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Automated Hand Prehension Assessment From
Egocentric Video After Spinal Cord Injury

Nicholas Zhao and José Zariffa , Senior Member, IEEE

Abstract— Hand function assessments in a clinical set-
ting are critical for upper limb rehabilitation after spinal
cord injury (SCI) but may not accurately reflect performance
in an individual’s home environment. When paired with
computer vision models, egocentric videos from wearable
cameras provide an opportunity for remote hand function
assessment during real activities of daily living (ADLs).
This study demonstrates the use of computer vision mod-
els to predict clinical hand function assessment scores
from egocentric video. SlowFast, MViT, and MaskFeat mod-
els were trained and validated on a custom SCI dataset,
which contained a variety of ADLs carried out in a simu-
lated home environment. The dataset was annotated with
clinical hand function assessment scores using an adapted
scale applicable to a wide range of object interactions.
An accuracy of 0.551±0.139, mean absolute error (MAE) of
0.517±0.184, and F1 score of 0.547±0.151 was achieved on
the 5-class classification task. An accuracy of 0.724±0.135,
MAE of 0.290±0.140, and F1 score of 0.733±0.144 was
achieved on a consolidated 3-class classification task. This
novel approach, for the first time, demonstrates the predic-
tion of hand function assessment scores from egocentric
video after SCI.

Index Terms— Prehension, spinal cord injury (SCI), ego-
centric video, automated assessment, deep learning.

I. INTRODUCTION

SPINAL cord injury (SCI) is a devastating event that
drastically impacts affected individuals, their families, and

the healthcare system. Over 50% of all cases of SCI result in
upper limb impairment, which greatly affects the ability to
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live independently [1]. In fact, the restoration of upper limb
function was reported to be the top priority recovery target for
individuals with SCI [2].

Within the rehabilitative process, assessment of function
plays a key role in both clinical and research applica-
tions, for purposes such as monitoring progress or evaluating
the efficacy of novel interventions. Current hand function
assessments, such as the Graded Redefined Assessment of
Strength, Sensibility, and Prehension (GRASSP) [3] are typ-
ically performed in-person at the clinic. This poses several
limitations, as these assessments are performed in a highly
standardized environment and manner, and therefore do not
accurately reflect a patient’s performance in their home
environment [4]. Currently, evaluating hand performance at
home relies primarily on self-report, which is susceptible to
biases [5], [6], [7]. In-person assessments are also inaccessi-
ble for many patients, as transportation is a critical barrier
that hinders individuals with SCI from obtaining essential
needs [8].

To address the limitations described above, wearable sensors
are a promising solution that can potentially perform hand
function assessment within the home. In particular, wearable
cameras have become widely accessible to the public and are
capable of capturing a wealth of spatiotemporal data in the
form of recorded first-person perspective (egocentric) video.
Egocentric video contains information about the wearer’s func-
tional movements as well as valuable contextual information
about the movements, such as objects that are being interacted
with and environmental cues [9]. This is a critical advantage
over other wearable sensors, such as inertial measurement
units (IMUs), which are common within the field of rehabili-
tation research [10], [11], [12], [13]. Furthermore, egocentric
video can easily capture detailed information about the precise
movements of the hand whereas IMUs must employ more
complex solutions, such as instrumented gloves, which may
interfere with tactile feedback [14], [15], [16].

Although egocentric video allows for extensive recording
of an individual’s activities of daily living (ADLs), manually
browsing through hours of raw video footage is prohibitive,
especially for clinicians whose time is often at a premium.
Thus, there is a need to extract key biometric data from the
egocentric video footage to provide a high-level summary of
the video. Deep learning models are an emerging method
to automate the extraction of biometric data from egocentric
video. Yet, previous works have primarily focused on extract-
ing metrics based on detection, such as detecting hand-object
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interactions [9], [17], [18], usage of compensatory grasping
postures [19], and specific grasp types [20] in SCI populations.
There has yet to be any work that has attempted to directly
assess the quality of hand function from egocentric video using
deep learning models. Thus, we are interested in answering the
following question: can we use deep learning models to extract
information about the quality of hand function from egocentric
video? In this study, we framed the problem of assessing the
quality of hand function as the estimation of hand function
scores, derived from scales used in commonly employed
clinical outcome measures. We therefore developed computer
vision models to predict clinical hand function assessment
scores from egocentric video. A successful implementation of
such a model will contribute to the development of a fully
automated hand function assessment method for individuals
with SCI. This will allow hand function assessment to be
more accessible and relevant to a patient’s daily life, for both
research and clinical applications.

