
2782 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Hip-Knee Motion-Lagged Coordination Mapping
Enables Speed Adaptive Walking for

Powered Knee Prosthesis
Yang Lv , Wen Zhang, Xiaoxu Zhang , Member, IEEE, and Jian Xu

Abstract— The commonly used finite-state-machine
(FSM) impedance control for powered prostheses deploys
diverse control parameters according to different gait
phases, resulting in dozens of parameter adjustments
and possible gait phase misrecognition. In contrast,
this study presents a straightforward, continuous, and
speed-adaptive control approach based on hip-knee
motion-lagged coordination mapping (MLCM). The
mapping, featured by the motion lag, can effectively
generate the prosthetic knee’s goal gait within a second-
order polynomial. It is also verified from extensive gait
analysis that the motion lag and polynomial coefficients
evolve linearly with respect to walking speed and gait
period, promising a simple real-time deployment for
prosthesis control. Experimental validation with two
non-disabled subjects and two transfemoral amputees
wearing a prosthesis demonstrates the MLCM controller’s
ability to reduce the hip compensatory behavior, generate
biomimetic knee kinematics, stance phase time, stride
length, and hip-knee motion coordination across various
speeds. Furthermore, compared to the benchmark FSM
impedance controller, the MLCM controller reduces the
number of control parameters from 17 to 7 and avoids
misrecognition during gait phase transitions.

Index Terms— Joint coordination, motion lag, gait plan-
ning, biomimetic gait, lower-limb prosthesis.

I. INTRODUCTION

TO RESTORE the ability to walk, most lower-limb
amputees use passive prosthetic legs, which will cause

the compensatory behavior of healthy limbs [1] and cost more
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energy than healthy people. For example, when an amputee
wants to swing the prosthesis, he/she should intentionally
swing his/her residual hip joint to propel the prosthetic knee,
increasing muscle energy metabolism. This can also lead
to joint discomfort and back pain during daily usage [2].
A powered knee prosthesis can solve these problems by
driving prosthetic joints with motors instead [3]. Hence, the
question of how to drive the prosthetic joints emerges.

The most common approach is impedance control based
on finite state machine (FSM) [4], [5]. This method divides
the entire gait cycle into 4 to 5 phases according to joint
angle, angular velocity, or ground reaction force criteria and
adjusts impedance parameters for each phase. Although this
method is relatively simple to deploy, it usually involves 20 to
30 control parameters, resulting in several hours of parameter
tuning [6]. Furthermore, different finite-state machines must
be designed for various gait modes, such as variable-speed or
variable-slope motion. To reduce the time spent on parameter
tuning, researchers use reinforcement learning method [7] and
biologically-inspired parameter selection method (e.g., deter-
mining ankle impedance stiffness as a function of the user’s
body mass and ankle angle [8] or joint torques as functions
of joint angle and walking speed [9]) to determine parameters
automatically. While these methods reduce parameter tuning
efforts for specific gait phases or modes, the control parameters
still need to be switched between different gait phases and
modes. Once the gait phase is misidentified, the prosthesis
will move improperly, leading to sudden torque changes or
sometimes a fall for amputees [10]. Therefore, researchers
tried to seek a unified and continuous control method.

One way to develop a unified and continuous control method
is to construct a phase variable [11] monotonically increasing
with state variables. This phase variable can replace time over
the gait cycle, allowing us to define desired joint trajecto-
ries in an autonomous mode. This way, continuous position
control over the gait cycle can be achieved without dividing
phases. Because of its continuity, the control parameters are
significantly reduced. The most recognized phase variable, the
polar coordinate of the hip’s phase portrait [12], facilitated
amputees walking at different speeds and inclines with a
powered knee-ankle prosthesis, requiring only six control
parameter adjustments [13]. Subsequent research extended the
phase-based control to up and down stairs [14], volitional
movements like kicking the ball, and backward walking [15].
However, the continuous phase variable is assumed to increase
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monotonically at a constant rate. Sections of low thigh angular
velocity break this rule because they cause a pause in the phase
variable trajectory. Although the phase variable can be forced
to increase uniformly during these sections by segmentation,
this undoubtedly increases the complexity of constructing a
phase variable [16]. If a direct mapping relationship between
the hip and knee joints can be directly established, the
prosthetic control would be more straightforward because
constructing the phase variable can be omitted.

Our previous study [17] established a practical poly-
nomial mapping from the lagged hip angle to the knee
angle, namely MLCM (motion-lagged coordination mapping).
In simulations, we verified that MLCM enables continuous
speed-adaptive amputee walking with only two control param-
eters to adjust. However, firm modifications are still required
to promote MLCM from numerical studies to real deployment.
The first is to design a reasonable sensor layout and commu-
nication on the hardware platform to adapt the mapping flow.
The second is to provide a new model coefficient training
mode because the peak-based normalization [17] is no longer
applicable in real-time data processing. The last step is to
realize a reliable online estimation and deployment of motion
lag, especially in the scenario of speed-changing walking.

