in other leads. In contrast,
selectively removing components containing only CI artifacts
left residual artifacts in CI-affected leads, compromising the
analysis of neural plasticity.

To address this challenge, the preliminarily preprocessed
EEG data were classified into two categories using SVM:
leads not influenced by CI contamination and those that
were. The unaffected leads underwent component removal
for disturbances such as EOG, EMG, ECG artifacts in the
previous phase, while the affected leads had CI components
extracted using the EEMD-ICA algorithm. This approach
yielded artifact-corrected whole-lead signals, as depicted in
Figure 1. The detailed methodology is outlined subsequently.

1) CI Artifacts in EEG Recordings: The morphology of CI
artifacts in EEG recordings exhibits variation across several
factors [24]. The most noteworthy thing is that these artifacts
tend to mirror the envelope contours of auditory stimuli.
Speech stimuli, with their array of time-varying frequencies,
produce more intricate artifacts compared to pure tones. In the
cochlear implant (CI) dataset presented in this study, similar
evidence was observed, yet artifacts did not align precisely
with the auditory stimulus envelope, as illustrated in Figure 2.
Figures 2A and 2B respectively illustrate the envelopes of
Mandarin tones “bā” (first tone) and “bà” (fourth tone),
accompanied by the resultant CI artifacts induced by these
stimuli. Although CI artifacts generally reflected the trends
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Fig. 2. Envelope Comparison between CI Artifacts and Stimulus
Speech. Panel A illustrates the envelope of the Mandarin tone “bā” and
its associated CI artifact, whereas Panel B demonstrates the envelope
for the tone “bà” and its corresponding CI artifact. CI artifacts mimic the
envelope patterns of the speech stimuli but are not perfectly aligned.

of the speech stimuli, the reason they were not precisely
aligned may be due to artifact distortion at 1kHz sampling
rate [25]. However, a prevalent characteristic observed in EEG
recordings across various speech stimuli is that electrodes
proximal to the CI manifest artifacts. Electrodes that are
further yet still impacted by electrical artifacts demonstrate
spikes exceeding the magnitude of the neural activity adjacent
to the ERP components. It is argued that dependence on
the speech stimulus envelope for precise identification of
all signals contaminated by CI in speech stimuli may not
be effective in clinical objective evaluations. To meet the
clinical demand for a swift assessment of patients’ auditory
perceptual abilities with different speech stimuli, this study
proposes an SVM algorithm-based method for the automatic
classification of CI-contaminated EEG recordings, alongside
a developed model for isolating CI-contaminated channels in
EEG recordings under different speech stimuli.

2) Automatic Classification of CI-Contaminated EEG Record-
ings Using SVM: Given the limited literature and consensus on
the automatic identification of CI artifacts, experts initially
visually inspected and identified 1,175 out of 8,448 leads
(66 subjects ∗ 128 leads) as CI artifact contaminated. This was
followed by training a SVM classifier to distinguish between
CI-affected and unaffected leads, facilitating the automatic
categorization of CI-contaminated EEG records in pediatric
datasets.

Fig. 3. Identification of ICs for Removal. (A) Vertical eye movement.
(B) Horizontal eye Movement. (C) Electromyographic Noise. (D) Left-
sided CI Artifact. (E) Right-sided CI Artifact. (F) Another Right-sided CI
Artifact.

SVM integrates statistical theory with structural risk min-
imization principles to develop a model that classifies data
based on sample attributes, renowned for its generalization
ability. During the training phase, SVM employs features from
each lead to construct a hyperplane that discriminates between
CI-affected and unaffected vectors. In scenarios where the
dataset is not linearly separable in finite-dimensional space,
SVM maps the data to a higher-dimensional space. Here,
a Gaussian radial basis function kernel defines the mapping,
optimizing a maximum margin hyperplane in the expanded
feature space to enhance the generalization error of the SVM.
The careful selection of the penalty parameter c and the kernel
function parameter γ is essential for shaping the hyperplane,
with γ affecting its overall form and c determining error tol-
erance. To identify the optimal hyperparameters, a grid search
was conducted, entailing an exhaustive exploration of various
parameter combinations and their corresponding accuracies.
This process involved defining a range for hyperparameters,
dividing it into intervals, and systematically evaluating all
possible values for each hyperparameter. Subsequent model
training and testing for each parameter combination led to
the selection of the optimal set. In this study, c was set
to 10 and γ to 0.03, resulting in an optimal classification
accuracy of 95.44%, as detailed in Table I. The model’s
results demonstrate robust identification and generalization
capabilities for classifying CI-contaminated leads.