II. METHODS

A. Dataset
To develop the deep learning model, a specialized dataset

was first constructed to train, validate, and test the model. The
ANS-SCI dataset [9], which was previously collected by our
group was used for this study. It contains over 1200 minutes of
egocentric video footage of 17 participants with cervical SCI
performing approximately 38 common interactive ADL tasks,
which have been identified by the American Occupational
Therapy Association (AOTA) as important [21]. The partici-
pants’ inclusion criteria encompassed individuals with cervical
SCI whose AIS grades ranged from A-D. The participants’
had an average age of 50±12 years and included 15 males
and 2 females, with AIS grades from A-D. The footage was
recorded at the HomeLab home simulation environment at the
KITE Research Institute. The tasks were recorded in several
home environments, including a kitchen, living room, bed-
room, and bathroom. The study participants provided written
consent prior to participation in the study, which was approved
by the Research Ethics Board of the institution (Research
Ethics Board, University Health Network: 15–8830).

Figure 1 depicts four example frames of participants per-
forming various tasks in the different environments in the
HomeLab. This dataset was chosen for this study because
of the standardization of the ADLs found in the dataset.
As will be seen in the next section, an adapted version of
the GRASSP Prehension Performance subtest was used to
annotate the dataset with clinically relevant hand performance
assessment scores. These annotations require every possible
expected grasping posture to be identified for each ADL found
in the dataset, thus the standardization of ADLs across all
participants is required for feasible annotation. Other datasets,
particularly datasets that are recorded at the participant’s
home, contain many different ADLs that differ between each
participant. Identifying the expected grasping posture for
possibly hundreds of unique ADLs is impractical. Thus, the
standardization of ADLs was vital for the practicality of this
study.

Fig. 1. Example frames from the ANS-SCI dataset. Top-left: Placing
tennis balls into a plastic bag in the walkway. Top-right: Writing on paper
in the dining room. Bottom-left: Hanging clothes in the bedroom. Bottom-
right: Grabbing a plastic container in the kitchen.

TABLE I
SCORING CRITERIA FOR THE GRASSP PREHENSION

PERFORMANCE SUBTEST [24]

B. Scoring Methodology
Out of the potential SCI hand performance measures, the

GRASSP Prehension Performance subtest [3] was chosen for
this study. Firstly, GRASSP was primarily chosen because
of its proven reliability and validity, as well as its ongoing
adoption as the gold-standard measure for SCI hand perfor-
mance in many locations. This study required a quantitative
measure of hand performance that can be assessed from video
footage alone. The measure must also be easily adapted for
the various ADLs found in the dataset, which may conflict
with assessments that require specific methods of scoring
hand performance. For example, the Capabilities of Upper
Extremity Test (CUE-T) [22] test is another widely used SCI
hand performance assessment but has unique scoring criteria
for each of the tasks, making it difficult to translate to generic
ADLs. Although the GRASSP Prehension Performance subtest
defines specific tasks to be performed, it has universal scoring
criteria that are used for every task, shown in Table I. These
criteria are based on task completion, usage of the expected
grasp, smoothness of movement, and speed of movement. For
each task, a 50% completion checkpoint, a 100% completion
checkpoint, and a list of expected grasps are defined for the
examiner.

For the purposes of this study, an adapted version of the
Prehension Performance subtest was created. The scoring
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TABLE II
50% COMPLETION CHECKPOINT, 100% COMPLETION CHECKPOINT,

AND EXPECTED GRASP TYPES FOR 3 EXAMPLE TASKS FOUND IN THE

ANS-SCI DATASET. EXPECTED GRASP TYPES FOLLOW THE

GRASP TAXONOMY OF HUMAN GRASP TYPES [23]

method of the original subtest was preserved and used to
score hand performance of the various ADLs found in the
dataset. Following the GRASSP scoring criteria, 50%/100%
completion checkpoints and expected grasps were defined for
each ADL. The expected grasps were taken from the GRASP
taxonomy of human grasp types [23], and each ADL found in
the ANS-SCI dataset was assigned a list of expected grasps.
Following GRASSP, the checkpoints were defined by empiri-
cally determining key stages within each task and setting the
checkpoints accordingly [24]. For reference, the completion
checkpoints and expected grasp types from 3 example tasks
in the ANS-SCI dataset are shown in Table II. These 3 tasks
were chosen to demonstrate the variety of expected grasp types
found in the dataset.

