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Neural Manifold Constraint for Spike Prediction
Models Under Behavioral Reinforcement
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Abstract— Spike prediction models effectively predict
downstream spike trains from upstream neural activity
for neural prostheses. Such prostheses could potentially
restore damaged neural communication pathways using
predicted patterns to guide electrical stimulations on
downstream. Since the ground truth of downstream neu-
ral activity is unavailable for subjects with the damage,
reinforcement learning (RL) with behavior-level rewards
becomes necessary for model training. However, existing
models do not involve any constraint on the generated
firing patterns and neglect the correlations among neural
activities. Thus, the model outputs can greatly deviate from
the natural range of neural activities, causing concerns for
clinical usage. This study proposes the neural manifold
constraint to solve this problem, shaping RL-generated
spike trains in the feature space. The constraint terms
describe the first and second order statistics of the neural
manifold estimated from neural recordings during subjects’
freely moving period. Then, the models can be optimized
within the neural manifold by behavioral reinforcement.
We test the method to predict primary motor cortex (M1)
spikes from medial prefrontal (mPFC) spikes when rats per-
form the two-lever discrimination task. Results show that
the neural activity generated by constrained models resem-
bles the real M1 recordings. Compared with models without
constraints, our approach achieves similar behavioral suc-
cess rates, but reduces the mean squared error of neural
firing by 61%. The constraints also increase the model’s
robustness across data segments and induce realistic neu-
ral correlations. Our method provides a promising tool to
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restore transregional communication with high behavioral
performance and more realistic microscopic patterns.

Index Terms— Neural prostheses, neural manifold con-
straint, neural spike prediction, reinforcement learning.

I. INTRODUCTION

MALFUNCTION of neural pathways among brain
regions often results in disorders, such as Alzheimer’s

disease or spinal cord injuries. Bi-directional neural prostheses
offer a potential solution to restore functional loss. These pros-
theses record upstream neural activity and deliver electrical
stimulations to downstream cortical areas [1], [2], [3], [4].
Thus, finding proper stimulation patterns is crucial for mod-
ulating the downstream neural activity into desired states and
improving behavioral functions. A previous study proposed a
predictive model that predicted CA1 neural spike trains as
stimulation patterns from CA3 neural spike trains, thereby
facilitating human memory recall in behavioral tasks [4]. How-
ever, prevailing spike prediction models [4], [5], [6] typically
assume that the firing of downstream neurons is independently
related to the upstream neural activity. The correlations in the
downstream neural population have rarely been considered [7].

The correlation among neurons reflects the intrinsic connec-
tivity of the cortical networks and constrains the distribution
of neural firing. Besides, the limitation of single-neuron firing
rates also restricts the range of neural activities. As a result,
the neural population activity tends to reside within a stable
subspace, called the neural manifold [8], [9], [10], [11],
[12]. Such a manifold can constrain the adaptation of neural
activities during the subject’s learning process. Sadtler et al.
[9] designed a brain-machine interface (BMI) that mapped the
neural population activity of animals into cursor velocities.
They found that the subjects quickly learned to control the cur-
sor using neural patterns within an intrinsic low-dimensional
subspace, and were less able to learn when required to use
neural patterns outside the subspace. These findings suggest
that the neural manifold is an essential feature of the neural
population activity that must be considered in spike prediction
models for cortical stimulation.

The demand for introducing the neural manifold into spike
prediction becomes more urgent when the neural pathway
is abnormal. Given the disorders, downstream recordings for
specific behavioral outputs would be limited or unavailable
for supervised learning (SL)-based model training. Recently,
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a reinforcement learning (RL) method [13] trained artificial
neural networks (ANNs) for spike generation by behavior-level
feedback, getting rid of the supervision from target neuron
recordings. These RL-trained models outperformed SL-trained
models in movement tasks. However, due to the lack of
constraints on single-neuron or neural population activities,
the model predictions may exhibit very high instantaneous
firing rates and quite differ from the natural recordings. These
patterns raise concerns for clinical applications, as they may
violate the intrinsic neural manifold and hinder the learning
process of the subjects. Besides, some inappropriate stimula-
tions may even be unsafe.

Previous research has utilized some constraints on model-
generated neural activities. For instance, in clinical trials,
researchers restricted the maximum number of stimulations
on each electrode channel [4]. In neuroscience, firing rates
were regularized to control the power of individual neurons
when studying neural dynamics [14], [15]. However, these
constraints are too coarse for neural population activity. In fact,
neurons can still have different correlations within the same
range of firing rates.