To address the above issues, this paper (1) realized an
IMU-encoder-load sensor embedded architecture to facilitate
motion sensing and gait phase cognition for the MLCM
controller, (2) modified MLCM by further associating model
coefficients with walking speed to avoid real-time data nor-
malization, and (3) selected a paradigm, including real-time
walking speed estimation and data array shifting, for online
estimation and deployment of motion lag. By solving these
three issues, the article’s most prominent contribution lies
in experimentally validating a speed-adaptive controller for
prosthetic knee joints based on hip-knee coordination map-
ping [17]. The MLCM controller is verified to reduce the hip
compensatory behavior and generate biomimetic knee kine-
matics, stance phase time, stride length, and hip-knee motion
coordination across various speeds. It also greatly reduces
the number of control parameters and avoids misrecognition
during gait phase transitions compared to the benchmark FSM
impedance controller.

The article is organized as follows. In Section. II, we begin
by introducing a newly built powered knee-ankle prosthesis.
Next, we present the control method in detail, comprising
a modified MLCM generator and a torque controller
(Section. III). The MLCM generator includes real-time
walking speed estimation and motion lag realization, which
we validate in a preliminary experiment. Then, we perform
validation experiments with two non-disabled subjects and two
transfemoral amputees wearing a prosthesis, demonstrating
the controller’s excellence in various speed tasks (Section. IV).
Furthermore, comparison with a benchmark FSM controller
reinforces the advantages of our control methodology.

II. HARDWARE SETUP

This section describes the actuation design and embedded
system of the robotic knee-ankle prosthesis used for MLCM
validation.

Fig. 1. Solidworks drawing and prototype of the powered prosthesis.

Fig. 2. Embedded system of the prosthesis.

A. Actuation Design
A powered knee-ankle prosthesis (shown in Fig. 1) is

designed and fabricated at Fudan University as a research
platform for testing the control strategies. It is tailored to match
the kinematics and dynamics required for a 170 cm, 75 kg non-
disabled person [17]. The knee and ankle joints are powered by
high-torque motors (RI80 KV75, T-motor, China). The knee
joint has a range of motion from -5◦ to 120◦ with a sustained
torque of ∼110 N·m, while the ankle joint offers a range from
-35◦ to 35◦ with a sustained torque of ∼90 N·m. The rated
torque is comparable to state-of-the-art prosthetic limbs [18].
The knee joint is actuated by a harmonic drive (CAD-20-50-
2A-GR, Harmonic Drive, Japan) with a transmission ratio of
50, while the ankle joint employs a 10 mm diameter and 5-
mm ball screw linkage transmission. The prosthesis weighs
about 4.5kg, with most components constructed from 7075-
T6 aluminum alloy and a few shafts and bearings made of
#45 steel.

B. Embedded System
As depicted in Fig. 2, the embedded system consists

of a power supply system, a control unit, and a sensing
system. A 48 V/20 Ah LiPo battery powers the control
board and the motor through a tether. To prevent voltage
overshoot, a voltage divider divides 24 V to the control
board and 48 V to the motor. The control unit integrates an
STM32F407 microprocessor (STM32F4, ST, Switzerland),
two actuators (G–MOLTWIA50/100EEOT, Elmo, Israel), and
two high-torque motors. The microprocessor calculates and
sends the current command to the actuators via CAN, which
controls the motors in a three-phase manner. During real-time
control, the microprocessor can wirelessly transmit data to
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Fig. 3. Block diagram of the process of coordination control.

a PC through UART (universal asynchronous receiver and
transmitter). The whole control loop operates at 100 Hz.

The sensing system consists of an IMU unit (MTi-630,
Xsens, Netherland) for hip angle measurement, a 6-axis
load sensor (M3713D, Sunrise Instruments, China) for ankle
force measurement, and two incremental joint encoders (RLS,
RM44D01, Slovenia) for knee and ankle joint motor angle
measurement. The IMU provides signals of 3-axis accelera-
tion, angular velocity, magnetometer, and Euler angles via a
built-in algorithm. As the IMU is mounted on the anterior
side of the thigh socket with the x-axis parallel to the ground,
the x-axis Euler angle serves as the hip angle. An averaging
filter is applied to the measured hip angle to eliminate the
fluctuation caused by heel strikes. The load sensor’s millivolt
signal is amplified to volts through a signal amplifier and
then passes through an ADC isolation module (AD7606,
China) to mitigate electromagnetic interference. Subsequently,
it communicates with the microprocessor via SPI. The signal
is further processed through a decoupling matrix to obtain
3-axis force and moment components. The joint encoders,
with an accuracy of ±0.1◦, communicate with the actuator
via a feedback cable, which transmits to the microprocessor
via CAN.

III. CONTROL METHOD

This section outlines the control strategy for the powered
knee-ankle prosthesis, as illustrated in Fig.3. The control
framework consists of an MLCM generator and a torque con-
troller. Section III-A introduces the modified model based on
MLCM established in previous research [17] and methods for
gait period and speed estimation, which are used to calculate
motion lag. We then discuss the hardware realization of motion
lag and introduce the torque controller. In Section III-B,
we conduct experiments to validate the accuracy of the speed
estimation algorithm and to train the mapping model.