A consolidated scoring scheme was also investigated for this
study, where scores 0-2 were combined (task not completed),
score 3 was left unchanged (task completed with alternative
grasp), and scores 4-5 were combined (task completed with
expected grasp), yielding a 3-point scale. Two methods of
implementing class consolidation were explored in this study.
The first method consolidated the classes on the model level
by training a new model with 3 output neurons instead of
5. The second method retroactively consolidated the classes
by applying the consolidation scheme to the predictions of a
model that was trained with 5 classes.

Using the adapted GRASSP Prehension Performance scor-
ing, the entirety of the ANS-SCI dataset was annotated with
GRASSP scores (0-5 scale), along with timestamps for each
of the tasks. The timestamps were used to extract only the
active ADL footage from the dataset, and each ADL clip was
labelled with a GRASSP score.

The class distribution of the annotated dataset can be seen in
Figure 2. After extracting the active ADL footage, the dataset
consisted of over 40,000 frames. There is an evident class
imbalance in this dataset, as GRASSP scores 3 and 4 comprise
over 70% of the entire dataset. The consolidated labels show a
more balanced distribution. Furthermore, there were no tasks

Fig. 2. Class distribution of the dataset with the original GRASSP
scoring (top) and the consolidated scoring (bottom).

that were scored as 0, thus score 0 was removed, making the
classification a 5-class problem, from scores 1-5.

To validate the clinical relevance of the adapted GRASSP
scoring, the mean GRASSP score for each participant was
compared to their Upper Extremity Motor Score (UEMS)
component of the International Standards for the Neurological
Classification of SCI [25]. Concurrent validity was determined
via the Spearman’s rank correlation coefficient, where the
mean GRASSP score achieved a coefficient of 0.81 (p <

0.001), demonstrating strong concurrence with UEMS. The
inter-annotator reliability of the adapted GRASSP scoring
was also evaluated on a randomized subset of the dataset,
consisting of 4 randomly selected tasks from each participant.
Cohen’s Kappa scores of 0.73 and 0.78 were achieved for the
original and consolidated scoring, respectively.

C. Deep Learning Model
To predict GRASSP scores from egocentric video footage,

state-of-the-art video classification architectures were chosen
as candidates for investigation of their performance in this
novel task. Video classification architectures were chosen over
frame-level image classification, due to the capacity to inte-
grate temporal information. Furthermore, frame-level image
classification performance is sensitive to occlusions, which can
be mitigated by the variety of hand angles that appear in video
data. Video classification architectures that demonstrated high
performance in action recognition datasets, such as Kinetics-
400 [26], were particularly favored in selection, as action
recognition likely requires the extraction of visual features
that are also relevant to hand performance assessment. Fur-
thermore, video classification architectures were chosen over
frame-level image classification, since the GRASSP scores
consider temporal features, such as speed of movement. The
following video classification architectures were chosen for
this study:

The SlowFast network is a convolutional neural
network-based architecture proposed by Feichtenhofer et al.
in 2019 and was one of the most promising architectures for
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this study, as it exceeded state-of-the-art performance in a
variety of action recognition datasets, including Kinetics-400
[27]. The usage of a low temporal resolution (slow) pathway
and a high temporal resolution (fast) pathway was identified
as potentially useful for detecting the nuances of impairment
in individuals with SCI. SlowFast consists of 33.6 million
parameters, making it the smallest model in the study.

The MViT architecture, proposed by Fan et al. in 2021 is a
transformer-based architecture that hierarchically expands the
channel capacity while reducing spatial resolution [28]. MViT
exceeded state-of-the art performance in many video datasets,
including the Kinetics-400 dataset. Li et al. then released the
MViTv2 architecture in 2022, which exceeded the state-of-the-
art in Kinetics-400 again [29]. This study used the MViTv2-B
architecture but is referred to as MViT in this document. The
MViTv2-B architecture consists of 50.9 million parameters,
making it the largest model in the study.

The MaskFeat model, proposed by Wei et al., uses the MViT
architecture, but utilizes a self-supervised pretraining method,
which has been proposed to initialize models for robust seman-
tic understanding of visual data [30]. This self-supervised
pretraining method prepares typically data-demanding trans-
former architectures to be readily trained on smaller datasets
using transfer learning. The MaskFeat model demonstrated
state-of-the-art performance on smaller datasets such as
Something-Something v2, using transfer learning. The Mask-
Feat model in this study used the MViT-S backbone and
was pretrained on the Kinetics-400 dataset using the self-
supervised method. The MaskFeat architecture consists of
36.2 million parameters.