3) Automatic Removal of CI Low-Frequency Artifacts Using
EEMD: Following the SVM classification of leads into
CI-contaminated and uncontaminated categories, physiological
artifacts such as EOG and EMG have been eliminated from
the uncontaminated leads, as demonstrated in Figures 3A, 3B,
and 3C. In the case of CI-contaminated leads, CI-related
components are extracted using the EEMD combined with
ICA algorithm. ICs identified by audiologists as exclusively
comprising CI artifacts, devoid of physiological activity, are
removed. ICs containing only CI artifacts are depicted in
Figures 3D, 3E, and 3F. Analysis of CI artifact components
reveals that unilateral implant recipients exhibit artifact activity
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TABLE I
DATASET INFORMATION

TABLE II
PERFORMANCE METRICS OF SVM CLASSIFICATION MODEL

predominantly on the implanted side, whereas bilateral implant
recipients display artifacts distributed across bilateral temporal
regions. Moreover, the time-series signal exhibits strong direct
current (DC) artifacts and is extremely consistent across all

trails. Here, we provide guidelines for ICs that can be removed
during CI artifacts removal. Typically, CI artifacts are com-
posed of two elements: high-frequency artifacts representing
stimulus pulses, and DC or baseline artifacts [15], which
exhibit a nonlinear time-varying relationship with pulse ampli-
tude. Post band-pass filtering at 0.1-30Hz, the high-frequency
CI artifacts are substantially reduced. However, DC artifacts
persist in the EEG signal. Mere removal of ICs containing only
CI artifacts is insufficient, as it leaves behind low-frequency
DC artifacts. To mitigate this, the EEMD algorithm is applied
to the signal, effectively diminishing CI noise.



ZHENG et al.: CI ARTIFACTS REMOVAL IN EEG-BASED OBJECTIVE AUDITORY REHABILITATION ASSESSMENT 2859

EEMD represents an advancement of Empirical Mode
Decomposition (EMD), a method that is data-driven, adaptive,
and independent of prior assumptions, thus well-suited for
analyzing nonlinear, non-stationary EEG data [26]. However,
EMD is notably sensitive to noise and prone to mode mixing,
potentially leading to inaccuracies in the derived Intrinsic
Mode Functions (IMFs). EEMD effectively overcomes these
limitations by providing a robust solution to the mode mixing
issue [27]. EMD dynamically breaks down a multi-component
signal into a series of band-limited IMFs, reflecting the signal’s
inherent time scale characteristics. Each IMF must satisfy two
criteria: firstly, the count of local maxima or minima should
be equal to or differ by no more than one from the number
of zero-crossings; secondly, the mean value of the upper
and lower envelopes, formed by these local extremes, should
approximate zero. EEMD improves upon EMD by initially
averaging the IMF set obtained from EMD decomposition,
then introducing uniformly distributed white noise of the
same standard deviation. This process effectively allocates
various scale signal components to their corresponding scales
in relation to the background noise, resulting in a refined IMF
set. EEMD involves multiple iterations of applying EMD to the
signal augmented with white noise. Given the distinct noise in
each iteration and sufficient repetitions, the cumulative effect
nullifies the added noise in the average, isolating the signal and
minimizing mode mixing. For our study, we set the ensemble
number for EEMD at 20 and the ratio of the standard deviation
of the added Gaussian white noise to that of the original
signal s (t) at 0.1. The methodology involves:

(1) Add Gaussian white noise wk (t) to the original signal
s (t), forming a new signal xk (t)

xk (t) = s (t) + ε · std (s (t)) · wk (t) (1)

(2) Decompose the noisy signal xk (t)with EMD to obtain
m IMFs

xk (t) =

∑
m

ck,m (t) (2)

(3) Repeat steps (1) and (2) n times, adding white noise
with each decomposition to obtain n sets of IMFs

(4) Utilize the principle that the statistical average of unre-
lated sequences is zero, average the IMFs, and obtain the final
IMFs after EEMD decomposition.

cm (t) =
1
n

n∑
k=1

ck,m (t) (3)

Once the final IMFs are obtained from EEMD decompo-
sition, we calculate the variance contribution rate, average
period, and Pearson correlation coefficient for each IMF. This
analysis assesses their relationship with the original sequence,
retaining the IMFs with the top three indicator values to extract
a signal free of CI artifacts. The EEG records, now devoid of
both physiological and CI artifacts, from the two classified
lead groups are then merged, culminating in a comprehensive,
artifact-free whole-lead EEG dataset.