A. Control Loop
1) Modified MLCM (Motion-Lagged Coordination Mapping):

In our gait model, the method of normalization has been
revised from [17]. In the previous study, the input and out-
put data are scaled to 0∼1 according to the maximum and
minimum values of the current data. However, when it comes

Fig. 4. Flowchart of the hip-knee MLCM construction.

to real-time control, the maximum and minimum values of
the angle during the current gait cycle are not available.
Thus, we determine a priori angle range based on the data
of all experimental walking speeds. The hip angle minimum
(θhip, min) and maximum (θhip, max) are set to -20 and 35◦, and
θknee, min and θknee, max to -5 and 65◦, according to maximum
and minimum values of the training dataset at various speeds.
Then, the model coefficients are expressed as functions of the
walking speed instead of constants in [17]. We also reduce
the polynomial order from 4 to 2 because this lower order
meets accuracy requirements while avoiding overfitting due
to higher order terms. First, higher-order terms can amplify
noise or jitter in the hip angle, leading to jitter in the knee
angle. Second, higher-order terms can increase variations in
gait among individuals, reducing the model’s generalization
performance. The modified model is given as follows:

θ̃knee (v, t) =

2∑
m=0

Cm (v)
(
θhip (v, t − τ)

)m
,

Cm (v) = B0m + B1mv. (1)

where v indicates the walking speed, θhip (v, t − τ) is the
scaled hip angle after translating the motion lag τ :

θhip (v, t − τ) =
2

(
θhip, meas (v, t − τ) − θhip, min

)(
θhip, max − θhip, min

) − 1, (2)

where θhip, meas is the measured hip angle. θ̃knee (v, t) denotes
the scaled knee angle derived from the mapping, which has the
following relationship with the desired knee angle θknee, des:

θ̃knee (v, t) =
2

(
θknee, des (v, t) − θknee, min

)(
θknee, max − θknee, min

) − 1. (3)

By Eqs. (2) and (3), hip and knee angles are scaled to -1∼1 to
eliminate the magnitude difference of hip and knee angle so
that the mapping parameters can be less sensitive to differences
in scale.

MLCM parameters consist of τ and Cm (v). The determi-
nation of τ follows the process shown in Fig. 4. Initially,
the hip angle is shifted backward by a candidate motion lag
(spanning from 0 to one gait period). Subsequently, the knee
angle is mapped using the least squares method with Eq. (1).
The motion lag τ is determined by maximizing the correla-
tion coefficient r

(
θ̃knee, θknee

)
between the experimental and

mapped knee angles. To determine Cm (v), we need to train
uniformly on the data for all speeds. First, we concatenate the
motion-lagged hip angles across all walking speeds to form
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the input x and assemble the corresponding knee angles to
form the output y.

x =



1 . . . 1
v1 . . . vK

θhip,v1 . . . θhip,vK

v1θhip,v1 . . . vK θhip,vK

θ2
hip,v1

. . . θ2
hip,vK

v1θ
2
hip,v1

. . . vK θ2
hip,vK



T

,

θhip,vi =


θhip

(
vi , tN − τvi + 1t

)
. . .

θhip (vi , tN )

θhip (vi , t1)
. . .

θhip
(
vi , tN − τvi

)



T

, (4)

y =
(

θknee,v1 . . . θknee,vK

)T
,

θknee,vi =
(
θknee (vi , t1) . . . θknee (vi , tN )

)
. (5)

The subscript i in vi represents the i-th of K walking speeds.
N denotes the total number of sampling points in a gait cycle,
and 1t represents the time interval between two sampling
points. The mapping parameters can be expressed as:

8 =
(

B00 B10 B01 B11 B02 B12
)T

. (6)

Using Eqs. (4)-(6), Eq. (1) can be expressed in matrix form:

y = x8. (7)

Finally, 8 can be solved by:

8 =

(
xT x

)−1
xT y. (8)

Fig. 4 illustrates the effectiveness of MLCM. Before shift-
ing the hip motion, each hip angle can be mapped to two
different knee angles. Conversely, after applying the motion
lag, each hip angle aligns with two similar knee angles.
This phenomenon explains the necessity of motion lag in the
mapping process. Nevertheless, it is impractical to determine
by iterating through all possible values in real-time control.

Interestingly, we found an alternative way to calculate τ .
According to our statistical analysis [17], τ can be expressed
as a function of walking speed v and gait period T as follows:

τ = A0 + A1vT + A2T . (9)

Here A0, A1, and A2 are obtained by fitting the experi-
mental data. Thus, in real-time control, the motion lag can
be determined once the walking speed and gait period are
estimated. The algorithms for the gait period and walking
speed estimation are detailed below.

2) Gait Period Estimation: The gait cycle is generally
defined as the interval between two heel strike moments. Heel
strike timing is commonly determined using a load sensor on
the ankle, which detects pressure changes. A heel strike is
considered to have occurred at the end of the swing phase
when Fz (the axial pressure of the load sensor) was greater
than a threshold value of Fz0(calibration value when the
prosthesis is off the ground) +50 N. Then the gait period
is calculated as follows:

Test (n) = Heelstrike (n) − Heelstrike (n − 1) . (10)

Here n denotes the n-th gait cycle. This method is suitable for
a stable gait. To prevent incorrect estimation due to unstable
gait when the participant starts and stops, we set the gait period
threshold value in the range of 0.9∼2.0 s.