D. Hyperparameter Optimization
Model hyperparameters were optimized by first identifying

and optimizing high-level hyperparameters, which have sig-
nificant architectural effects on the model, then optimizing
low-level hyperparameters, which are model values such as
learning rate and weight decay. We explored 3 high-level
hyperparameters in this study: transfer learning methods, tem-
poral sampling methods, and ordinal regression methods.

The transfer learning methods explored in this study were
training from scratch, fine-tuning, and feature extraction. Mod-
els that used feature extraction had all layers but the final layer
frozen, while fine-tuned models allowed all model parameters
to be updated. All pretrained weights used for transfer learning
were obtained from publicly available sources and were trained
on common action recognition and egocentric video datasets.
SlowFast models were pretrained on Epic Kitchens [31], MViT
models were pretrained on Kinetics 400 [26] and Something-
Something v2 [32], and MaskFeat models were pretrained on
Kinetics 400 [26].

We explored two different temporal sampling methods in
this study. The first method we employed was typical temporal
window sampling, where a video clip was sampled with
a moving window of 32 frames, frame stride of 2, and
window stride of 32. Sparse temporal sampling, as described
by Wang et al. [33], was also explored in this study. This
method divides the entire video clip into K equal segments
and samples N consecutive frames from each segment, starting

at a random index, resulting in KxN total frames. From
experimentation, we found that K = 8 and N = 4 resulted
in optimal performance, and thus were used for the remainder
of the study. Due to the randomization of index selection for
the starting frame of each segment, sparse temporal sampling
could be applied to the same video multiple times and yield
outputs with significantly different video content. Thus, videos
whose classes were underrepresented in the dataset were also
oversampled with sparse temporal sampling to balance the
class distribution. The minority classes were oversampled
to generate an equal class distribution for each participant.
However, since the class balancing was done on a participant-
basis, if a particular participant did not demonstrate any
instances of a single class, the class would still be absent from
the dataset, as there would be no video to oversample.

The classification task in this study is of ordinal nature,
thus we explored two ordinal regression methods that attempt
to exploit the ordinal relationship between the classes. The
methods we explored were Consistent Rank Logits (CORAL)
[34] and Conditional Ordinal Regression for Neural Networks
(CORN) [35], as well as the absence of any ordinal regression
method.

The low-level hyperparameters that were optimized in this
study were learning rate, weight decay, label smoothing,
batch size, optimizer, and warmup batches. Optimization was
performed by beginning at the values that were presented in
the original study for each architecture, then sweeping an order
of magnitude above and below the original value.

E. Model Evaluation
All models were evaluated using Leave-One-Subject-Out

cross validation (LOSO-CV), meaning 17 versions of the same
model were trained, with each participant being left out of the
training set in turn, to be used as the validation set. Then, the
performance of the 17 models was averaged to give the final
model performance. Model performance was determined with
the following classification metrics: accuracy, mean absolute
error (MAE), and weighted F1 score. Particularly, MAE was
used to distinguish the magnitude of misclassifications (i.e.,
predicting a score of 5 as 1 gives more error compared to
predicting a score of 5 as 4).

Rather than evaluating model performance by averaging the
results of all the individual predictions, this study used an
aggregate task score to determine performance. For a video
clip containing the footage of a single task being performed,
the clip was sampled multiple times depending on its duration
(see above for sampling methods). Each sample was passed
through the model to make a prediction and the predictions
for a single task clip were aggregated via a majority vote. The
aggregated prediction was then evaluated with the aforemen-
tioned metrics (i.e., MAE). This aggregate prediction method
was used instead of the individual sample predictions, as it
emulates how the model would likely be used in practice.

In addition to LOSO-CV, leave-one-task-out cross validation
(LOTO-CV) and leave-one-background-out cross validation
(LOBO-CV) were also implemented in this study, as an inves-
tigative tool. LOTO-CV extracts all the videos of a specific
task and uses them as the validation set, while training on
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Fig. 3. Confusion matrices of the top performing Slowfast (left), MViT (middle), and MaskFeat (right) models. Cell values are normalized across
each row. Each cell value represents the proportion of predicted labels for each true class label.

the rest of the data. This process is repeated for every task in
the dataset. Similarly, LOBO-CV extracts all the videos that
were filmed at a specific setting in the HomeLab and uses
them as the validation set. Due to the added computational
load of these methods, LOSO-CV and LOBO-CV were only
performed with the SlowFast architecture.