III. RESULT

In this section, the effectiveness of our artifact removal
algorithm is evaluated using EEG data from both CI and their
normal-hearing counterparts. We conduct qualitative compar-
isons, including analyses of time waveforms, Power Spectral
Density (PSD) values before and after artifact removal, and
Global Field Power (GFP), to assess the algorithm’s ability to
eliminate artifacts.

A. Reduction of CI Artifacts in ERPs

To illustrate the performance of our CI artifact reduction
algorithm, we analyze full-head data across 128 channels,
focusing on the distribution of CI artifacts. The data clearly
show that CI artifacts are prevalent on the side where the
implant is located. We also examine the algorithm’s impact
on the analysis of ERPs, which are derived by averaging EEG
signals from 100 milliseconds before to 500 milliseconds after
a stimulus. While band-pass filtering reduces high-frequency
artifacts, low-frequency artifacts persist in the original sig-
nal, as depicted in the left panels of Figures 2A and 2B.
The intensity of the recorded CI artifacts, as demonstrated
in Figure 4A, follows a decay pattern emanating from the
external device, indicating varying levels of contamination.
Prior to the application of the artifact removal algorithm,
the energy of the artifacts significantly exceeds that of the
EEG components of interest. Brain topography maps reveal
a concentration of high energy on the implant side, leading
to distorted neural responses and implications for subsequent
analyses.

Utilizing the SVM algorithm, data are segregated into two
groups: channels affected by CI artifacts and those that are
not. Channels free from CI contamination undergo routine
preprocessing, which includes the elimination of physiological
artifacts like eye and muscle movements (as illustrated in
Figures 3A, 3B, and 3C). On the other hand, CI-affected chan-
nels are treated with our developed EEMD-ICA algorithm,
initially targeting the removal of components exclusively com-
posed of CI artifacts (shown in Figures 3D, 3E, and 3F).
Despite this, some low-frequency CI artifacts persist, evident
in the first row of Figure 5. The EEMD method involves intro-
ducing white noise and iteratively decomposing the signal via
the EMD algorithm, producing a set of IMFs. An illustrative
example in Figure 5 shows a channel automatically seg-
mented into three IMFs. These IMFs and their corresponding
decomposed signal are analyzed using three metrics: variance,
average period, and Pearson correlation coefficient. The IMF
exhibiting the highest metric values is retained. Post-EEMD
processing effectively removes low-frequency CI artifacts,
thereby optimally reconstructing the ERP components (as
seen in the first row of Figure 5). Subsequently, the refined
channels from both groups are amalgamated into a single
dataset, depicted in Figure 4B. In the context of ERPs, this
approach reduces CI artifacts while maximally preserving the
components without energy loss. Brain topography maps, both
pre- and post-artifact removal, exhibit a uniform distribution
of outcomes.
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Fig. 4. Full-Lead ERP Comparison Pre and Post CI Artifact Removal. (A) Before Removal. (B) After Removal ERP Response.

Fig. 5. EEMD Application on Channels with Residual Low-Frequency CI
Artifacts. The top row visualizes the signal with residual low-frequency
CI artifacts (blue line) subjected to EEMD. The following rows detail
the EEMD decomposition process, yielding IMFs. Subsequent analysis
involves calculating variance, average period, and Pearson correlation
coefficients to assess the relationship between IMFs and the decom-
posed signal. The most significant three IMFs, indicated by the red line,
are retained. The signal comparison before and after EEMD highlights
the successful removal of CI artifacts and intact preservation of ERP
components.