3) Walking Speed Estimation: Speed estimation methods
can be divided into two categories: (1) machine learning algo-
rithms and (2) analytical algorithms based on kinematic mod-
els. Machine learning algorithms have achieved a small RMSE
of 0.070±0.007 m/s when estimating walking speed [19].
However, these data-driven algorithms require substantial
training data, abundant sensor information, and a lot of model
parameters, making online deployment challenging. In con-
trast, analytical algorithms can attain comparable estimation
accuracy while avoiding these drawbacks. For example, [20]
assumes the lower limb as an inverted pendulum model, esti-
mating speed by considering the forward movement distance
of the pendulum’s endpoint as a half-step stride length. This
method only needs one thigh-mounted IMU and finally real-
ized an RMSE of 0.036±0.021 m/s. Because of its simplicity
and accuracy, we use this approach in real-time control. In this
method, the stride, defined as the moving distance of the center
of mass (CoM) during one gait cycle, can be calculated as

xstride = 2lleg

(
sin

(
θh

max

)
+ sin

(
abs

(
θh

min

)))
. (11)

Here, lleg is the leg length of the subject, θh
max and θh

min are
the maximum and minimum hip angles in the previous gait
cycle. They are limited to 20∼35 (deg) and −25∼−10 (deg),
respectively. Dividing the stride by the estimated gait period
gives us an estimated walking speed:

vest = xstride/Test. (12)

vest is limited to 1.5∼4.5 km/h to ensure that if there is foot
scuffing, the estimated speed will be limited to a manageable
range.

4) Hardware Realization of Motion Lag: Motion lag can be
calculated by substituting the estimated gait period and speed
into Eq. (9). To implement the motion lag in real-time control,
we follow the approach in [21]. First, a float array with a
length of L is defined to store the time history of the hip
angle, namely D. At the initial control cycle, the hip signal
is written into D1. In subsequent control cycles, the data in
D1:L−1 is copied to D2:L , and then the current hip angle is
written into D1. Supposing the control frequency is fc and
the data at DL is output, the motion lag between the input
and output is given by τ = (L − 1) / fc. This motion lag can
be altered by changing L .

5) Torque Controller: By substituting the measured
motion-lagged hip angle into the MLCM, the reference knee
trajectory can be obtained. Motion control based on the
reference trajectory is realized by a torque controller, which
is formulated as follows:

Mknee = K p ·

(
θd

knee − θknee

)
+ Kd ·

(
θ̇d

knee − θ̇knee

)
,

θknee = θ M
knee/ iknee, θ̇knee = θ̇ M

knee/ iknee (13)

where θknee and θ̇knee are the angle and angular velocity of
knee prosthesis, θ M

knee and θ̇ M
knee are the joint motor angle
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measured by the encoder, iknee is the transmission ratio,
θd

knee (= θknee, des from Eq.(3)) and θ̇d
knee are the reference

angle and angular velocity obtained from MLCM. θ̇d
knee is

derived as the difference between θd
knee of the previous and

the next sampling point.

B. Model Training and Evaluation
To determine the parameters of Eq. (9) and validate the

speed estimation algorithm, we conducted gait experiments
with one healthy subject (Subject 1, 170 cm, 63 kg). The
subject walked on a treadmill with speeds varying from
2.0 km/h to 4.5 km/h in 0.5 km/h increments, each lasting two
minutes. In the first minute, a walking mode with a small stride
length was used. In the subsequent minute, a walking mode
with a large stride length was used. The subject was allowed to
self-select his stride. The choice of two distinct walking modes
was motivated by Eq. (9), which relates walking speed to stride
length and stride frequency. Thus, we aim to investigate how
stride length changes might impact speed estimation accuracy.
A motion capture system (Vicon, Oxford, UK) was utilized to
record the lower-limb kinematic data during the whole process.
Notably, there is a difference between the treadmill’s displayed
speed and the actual running belt speed. After calibration, the
corresponding values for displayed speed and actual speed
were determined as follows: 1.5 km/h (1.37 km/h), 2.0 km/h
(1.82 km/h), 2.5 km/h (2.27 km/h), 3.0 km/h (2.76 km/h),
3.5 km/h (3.19 km/h), 4.0 km/h (3.67 km/h), and 4.5 km/h
(4.13 km/h).

The above gait data with different walking speeds and stride
lengths, after averaging over at least 20 gait cycles, formed
our training dataset (7 speeds × 2 stride lengths = 14 groups).
These data were then normalized to -1 ∼ 1 by Eqs. (2) and (3)
in the manuscript. Then, motion lag was obtained for each
group of data by the way illustrated in Fig. 4. Next, these
14 groups of data with known gait periods, walking speeds,
and motion lags were stitched together via Eq. (4) and Eq. (5)
to form our input matrix (x) and output vector (y). Finally,
by applying Eq. (8), the mapping coefficients (8) can be
obtained. Their values are

8 =
(
−0.7104 0.0124 −0.8533 0.0595 1.7419 −0.0622

)T
.

For speed estimation, lleg in Eq. (11) is set to 0.88 m based
on the subject’s physical parameters. The speed estimation
errors are shown in Fig. 5. This figure shows that as the
speed increases, the estimation error first decreases and then
increases. At a speed of 2.76 km/h, the error reaches a
minimum of below 0.1 km/h, and at a speed of 4.13 km/h,
it reaches a maximum of around −0.25 km/h. At low speeds,
the estimation error of small strides is larger than that of
large strides, while the opposite is true at high speeds. But
overall, regardless of the stride length and walking speed, the
estimation errors are within an acceptable range and consistent
with those reported in [20].