Due to the highly resource intensive nature of LOSO-CV,
hyperparameter optimization was performed on a representa-
tive subset of 5/17 participants in the dataset. The models
were trained on the entire training set, but only 5 models were
trained instead of 17. The 5 participants in the representative
subset were chosen to have a wide range of average GRASSP
scores, UEMS, and AIS grades, ranging from 2.4-4.7, 9-24,
and B-D, respectively. The final optimized models were then
evaluated on all 17 participants using LOSO-CV.

To compare the performance metrics between models, statis-
tical significance was determined as follows. Normality of the
data distribution was first checked using the Shapiro-Wilk test.
To determine statistical significance between the means of two
groups, a t-test was performed on normally distributed data
and the Wilcoxon rank-sum test was performed on non-normal
data. For groups of 3 or more, one-way ANOVA followed
by the Tukey HSD post-hoc test was used for normal data
and the Kruskal-Wallis H-test followed by Dunn’s post-hoc
test was used for non-normal data. For all tests, a p-value of
α = 0.05 was used to determine whether to reject the null
hypothesis.

III. RESULTS

After performing hyperparameter optimization, the opti-
mized models used fine-tuning and sparse temporal sampling
across all architectures. As for ordinal regression, the SlowFast
and MViT architectures used CORAL and the MaskFeat
architecture used CORN.

The average performance metrics achieved by the optimized
models can be found in Table III. All reported results are from
models trained with 5 classes and evaluated using LOSO-CV,
except where noted otherwise. The differences between any
performance metric across all architectures were not statisti-
cally different from one another (p > 0.05 for all). Notably,
the SlowFast model performed statistically similar to the other
models, while also being the smallest model at 33.6 million

TABLE III
MEAN ABSOLUTE ERROR, ACCURACY, AND WEIGHTED F1 SCORE FOR

THE TOP PERFORMING MODELS OF EACH ARCHITECTURE

parameters. The SlowFast model also demonstrated an accu-
racy of 0.551, surpassing the even chance accuracy of a 5-class
classification task, 0.2, and the accuracy of only guessing the
majority class, 0.382.

Figure 3 shows the confusion matrices of the top performing
models of each architecture, normalized row-wise, across the
true labels. The values on the diagonal of the matrix can be
considered an accuracy for the respective true class label,
as they represent the proportion of the validation set for
that label that were correct predictions. All architectures had
difficulty in classifying samples with a score of 1, particularly
SlowFast, which did not make any correct predictions for that
class. The SlowFast model performed the best at predicting
scores 3-5, while showing poor performance for scores 1-2.
The MViT model demonstrated better performance at pre-
dicting scores 1, 2, and 5, but worse performance for scores
3 and 4. Notably, the MViT model showed considerably high
accuracy for predicting scores of 5.

In addition to comparing the model output to their respective
ground truth labels, we also calculated the ranked correlation
of the average GRASSP scores as an alternative evaluation
method. An average predicted GRASSP score was calculated
for each participant, by taking the mean of the model’s
aggregate task scores. Spearman’s rank correlation coefficient
between the predicted GRASSP scores and the mean and
median annotated GRASSP scores were calculated. Correla-
tion was also calculated between the predicted GRASSP scores
and the participant’s UEMS. The correlation coefficients and
p-values can be found in Table IV.

Figure 4 shows the comparative performances between con-
solidating classes on the model-level, retroactively, and the
5-class implementation, across the three architectures. There
were no statistical differences between the two class consoli-
dation methods, in all cases (p > 0.05). Both consolidation
methods demonstrated statistically significant improvements
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TABLE IV
SPEARMAN’S RANK CORRELATION COEFFICIENT BETWEEN THE

AVERAGE PREDICTED GRASSP SCORES FOR EACH ARCHITECTURE

(ROWS) AND ANNOTATED/MEASURED HAND FUNCTION

ASSESSMENT SCORES (COLUMNS)

Fig. 4. Accuracy, MAE, and weighted F1 score for each class consol-
idation method, including the 5-class implementation, and architecture.
∗ p < 0.05, ∗∗ p < 0.01.

Fig. 5. Distribution of performance metrics across participants, using
LOSO-CV.

to model performance, compared to the 5-class case. All
improvements demonstrated a p-value of less than 0.01, except
between the model-level consolidation and the 5-class case in
MaskFeat, which demonstrated a p-value of less than 0.05 in
all metrics. The top performing model in all metrics was
SlowFast with model-level class consolidation, demonstrating
an average accuracy, MAE, and weighted F1 score of 0.724,
0.290, and 0.733, respectively. These results surpass the even
chance accuracy of a 3-class classification task, 0.333, and the
accuracy of only guessing the majority class, 0.410.