B. Comparison of Time-Frequency-Space Domain
Features in CI and Normal-Hearing Peers

In the frequency domain, our method demonstrates
favorable outcomes. Figure 6 presents the PSD compar-
isons of EEG data, categorizing them into severely CI-
contaminated, mildly CI-contaminated, non-contaminated, and
post-correction EEGs, alongside the PSDs of normal-hearing

Fig. 6. PSD Analysis Pre and Post CI Artifact Removal. (A) Heavily
CI Contaminated Channels. (B) Mildly CI Contaminated Channels.
(C) Uncontaminated Channels. (D) PSD of Normal-Hearing Children.
The post-removal algorithm significantly diminishes low-frequency
range energy in heavily contaminated channels, with a minor reduc-
tion in mildly contaminated channels, while maintaining the original
signal’s frequency distribution. Uncontaminated channels’ PSD remains
unchanged post-removal. Corrected EEG recordings’ PSD after CI
artifact removal closely match those of normal-hearing peers.

children. The ideal outcome for the PSD of corrected EEG
recordings is to minimize low-frequency CI artifacts while
aligning closely with the PSD of the original EEG at
other frequencies. In Figure 6, the PSD of the severely
CI-contaminated EEG shows a notable reduction in the low-
frequency range, while the mildly contaminated EEG exhibits
a modest decrease. The PSD of the non-contaminated EEG
remains stable before and after artifact removal. Comparing the
PSD of corrected EEGs from CI with that of normal-hearing
peers reveals a successful removal of low-frequency CI
artifacts and a well-preserved brain activity below 20 Hz.
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Fig. 7. Full-Lead ERP and Peak GFP Topographic Map Comparison. (a) Normal-Hearing Children Group. (b) Cochlear Implant Children Group. The
figure presents topographic maps of full-lead ERP and peak GFP values for both groups. The CI group exhibits a clear reduction of low-frequency
CI artifacts, and the spatial pattern at GFP peaks (P1, N2) aligns with normal-hearing children’s distribution.

This indicates an effective full-head CI artifact elimination and
optimal preservation of neural responses.

In terms of GFP, our method also demonstrates robust
performance. GFP quantifies the standard deviation of voltage
across all scalp electrodes at a specific moment, reflecting the
brain’s response to stimuli. Given prior evidence indicating
that CI children demonstrate developmental ERP components
comparable to their normal-hearing peers 24 months post-
implantation, we compared the GFP of CI patients implanted
for more than 24 months with age-matched normal-hearing
individuals. Figure 7 displays topographic maps showcasing
full-lead ERPs and peak GFP values for both groups. The
analysis reveals that the full-lead average ERP components in
the CI group are prominent, with low-frequency CI artifacts
effectively minimized. Additionally, the spatial distribution of
GFP peaks (notably at P1 and N2) aligns with that observed
in normal-hearing peers, ensuring the integrity and reliability
of the data for subsequent neuroplasticity research.

The shadow error plots of GFP depicted in Figure 8 affirm
the efficacy of our method in consistently removing CI arti-
facts and accurately reinstating original neural responses at
an individual level, underlining its widespread utility. Upon
analyzing GFP peak data for both groups, the 100-200ms
peak (P1) reveals no significant difference in latency or peak
values between the groups (latency: F=1.396, P=0.272; peak:
F=0.154, P=0.705). Conversely, the 200-300ms peak (N2a),
often associated with the emergence of MMN, exhibits signif-
icant differences in latency (F=9.654, P=0.015) but not in
peak values (F=2.059, P=0.189). These statistical findings
reinforce the evidence found by prior research [21]. The
P1 component, which represents the ability to hear sounds,
developed to the same level as in normal peers, and the
MMN component, which represents the ability to discriminate

Fig. 8. GFP Shadow Error Plots for CI and Normal-Hearing Children.
The GFP results for the CI children group show uniformity across
subjects, effectively eliminating CI artifacts on an individual level and
restoring authentic neural responses.

tones, remained at odds with normal peers 24 months after
implantation. It attests to the method’s substantial impact in
eliminating CI artifacts and its effectiveness for neuroplasticity
research.

IV. DISCUSSION

This investigation presents a pioneering method for the
removal of CI artifacts, explicitly designed for the objective
evaluation of clinical auditory rehabilitation. This approach
proficiently eradicates CI artifacts from all EEG leads, thereby
advancing the clinical appraisal of auditory plasticity in
CI recipients. It independently discerns channels tainted by
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CI artifacts, obviating the need for prior knowledge. Utilizing
a synergistic combination of EEMD and ICA, the method
semi-automatically removes CI artifacts from affected chan-
nels. Acknowledging the variability among patients and the
heterogeneity of CI coding strategies, the IC components of
CI artifacts vary. Recognizing that numerous CI-related IC
components are interwoven with neural activity, the study
delineates guidelines to isolate IC components exclusively
comprising CI artifacts, safeguarding against the obliteration
or distortion of neural information in subsequent artifact
removal phases.