In this paper, we propose the neural manifold constraint
on RL-based models to generate neural population spike
trains from upstream to downstream regions. The generated
spiking activity demonstrates realistic neural correlations and
leads to behavioral success. Specifically, the constraint terms
describe the first and second order statistics of the neural
manifold, which is estimated from neural recordings during
the freely moving period with principal component analysis
(PCA). We derive the constrained policy gradient method for
reward-guided model training, which simultaneously restricts
the predicted firing probabilities within the neural manifold
and reinforces the spike patterns leading to behavioral
rewards. The proposed method is evaluated on data collected
from two male Sprague Dawley (SD) rats during a two-lever
discrimination task. As our contribution is to propose a novel
algorithm for neural spike prediction, multiple data segments
from two subjects are statistically sufficient to validate the
algorithm performance [16], [17], [18]. We train the neural
spike prediction models to predict the neural activities from
the medial prefrontal cortex (mPFC) to the primary motor
cortex (M1), both actively participating in the behavioral
task. Results are compared between the models trained with
or without the constraint terms. The rest of the paper is
organized as follows. Section II introduces the data collection
and preprocessing, the proposed constraint method, and
the spike prediction model. Section III presents the model
training results and compares models with or without the
constraint. Section IV concludes this paper.

II. METHODS

A. Behavioral Experiments and Data Preprocessing
The experiments presented in this paper were conducted

at the Hong Kong University of Science and Technology
(HKUST). All animal-handling procedures were approved by
the Animal Ethics Committee of HKUST. Two male SD rats,
well-trained in a two-lever discrimination task [5], were used
for data collection. The task required the rats to make choices

and press one of the two levers in response to a random
sequence of audio start cues in two different pitches. If the
rat pressed and held the correct lever for 500 ms, it would
hear a feedback cue in the same pitch as the start cue and
be rewarded with water for this successful trial. Pressing the
wrong lever or early releasing led to a failed trial with no
audio feedback or water reward. The start cue for the coming
trial would be given 4-7 seconds after the previous trial ended.

Neural spiking activities from the mPFC and M1 areas of
each rat were recorded during the behavioral task by Plexon
(Plexon Inc., Dallas, TX). The timing of all the cues and
pressing events was recorded by the behavioral recording
system (Lafayette Instrument, USA) and synchronized with
neural signals. The recorded neural signals were sorted offline
to obtain spike trains for single units and binned by 10 ms [5].
To reduce the output dimension of spike prediction models,
we selected M1 neurons closely related to the task by finding
a minimum set to reconstruct the rats’ behavior [13], [19]. All
recorded mPFC neurons are used as model inputs to preserve
as much as the information related to M1 neural activities
and the behavioral task. For Rat A, 17 mPFC neurons were
recorded, and nine M1 neurons were selected from 26 recorded
neurons. For Rat B, there were 24 recorded mPFC neurons
and seven selected M1 neurons out of 12 recorded neurons.
For both rats, the recordings contained about 100 successful
trials for the low lever and another 100 successful trials for
the high lever in an over 40-minute session. These successful
trials are preserved for training and testing the transregional
prediction model. We randomly shuffle these trials by indexes
and split them into five folds to run a five-fold cross-validation.
The spike trains of the recorded mPFC neurons serve as the
input of spike prediction models to generate spike trains of
the selected M1 neurons.

The neural manifold is estimated on a freely moving period,
defined as the duration when rats moved around in the
behavioral box and did not perform the task. Such a manifold
can reflect the background neural firing and is not specific to
our designed task. This is critical for disordered subjects with
lesions on the neural pathway. Although the subject may fail
in behavioral tasks and cannot provide ideal recordings for
supervised model training, we can always infer the manifold
from these background firings of downstream neurons. Firstly,
we smooth the spike trains of the selected M1 neurons with
a Gaussian kernel (100 ms standard deviation) to obtain the
firing probabilities at each time bin. Then, we extract the latent
neural manifold by PCA [20], [21] on the firing probabilities
during the freely moving period. This process is a linear
projection from the original neural activities to orthogonal,
zero-mean principal components (PCs). These PCs define a
series of latent variables that reflect statistical features of the
neural manifold and are used for designing the constraint terms
for the spike generation model based on the reinforcement
from behavioral rewards.