Figure 5 shows the distribution of performance metrics
across all participants for each architecture. As seen, model
performance greatly varied between participants. SlowFast
demonstrated the widest distribution in accuracy and weighted
F1 score, ranging from 0.220-0.778 and 0.217-0.776, respec-
tively. MaskFeat saw the highest variation in MAE, ranging
from 0.296-1.22.

Figure 6 shows the average SlowFast performance metrics
of the two alternative cross validation methods (LOBO-CV
and LOTO-CV), as well as the default cross validation
method (LOSO-CV). There were no significant differences
found between the average performance of LOSO-CV and
LOBO-CV in all metrics (p > 0.05). LOTO-CV was found

Fig. 6. Average SlowFast accuracy, MAE, and weighted F1 score
for each cross-validation method; leave-one-background-out cross-
validation (LOBO-CV), leave-one-task-out cross-validation (LOTO-CV),
and leave-one-subject-out cross-validation (LOSO-CV).

to have a statistically significant increase in accuracy and
weighted F1 score, as well as a decrease in MAE compared
to the other two cross validation methods.

IV. DISCUSSION

A. Model Performance
The classification performances achieved by the

highest-performing models support the hypothesis that
automated assessment of hand function quality from
egocentric videos is possible via deep learning models.
Achieving an average classification accuracy of 0.551 on
the 5-class classification task and 0.724 on the 3-class
classification task demonstrates that the model learned some
meaningful semantic representation of the egocentric video
data and was able to recognize key visual features related to
hand function quality.

The confusion matrices in Figure 3 reveal considerable
information about the differences in behavior between the
different architectures. One clear behavior of interest is the
tendency for the SlowFast and MViT models to misclassify
a score of 1 as a score of 3. Due to the class imbalance of
the dataset, it was expected that the minority classes of 1 and
5 would result in a higher misclassification rate, which was
certainly the case for the score of 1. Interestingly, the models
performed well at classifying samples with a true score of 5
–achieving higher class-specific accuracy than the score of 2,
in the case of SlowFast and MViT, despite having a lesser
representation in the dataset. This may be the result of transfer
learning: the top performing models were pretrained on data
from uninjured individuals, which would be more similar to
the samples with a score of 5.

Although the models demonstrated imbalanced class-wise
performance, the optimized models all used sparse temporal
sampling, which balanced the class distribution. However,
the class balancing was achieved through oversampling, thus
no new information was truly added to the dataset. The
underlying class distribution of the dataset is still evident
in the class-specific performance of the models, such as the
poor performance for scores of 1. These results demonstrate
the limitations of sampling-based class balancing methods
and suggest that additional egocentric video data should be
collected to effectively balance the dataset.

The results from Table IV propose an alternative evaluation
method for the models, by calculating the ranked correla-
tion between the predicted and annotated average GRASSP
scores of each participant. An advantage of this evaluation
method is that it ignores the numerical difference between the
scores. This is desirable, as the difference between GRASSP
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scores does not have a numerical interpretation – there is no
meaningful interpretation of whether the difference between
GRASSP scores 1 and 2 is greater or less than the difference
between scores 3 and 4. The MAE is flawed in this way, as it
treats all errors as numerically equivalent. Accuracy and F1
score similarly do not necessarily capture the full behavior
of the models, as they only evaluate predictive performance.
Yet, predictive performance is not the only desirable prop-
erty of these models. For instance, concurrence with other
validated outcome measures is also a desirable property. The
predicted average GRASSP scores demonstrated correlation
coefficients with UEMS ranging from 0.560-0.709, which can
be considered as moderate to good concurrence [36]. The
predicted average GRASSP scores also demonstrated corre-
lation coefficients with the mean and median annotated scores
ranging from 0.824-0.846 and 0.841-0.872, respectively, which
are considered as good to excellent concurrence [36]. These
results suggest that model outputs could potentially be used
to develop an outcome measure that is independent from
GRASSP. It should be noted, however, that the annotated
scores are merely adapted from a validated outcome measure
and are not truly validated themselves.

The two class consolidation methods tested in Figure 4
did not demonstrate significant effects on model performance
between each other but did improve performance compared to
the 5-class classification case. The top performing consolidated
model demonstrated promising performance, with an accuracy
of 0.724 on the 3-class classification task. The boost in model
performance is likely attributed to two main factors: reduction
of bias due to a more balanced dataset and simplification
of the classification task. The lack of significant differences
between the two consolidation methods suggests that the effect
of consolidation on the model itself is minimal. The 5-class
model may be implicitly grouping the classes in a similar
manner to the consolidated scoring, thereby demonstrating
similar results between retroactive and model consolidation.
The performance of the consolidated model, compared to the
original model, suggests that the 5-class classification task is
too difficult with respect to the dataset size. Healthcare tools
generally demand strong and predictable performance in order
to be adopted in the field. Focusing on the 3-class classification
task may be warranted for future investigations.