From a methodological perspective, the removal of mixed
CI artifacts from electroencephalogram (EEG) signals is a
crucial step for subsequent EEG analyses, such as ERP
analysis and source localization. However, previous methods,
such as those relying solely on ICA, depend heavily on prior
knowledge of specific artifact characteristics. CI artifacts often
comprise as many as a dozen ICs, frequently intermingled
with other elements, making their direct application in clinical
auditory evaluations impractical. The method proposed in this
article is data-driven. It begins by classifying channels based
on whether they are contaminated by CI using a machine
learning model, followed by artifact removal. The method
does not advocate for the direct removal and interpolation of
all leads contaminated by artifacts, as the number of leads
affected by CI artifacts varies, and it is rare for only 1-2
electrodes to be impacted in EEG recordings. The employed
EEMD-ICA approach ensures maximal preservation of neural
responses throughout the artifact removal phase and attains
superior performance in artifact removal tasks. The overall
process of this method is non-prior and adaptive, offering a
novel way to eliminate CI artifacts. Particularly, based on a
real EEG dataset with CI, this method demonstrates robust
capabilities in handling CI artifacts. The data processed using
this method demonstrate significant differences in the latency
of evoked responses based on the type of auditory stimulus.
Homogeneity of variance tests were conducted on the data
from the three auditory stimulus groups, followed by one-way
ANOVA and multiple comparison corrections. The results
indicate significant differences in P1 latency between pure
tones and syllables (P = 0.001) as well as between pure
tones and tones (P = 0.001). Furthermore, the MMN latency
for pure tones was significantly different from that for tones
(P = 0.019). Multiple regression analysis also suggests a
positive correlation between the difficulty of auditory stimuli
and both P1 latency (t = 4.585, P < 0.001) and MMN latency
(t = 3.781, P = 0.001). These statistical results suggest that
this method can be an effective tool for exploring changes in
neural activity following cochlear implantation.

From an application standpoint, compared to previous
methods that relied on prior knowledge for analysis, this
method offers a universal guideline for processing EEGs of
CI under different auditory stimuli. This flexibility holds great
potential for EEG to objectively assess different auditory
abilities in the clinic. Its use is not limited to ERP analysis,
clinical assessments can reliably analyze auditory plasticity in
CI users, greatly promoting the clinical application of auditory
brain-computer interfaces. Furthermore, for a comprehensive

evaluation of this method, it should be evaluated on an
expansive dataset of CI EEG recordings, encompassing a
variety of distinct tasks.

Additionally, it is important to acknowledge the limitations
of our work. This study employs a supervised machine
learning model, whose training process requires a large
amount of expert-annotated data. Although the artifact
removal stage is non-prior, given that the field of CI
artifact elimination in CI-EEG is still nascent, using expert-
annotated datasets for more extensive validation is crucial.
An unsupervised machine learning model is also a future
direction for our research. Moreover, this study provides a
guideline for removing ICs that solely comprise CI artifacts.
Although the method can be directly utilized by non-experts,
removing ICs presently requires manual execution. To achieve
automated IC removal, experts must label the ICs based on the
characteristics of time series, PSD, and topographical maps,
thereby developing an automated model for the elimination
of CI-related ICs. Furthermore, deep learning approaches
surpass models developed through manual feature extraction.
Simulating expert annotation of CI-related ICs, informed by
techniques employed in other artifact removal study (e.g.
automated EOG artifact removal), is posited as a goal for
advancing CI artifact removal.

V. CONCLUSION

Artifact removal is a critical aspect of EEG analysis. This
is particularly pertinent in the objective evaluation of auditory
rehabilitation for CI users. The incompatibility of CIs with
MRI presents unique challenges in assessing brain activity dur-
ing the rehabilitation process. Therefore, the effective removal
of CI artifacts is essential for accurate analyses of brain
plasticity. In this study, we introduced a semi-automated CI
artifact removal approach, specifically designed for clinical
auditory rehabilitation evaluations, establishes guidelines for
its manual aspects, and demonstrates its superiority in remov-
ing artifacts across whole-head EEG signals. This method
is designed to be user-friendly for non-experts and adeptly
maintains the integrity of neural signals of interest during the
artifact removal process. Consequently, it serves as a potent
tool for integrating auditory brain-computer interfaces into the
clinical evaluation of CI auditory rehabilitation.
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