Although the empirical formula for motion lag in [17] is a
function of walking speed and gait period, the previous work
did not distinguish between long and short gait periods (large
and small strides) at the same walking speed and calculated
the motion lag separately. Therefore, we refitted the empirical

Fig. 5. Error of speed estimation.

formula for motion lag based on the data of Subject 1. The
parameters in Eq. (9) are refitted as: A0 = 0.2681, A1 =

−0.0310, A2 = 0.1077. It is worth noting that if we unify the
units and substitute vT in Eq. (9) to xstride, the equation can
be written as:

τ = 0.2681 − 0.1116 · xstride + 0.1077 · T . (14)

We can see clearly the physical significance of motion lag from
Eq.(14). Based on a baseline motion lag (A0), the motion lag
decreases with increasing stride length and increases with a
longer gait period. In Section IV-A, we will further discover
that the baseline motion lag is adjustable for different people.

IV. EXPERIMENTS

This section describes the experimental protocol and results
with speed adaptive walking of two non-disabled subjects
and two transfemoral amputees wearing the powered knee
prosthesis. An FSM-based impedance controller (FSMIC) is
also proposed to benchmark the MLCM-based coordination
controller (see Section S. II in Supplementary for details). This
study was reviewed and approved by the Ethics Committee of
Fudan University (No. FE23262I). The aims and details of the
protocol were fully explained to the subjects with the signing
of written informed consent.

A. Experiment Protocol
Two non-disabled subjects and two transfemoral amputees

participated in this experiment, with the first non-disabled
subject (Subject 1) being the same participant in Section III-B
and the second non-disabled subject (Subject 2, 165 cm, 70 kg)
serving for cross-validation. Each non-disabled subject was
fit with the prosthesis using a leg bypass adapter (Fig. 6(a)).
The physical parameters of two amputees (Subject 3 and 4)
are shown in Table I. Three sets of experiments were con-
ducted with each of the two control methods. The first set of
experiments consisted of five round trips on a 3 m walkway
without handrails. The amputees did not participate in the first
set of experiments, because they were off the handrails while
they were on the treadmill. The second set of experiments
involved walking on a treadmill at several steady speeds for
one minute each. Subject 1 completed walks at 1.82, 2.27,
2.76, 3.19, 3.67, and 4.13 km/h, while Subject 2 did not
perform the 4.13 km/h walk as it was beyond his tolerance.
Subject 3 completed walking at 2.0, 2.5, 3.0, and 3.5 km/h
with the MLCMC and reached a maximum of 3.0km/h with
the FSMIC. Subject 4 reached a maximum of 4.0 km/h with
both controllers. The third set of experiments involved walking
on a treadmill at variable speeds, increasing from 0 to the
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Fig. 6. Snapshots of (a) the non-disabled subject and (b) the amputee
walking with the powered knee prosthesis. A shoe lift is added under the
healthy foot to equalize leg lengths.

TABLE I
THE PHYSICAL PARAMETERS OF AMPUTEES

customed maximum speed and then decreasing back to 0 km/h,
with increments and decrements of 0.1 km/h per second. The
non-disabled subjects both used handrails because it is hard to
stay stable with a 10-cm-high shoe lift (Fig. 6(a)), while both
amputees were off the handrails. A motion capture system
(Vicon, Oxford, UK) was utilized to record the lower-limb
kinematic data during the whole process. The STM32 sended
the sensing information and estimates of the MLCMC to the
computer at 100Hz through UART. It should be noted that
before each experiment started, the subjects’ prosthesis was
held upright off the ground for 5 seconds to set the initial
values of the IMU angle and the axial force to 0.

The knee controller for all subjects used the mapping
model described in Section III-A, and mapping coefficients in
Section III-B, with some individualized adjustments. The cus-
tomizable parameters are the hip and knee maxima (θhip, min,
θhip, max, θknee, min, and θknee, max in Eqs.(2) and (3)), the
baseline motion lag (A0 in Eq.(9)), and the leg length
(lleg in Eq.(11)). Take Subject 3 as an example. The hip
minimum was adjusted from -20◦ to -25◦ to accommodate
his hip range of motion. A0 was modified from 0.2681 to
0.25 to improve his comfort by reducing motion lag. The
leg length was set to 0.805 m based on measurements. These
adjustments demonstrated that while the mapping coefficients
remain constant, refining the normalization range and baseline
motion lag enhances the model’s applicability to a broader
range of amputees. Table II shows the values of customizable

TABLE II
CUSTOMIZABLE PARAMETERS FOR EACH SUBJECT

parameters for each subject. In addition to the measured lleg,
7 parameters need to be individually adjusted for each subject.
Except for Kp and Kd, All the parameters have a clear
physical meaning and remain constants throughout the gait.
Thus, they required less time to adjust compared to FSMIC.
A detailed tuning process of K p (unit: Nm/deg.) and Kd (unit:
Nm/(deg./s)) is introduced in Section S.I of Supplementary.

The ankle joint is controlled by a benchmark FSM-based
impedance controller (see Section S.II in Supplementary for
details) for non-disabled subjects and fixed to 0 degrees for
transfemoral amputees. All amputee participants agreed that
active control of the ankle joint is less important than knee
joint control when walking on flat ground. They even felt
that a passive elastic carbon-fiber foot would improve their
walking comfort. Considering the practical needs of amputees,
the active control of the ankle joint is disregarded currently.

B. Experiment Results
1) Walking Without Handrails: Both controllers can realize

walking without handrails at a slow speed, as seen in the
supplementary video. When walking on a treadmill, it is
possible to walk without handrails at 1.82 or 2.27 km/h.
Handrails are necessary at faster speeds for two reasons.
One is because the healthy limb wears a shoe lift of about
12 cm, making the subject possibly fall or get injured at fast
speeds. Another reason is attributed to the large weight of the
prosthesis (about 4.5 kg in total), which leads to difficulties
for the residual limb in lifting the prosthesis quickly without
the help of handrails.