The models exhibited their strongest performance for par-
ticipants 4 and 10. These participants have similar levels of
hand function, as their mean GRASSP scores were 3.30 and
3.79 respectively, and their UEMS were both 20. It is not
surprising that the model excelled with these participants,
as scores 3 and 4 were overrepresented in the dataset. This sug-
gests that additional data for the remaining scores may result
in similarly strong performances for the other participants.
Conversely, the models exhibited their worst performance for
participants 14 and 16. Their mean GRASSP scores were
2.42 and 4.34, and their UEMS were 16 and 20, respectively.
Again, it appears that the model predictably performs worse
on validation participants who lie on the tails of the class
distribution of the dataset. These results further suggest that
future studies require more data of the minority classes in the
dataset.

The main purpose of conducting the alternative
cross-validation methods LOTO-CV and LOBO-CV was
to investigate whether the model was biased towards
particular aspects of the video data, such as objects and
backgrounds. LOTO-CV involves validating on a task that
the model has never seen before, thus demonstrating a strong
performance on LOTO-CV strongly suggests that the model
is not memorizing objects within the videos. Similarly,
LOBO-CV involves validating on a background that the
model has never seen before, thus a lack of performance
degradation suggests that the model is not memorizing
backgrounds to make its prediction.

The average performance metrics for LOTO-CV were sig-
nificantly higher than the performance when using LOSO-CV.
One main reason for this is likely due to the smaller size of the
validation set. Furthermore, the validation set’s variability was
only due to differing participants, rather than differing tasks,
making the validation task arguably easier than for LOSO-CV.

The average results of the LOBO-CV SlowFast models were
not statistically different from the LOSO-CV model’s results,
which suggests that the models are identifying visual features
that are agnostic to specific backgrounds or participants in
the dataset. This is promising for the generalizability of the
model, as the learned features may be able to generalize past
the ANS-SCI dataset used in this study.

B. Limitations and Future Work
A major limitation for this study was the size of the dataset,

as state-of-the-art video classification models are typically
trained on datasets that are orders of magnitude larger, such
as Ego4D [37], Kinetics400 [26], Something-Something v.2
[32], and AVA v2.2 [38]. A sufficient amount of data is a
critical requirement for a machine learning model to generalize
effectively – otherwise, models naturally tend to overfit to the
training data.

Class consolidation was an attempt to balance the dataset,
while simultaneously provide additional samples for each class
label. However, the 3-point scale used for consolidation has not
been formally validated, despite being derived from a validated
measure.

Another potentially limiting factor in this study was the high
variability in impaired hand postures. In uninjured individuals,
hand postures generally converge to a few commonly expected
hand postures for a given task. However, hand impairment is
highly heterogenous and can manifest into less standardized
grasping strategies, depending on level of injury, severity
of injury, and recovery profiles. As a result, impaired hand
postures often are unique for each individual, thus intro-
ducing high variability in the dataset. Figure 7 shows an
example of hand posture heterogeneity during a page flip
in the “read_book” task. Although each of the tasks in the
figure were given an adapted GRASSP score of 2, the hand
postures are unique for each participant. For instance, the four
participants all demonstrated different contact points for the
flipped page; participant 1 held the page between the index and
thumb on the left hand, participant 8 held the page between
two closed fists, participant 9 held the page between the middle
and ring fingers on the right hand, and participant 14 held
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Fig. 7. (Left to right) Participants 1, 8, 9, and 14 flipping a page
during the “read_book” task. The depicted tasks were given an adapted
GRASSP score of 2.

the page between the index and middle fingers on the right
hand. Furthermore, the book is also held steady with varying
supporting hand postures.

Due to the high variability within a single class defini-
tion, the ability to learn meaningful representations of the
video content may be compromised. The combination of
small dataset size and high intraclass variability results in a
scarcity of consistent visual features for the model to detect
and affiliate with a particular class label. This can lead the
model towards the memorization of common visual content
in the videos, such as objects and backgrounds. Although
objects and backgrounds provide valuable contextual informa-
tion about hand function, if they dominate the model’s focus,
the model consequently learns a suboptimal representation of
the video content. Ideally, the model should primarily focus
on the hands, while taking contextual clues such as objects
and backgrounds to supplement the decision making. Larger
datasets could be used in the future to train models on more
homogeneous sub-groups of individuals with similar levels
and severities of lesions, and thus more similar postures. This
approach may provide additional insights into the impact of
grasp variability on model performance.