2) Steady-Speed Walking: MLCMC outperforms FSMIC in
capturing lower limb kinematics changes with varying walking
speeds. Fig. 7 shows that as speed increases, both non-disabled
subject and intact limbs of amputee subject exhibit larger
hip and knee swing amplitudes and enhanced flexion in
response to heel strike impact. The FSMIC cannot adapt to
the variation in the knee swing amplitude with walking speed
due to its fixed 60◦ equilibrium position for the knee during
the backward swing. Consequently, the hip joint must fully
compensate for stride length variations caused by walking
speed. As a result, the change of hip trajectory amplitude in
FSMIC is much greater than that of non-disabled individuals,
as shown in the hip RMSE in Fig.9. In contrast, MLCM
closely mirrors the amplitude change in hip trajectory with
walking speed observed in non-disabled individuals, thanks
to the knee’s increasing maximum angle and advanced swing
phase with walking speed.
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Fig. 7. The average kinematic trajectories generated by both controllers across varying treadmill speeds over 20 stabilized gait cycles for
(a) Subject1 and (b) Subject4. Reference non-disabled trajectories for Subject 1 are obtained from the experiment in Section III-B. The gait cycle
begins and ends with two heel strike moments. Roughly, the initial 60% of the gait cycle represents the stance phase, while the subsequent 40%
corresponds to the swing phase. The black arrows represent the trend of the maximum knee angle as the walking speed increases.

Fig. 8. Percentage of stance phase versus walking speed for
(a) Subject 1 and (b) Subject 2. Error bars indicate ±1 standard
deviation over at least 20 periods, with the shaded region representing
the range enclosed by ±1 standard deviation. “non-disabled_SS” refers
to non-disabled data without a prosthesis with a small stride, while
“non-disabled_LS” represents that with a large stride. “MLCMC” and
“FSMIC” denote actual stance phase percentages during prosthetic
ambulation with different controllers.

MLCMC excels at capturing phase changes in variable
speed motion compared to FSMIC. In Fig. 8, it is evident
that as speed increases, both non-disabled subjects exhibit a
decreased percentage of stance phase. While both controllers
show this trend, MLCMC’s stance phase percentage closely
aligns with that of healthy individuals, particularly at lower
walking speeds. This suggests that MLCMC offers enhanced
stability during the stance phase, promoting an increased
duration of the stance phase by subjects. However, there is an
issue of an early leg swing for MLCMC at 3.67 and 4.13 km/h
in Subject 1’s results. This discrepancy may be attributed to

the recalibration of the initial IMU angle in the experiments
at these speeds.

We employed RMSE to quantify the similarity of the hip
and knee trajectories obtained by the two controllers to those
of non-disabled individuals or intact limbs (Fig. 9). MLCMC
significantly reduces the compensatory behavior of hip joint,
resulting in a smaller hip RMSE for all subjects. While
MLCMC demonstrated a lower knee RMSE for almost all
gaits of Subjects 1 and 2, it achieved exactly the opposite result
on Subjects 3 and 4. One of the reasons for this may be that
the motion lag of the MLCMC was not tuned to be optimal,
resulting in a gap of several time points between the moment
of emergence of the maximal value of the prosthetic knee and
the healthy side. On the other hand, it is possible that the nor-
malization factor of the mapping was not tuned to be optimal,
resulting in the amplitude of the prosthetic knee being slightly
smaller than that of the healthy limb. Nevertheless, considering
the substantial reduction of hip RMSE compared to FSMIC,
MLCMC has better overall gait consistency than FSMIC.

We also compared the stride length of both controllers (see
Fig. 10). Among all the subjects, stride length increases with
speed, a trend observed in both controllers. MLCMC’s
variation in stride length closely resembles that of
non-disabled individuals (Fig. 10(a) and (c)). MLCMC adjusts
stride length for stability at different speeds, while FSMIC
consistently exhibits longer strides due to excessive hip swing,
leading to instability and risk of falls. Notably, the stride
length difference for Subject 4 is small because his FSMIC
parameters were adjusted to facilitate a smoother backward
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Fig. 9. The averaged RMSE of both controllers in observed kinematics
relative to non-disabled walking data over 20 stabilized gait cycles for
(a) Subject 1, (b) Subject 2, (c) Subject 3 and (d) Subject 4. Solid
bars indicate the RMSE between observed kinematics and non-disabled
kinematics with a small stride, while striped bars represent the RMSE
between observed and non-disabled kinematics with a large stride.

swing (see Supplementary for details). Both controllers show
similar stride variations between the intact and prosthetic limbs
because the intact limb adjusts to maintain gait symmetry.

Fig. 10. Averaged stride length as a function of walking speed for
(a) Subject1, (b) Subject2, (c) Subject3 and (d) Subject4. Error bars rep-
resent ±1 standard deviation over at least 20 periods. ‘_SS’ represents
the non-disabled data with a small stride, while ‘_LS’ represents that with
a large stride. ‘_Intact’ represents the intact limb of the corresponding
controller.