Previous works using the ANS-SCI dataset experi-
enced similar high variability between impaired participants.
Dousty et al. found that the high variability between par-
ticipants in LOSO-CV results in non-identical distributions
between the test and validation set, which violates the critical
assumption that the test and validation distributions must be
identical in order for a machine learning model to general-
ize [20]. These findings coincide with our results, as Figure 5
also demonstrates high variability in model performance
between validation subjects.

The proposed method for automated hand function detec-
tion yielded promising results, but there are clear areas of
improvement. The end-to-end learning method used in this
study mainly relies on the loss function and propagation of the
subsequent gradients to do all the work of learning meaningful
representations of the video data. With sufficient data, this
approach may be effective, but with the limited size and
high variability of the dataset, the model may have tended to
overfit. As such, in order to work with limited data, a feature
extraction pipeline may be a more effective method, which
can guide the model towards learning the relevant aspects of
the video. There are many possibilities for the design of such
a pipeline. Recently, the Segment Anything Model (SAM)
demonstrated remarkable performance in semantic segmen-
tation of images [39]. Semantic segmentation could be used
to isolate the hands and active objects in the video scene to
direct model learning towards focusing on the hands. Another
possibility is to use a pose estimation network to obtain

postural information of the hand. Dousty et al. demonstrated
that combining postural and contextual information allowed
for strong performance in predicting hand grasp types [20].
A similar architecture may also be employed for automated
hand function assessment.

However, a major limitation of a pipeline approach is
the propagation of error. Each model in the pipeline has
an associated level of error, thus the performances of the
subsequent models are capped by the models before them.
Furthermore, one of the main advantages of egocentric video
is the capability of capturing rich contextual information,
thus segmentation approaches can omit valuable contextual
features, and thus severely mitigating this advantage.

A logical next step is to use a larger dataset representative
of hand impairments to train and validate a new model.
Previously, Bandini et al. collected over 65 hours of egocentric
video footage from individuals with cervical SCI performing
their normal daily routines at home [18]. This dataset is a very
strong candidate for future work in this field, as it can greatly
bolster the data content for training new models. However,
this dataset is much more heterogenous than the ANS-SCI
dataset, since it recorded the participants’ daily routines in
their real home environments. As such, there is much more
variability in this dataset, such as a wider breadth of tasks,
lighting conditions, backgrounds, and objects. This variability
makes annotation more costly but will aid in the development
of a model that is robust to these variations.

Due to the cost of annotation, self-supervised pretraining has
become a popular technique to initialize deep neural networks,
as it can make use of unlabeled data for pretraining. The
MaskFeat architecture leveraged self-supervised pretraining on
the Kinetics-400 dataset in an attempt to learn universally rel-
evant spatiotemporal features, but did not result in significant
improvements in this work compared to the other architec-
tures. This may be due to the domain differences between
the source and target datasets. Consequently, self-supervised
pretraining could potentially be used with the dataset above
from Bandini et al. to initialize the networks. This would
alleviate the high annotation cost due to the high variability
of the dataset, while performing novel self-supervised pre-
training on an egocentric SCI dataset. Domain adaptation is
a significant barrier that limits transfer learning from publicly
available datasets collected with uninjured individuals, thus
performing transfer learning between egocentric SCI datasets
is an interesting future direction to pursue.

Encoder-decoder architectures aim to construct a latent
representation of the data, which is agnostic to specific
labels [40]. Leveraging a latent representation of hand usage
from egocentric video to develop an independent SCI outcome
measure is an exciting and promising future direction.

V. CONCLUSION

The objective of this study was to determine whether deep
learning models are capable of extracting information about
hand function quality from egocentric video. The results
presented in this work strongly support that this notion is true.
We presented 3 modern video classification architectures, each
demonstrating acceptable performance on the novel 5-class
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and 3-class classification tasks, after hyperparameter optimiza-
tion via a guided grid search. Through further explorations,
we demonstrated that the models learned meaningful, semantic
representations of the video data, rather than simple memo-
rization of extraneous features. This work demonstrated that
computer vision models can make valuable contributions to
the future of SCI rehabilitation by enabling assessments that
are practical, relevant, and accessible.
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