TABLE III
THE ABSOLUTE AVERAGE ERROR OF SPEED ESTIMATION

Table III presents the averaged speed estimation errors,
which are crucial for motion lag determination. Subjects 1,
3, and 4 show a decreasing estimation error with increasing
walking speed, while Subject 2’s error fluctuates between
0.21 and 0.37 km/h, reaching a minimum of 0.09 km/h at
3.67 km/h. In addition, error fluctuations increase at higher
walking speeds for both subjects due to reduced gait sta-
bility. Using Eq. (9), with a maximum error of 0.65 km/h
and a maximum gait period of approximately 1.9 seconds
(at 1.82 km/h), the calculated motion lag deviates by only
0.03 seconds from empirical values. The error diminishes with
higher speeds because the gait period decreases as the speed
increases. Although with motion lag bias, it is interesting that
all subjects reported not feeling a significant lag in knee angle
when walking. We speculate that motion lag robustness may
benefit gait control, but now we cannot provide any more



2790 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 11. Hip and knee trajectories produced by both controllers for speed adaptive walking task of Subject1 and Subject4. The estimated speed
and motion lag by the MLCMC are also shown here to demonstrate the effectiveness of the estimation algorithm.

scientific evidence. A more in-depth theoretical analysis can
be conducted in the future.

3) Speed Adaptive Walking: Continuous variable speed
experiments highlight MLCMC’s ability to autonomously
adapt to speed changes. The kinematics results of both con-
trollers for Subject 1 and Subject 4 are shown in Fig. 11 (see
the Supplementary video for the whole walking process of all
subjects). In MLCMC results, the amplitudes and frequencies
of knee and hip motion increase synchronously with the walk-
ing speed, demonstrating good coordination. In Subject 1, the
maximum knee flexion angle changes from 41.65◦ to 61.84◦,
while the minimum hip angle shifts from −9.2◦ to −15.69◦.
For Subject 4, the maximum knee flexion angle varies from
29.35◦ to 58.43◦, and the minimum hip angle transforms from
−8.80 to −20.26◦. In contrast, FSMIC’s fixed impedance
parameters prevent the knee joint from adjusting amplitude,
resulting in significant amplitude variations in the hip joint
during variable speed walking. In Subjects 1 and Subject 4,
the minimum hip angles at maximum walking speed reach
−29.91◦ and −23.12◦, respectively, demonstrating an increase
of 35% and 14%, compared to the values obtained with
MLCMC. This compensatory behavior requires more effort
from the participants when changing speed. Additionally,

in the final seconds of Subject 2’s deceleration and the initial
seconds of Subject 3’s acceleration, a failure occurs during
the knee’s transition to the swing phase (see Supplementary
video), indicating a misrecognition issue with FSMIC. The
comparison between the two controllers demonstrates that
inter-joint coordination in knee control can result in a more
natural gait.

The trend of motion lag with walking speed is accurately
estimated. Since the gait period, walking speed, and motion
lag are updated once per cycle, these three parameters vary
in a stepwise manner on the time scale. Fig. 11 demonstrate
that the gait period varies continuously during acceleration
and exhibits step-like shifts during deceleration. This suggests
that the prosthesis increases the step frequency for acceleration
and reduces the step length for deceleration. Thanks to motion
lag estimation accounting for both the step frequency (the
reciprocal of the gait period) and stride length (walking
speed × gait period), the MLCMC controller is suitable for
both walking modes and realizes smooth switching.

The results for Subject4 in Fig.11 included a standstill to
demonstrate that the MLCMC also supports start-to-walk and
sudden stops. Note that at the beginning and end of MLCMC
walking, there are two instances of misestimating walking
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speed, gait period, and motion lag. When the subjects did
not start walking or suddenly stop, the estimated speed was
approximately 3.3 km/h. This is because θh

max and θh
min in

Eq. (11) and gait period were all set to the limit values
(20◦ for θh

max, -10◦ for θh
min, and 0.9 s for the gait period,

according to Section III-A.3 and III-A.4) since they cannot be
updated correctly while standing still. Although this resulted
in an inaccurate estimation of the motion lag, the mapped
knee angle remained essentially constant since the hip angle
did not change significantly after stopping. Consequently, the
prosthesis can be maintained in an upright position immedi-
ately after a sudden stop. The same applied to the transition
from standing to walking. When starting to walk slowly from a
standing position, the knee joint can keep up with the hip joint
movement. However, it cannot keep up if the speed changes
too rapidly.

V. DISCUSSION

A. Advantages of the Coordination Control Method
This study presented a hip-knee-coordination-based con-

troller for the powered knee prosthesis that can autonomously
adapt its performance across a wide range of walking speeds,
verifying the feasibility of the MLCM proposed in [17].
The experiments involved four subjects, with the mapping
trained using Subject 1’s data and successfully applied to all
subjects. All subjects reported that MLCMC enhances walking
smoothness and efficiency. For Subject 1, MLCMC outper-
formed FSMIC in aspects of hip kinematic error, stance phase
percentage, and stride length. Subjects 2, 3, and 4, which were
cross-validated, also experienced better results with MLCMC
in these aspects. As a result, all subjects found walking with
MLCMC easier than with FSMIC. In the future, we will apply
this method to more amputees to affirm the possibility of
generalizing our mapping to a broader population, as stated
in [17].

MLCMC significantly reduces control parameters compared
to traditional FSMIC, thereby greatly reducing configuration
time for prosthesis users. FSMIC has 17 control parameters for
the knee joint, whereas MLCMC has only 7. The adjustment
of impedance parameters in FSMIC, influenced by various gait
phase classification criteria and equilibrium position choices,
consumes an entire day, according to our actual experience.
Nevertheless, FSMIC does not achieve optimal walking perfor-
mance, such as the slight knee flexion in the early stance phase,
which remains insignificant. In addition, some misrecognition
of gait phases occurred in the experiments with FSMIC (see
the supplementary video for some misrecognition moments).
In contrast, MLCMC only needs to adjust appropriate Kp
and Kd, hip and knee normalization factors, and baseline
motion lag. With roughly 10 minutes of calibration, subjects
can achieve a continuous, synergistic variable-speed walking
experience.

Hip-angle-based MLCMC offers the potential for volitional
prosthesis control. In our first set of experiments walking
across a 3 m walkway, the subjects occasionally needed to take
one or two steps in place for turning. When using MLCMC,
the knee flexion remained minimal, mirroring the hip angle’s
slight movement, similar to a healthy person’s maneuvering

in place. In contrast, FSMIC causes unexpected knee swings
when the prosthesis leaves the ground because of the finite
state machine setting. MLCMC also holds promise for volun-
tary tasks such as obstacle crossing. According to [25], hip
angle extension will increase when encountering obstacles.
An increased hip extension of 40◦ will correspond to a 74◦

knee angle with MLCMC, which is enough to cross a 15 cm-
high obstacle, according to [25]. Experiments in this regard
can be explored in future research.

MLCMC can adapt walking speed by changing stride length
or stride frequency, and it is comfortable switching between
the two modes, which is closer to how a healthy person
walks. Since motion lag is a function of both gait speed and
period, different gait periods (different stride lengths) at the
same speed will result in different motion lags. Thus, the
knee trajectory can be adjusted according to the gait period
(stride length) even at the same walking speed. Therefore,
we believe that the MLCMC can be adapted to the changing
speed habits of different people, whether they choose a small
stride length to increase walking stability or a large stride
length to minimize residual limb impingement. In contrast,
the FSMIC only has the option of increasing stride length
when walking speed increases (Fig.10(a)), possibly because
the performance of the motor cannot support a faster cadence.

The introduction of motion lag in the control reduces the
need for real-time prosthesis performance. It ensures that data
delays due to filtering or communication do not affect the
control. For example, the delay in the hip angle due to average
filtering does not affect the control’s real-time performance
because it can be subtracted from the calculated motion lag
since it is definitely smaller than the motion lag.

B. Limitations of the Study

The ankle controller in this study still uses FSMIC because
we have not yet established a hip-ankle or knee-ankle map-
ping. On the other hand, for the sake of controlling variables,
the ankle controller has to be kept in line with FSMIC.
Meanwhile, amputees reported that active control of the ankle
is less important than that of the knee. Instead, they preferred
the ankle to be a passive elastic carbon-fiber foot. However,
for studying lower limb synergy, it makes sense to establish a
coordination mapping for the ankle. Unfortunately, translating
the motion lag and establishing a coordination mapping does
not work for the ankle joint, which means more inputs may be
needed to predict the ankle motion. For example, [23] employs
data from multiple past time points of the ankle and knee (or
hip) as inputs to a NARX (nonlinear autoregressive model with
exogenous inputs [24]) model to predict current ankle motion.
According to [23], using data from 19 time points can yield
an RMSE of less than 5◦. Future work can explore convex
optimization, sparse regression, or alternative approaches to
reduce model inputs and use them for ankle prosthesis control.

Due to the limitations of the experimental conditions,
heel strike moments in healthy individuals were determined
using the lowest point of the heel marker’s vertical motion,
potentially introducing a slight error in heel strike timing.
In contrast, the prosthesis’s heel strike moment is accurately
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measured via the force sensor on the ankle. The data discrep-
ancy in healthy individuals may explain why Subject 1 did not
exhibit the typical pattern of advancing the swing phase with
increasing walking speed. While this limitation may influence
the kinematic error calculations, it does not impact the rest of
the analysis.

The accuracy of the walking speed estimation algorithm
still needs to be improved. Incorrect step speed estimation can
lead to incorrect motion lag. Although the calculated error of
motion lag caused by speed estimation inaccuracies is slight,
as discussed in Table I, improving the accuracy of walking
speed estimation is still necessary for more accurate control.
Approaches to achieve this may involve constructing a more
comprehensive lower limb kinematics multilink model [16] or
adding an extra IMU sensor to the foot to estimate the walking
speed directly from the foot displacement [22].

This study has a limited number of subjects. While we
anticipate MLCM’s broader applicability, some adjustments
are necessary. For example, hip and knee angle ranges for nor-
malization may vary among individuals. Fine-tuning of motion
lag is also required based on individual usage experience.
However, the polynomial order and coefficients of MLCM
remain unchanged.

VI. CONCLUSION

This study introduced a modified hip-knee-coordination-
based controller for powered knee prostheses, showcasing
its autonomous adaptability across a wide range of walking
speeds, thereby confirming the feasibility of MLCM. An effec-
tive real-time motion-lag estimation algorithm was proposed
to adapt to the variation in walking speed. Two non-disabled
subjects and two transfemoral amputees wearing prostheses
demonstrated MLCMC’s superiority over FSMIC in terms of
hip kinematic error, stance phase percentage, and stride length.
Compared to FSMIC, MLCMC significantly reduces control
parameters from 17 to 7, and avoids misrecognition during gait
phase transitions, providing a straightforward, continuous, and
coordinative control approach for prosthetic limbs.
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