B. Behavioral Reinforcement Under the Neural Manifold
Constraint

The overall goal of our method is to generate functional
neural spike patterns of the M1 neurons from mPFC spike
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trains. The generated spike patterns are expected to lead to the
desired behavioral movements and fall within the neural man-
ifold. Intuitively, the neural manifold constraint is designed in
such a principle that the firing probabilities predicted from the
models maintain the statistics on each PC as the targeted neural
data. Here, we focus on the first and the second order statistics,
i.e., the mean and the variance. Given that the neural manifold
estimated from the freely moving period has zero mean and
σn variance on the nth PC dimension, the RL problem under
the neural manifold constraint is formalized as

max J (θ) ≜
∑

k
E yk∼ pk (θ)Gk, (1)

subject to µ (ln) = 0, (2)
var (ln) ≤ unσn, n = {1, . . . , N } , (3)

where N is the number of the M1 neurons, as well as the
number of PCs. The objective function J (θ) is the sum of the
expected discounted return, Gk , for the spike trains y follow-
ing the Bernoulli process defined by firing probabilities p (θ)

[13], where θ represents the weights of the spike generation
model (see section C). Gk is defined as

∑D−1
t=0 ηt Rk+t , where

η is the discounted factor, and Rt is the instantaneous reward
labeling whether the generated spike trains induce movements
for the trial success. The induced movements are estimated
by a decoder pretrained from each rat’s M1 recordings to the
movements. This decoder can be viewed as a proxy for the
rat’s behavioral response to the micro-stimulations [22], [23],
[24]. The µ (ln) and var (ln) represent the mean and variance
over time for the latent variable ln on the nth PC dimension.
For each time bin k, ln,k is obtained by

(
pk − m

)T Vn , where
pk ∈ RN×1 is the predicted instantaneous firing probabilities,
m ∈ RN×1 is the mean firing probabilities of the selected
M1 neurons, and Vn ∈ RN×1 is the nth column of the PCA
projection matrix. Both m and Vn are estimated from the
M1 recordings during the freely moving period, defining the
coordination and shape of the neural manifold. A relaxation
parameter un ≥ 1 is applied to the variance constraint σn ,
considering that neural firing can be more active during the
behavioral task than during the freely moving period.

Such an optimization problem with two sets of constraint
terms is solved separately. First, the mean squared error (MSE)
is a common method for equality constraints in (2). However,
in general, MSE is sensitive to outliers. In our experiment,
the prediction on spikes can be very noisy and will drift away
from the mean values during the task. Thus, we use a log-
based measurement and add it into the objective function as a
surrogate loss, combining (1) and (2) into

maxJ (θ)− γ M ( p) , (4)

where M ( p) =
∑N

n=1
∑K

k=1

(
pk,n log

(
pk,n
mn

)
+(

1− pk,n
)

log
(

1−pk,n
1−mn

) )
, pk,n and mn correspond to the nth

neuron of pk and m, respectively, and the hyperparameter γ

determines the strength of the constraint.
Second, for inequality constraints on variance values, it is

hard to set a constant hyperparameter manually as (4). Thus,
we introduce a set of positive Lagrangian multipliers, λn ,
to adapt the constraint strength during training. Then, the

optimization problem becomes

min − J (θ)+ γ M ( p)−
∑N

n=1
λn (unσn − Ln),

subject to λn ≥ 0, n = {1, . . . , N } , (5)

where Ln ≜ 1
2K

∑K
k=1

(
ln,k

)2 is second order statistics for the
predicted firing probabilities on the neural manifold.

We solve (5) with the Modified Differential Method of
Multipliers (MDMM) [25], which simultaneously performs
gradient descent on the model weights and gradient ascent
on the Lagrangian multipliers with a damping term controlled
by c, shown as

θ ← θ + α (∇θ J (θ)− γ∇θ M ( p)

−

∑N

n=1
((λn − c (unσn − Ln))∇θ Ln)

)
,

λn ← max (λn − β (unσn − Ln) , 0) , (6)

where α and β are learning rates. The term λn−c (unσn − Ln)

adaptively balances the learning preference between behavioral
performance and neural manifold statistics, where c is a
positive constant to reduce the oscillation during training.
Intuitively, when generated firing patterns have a large variance
on the manifold, −c (unσn − Ln) is positive, giving higher
priority to the constraint term ∇θ Ln ; otherwise, the model will
update more towards ∇θ J (θ) for behavioral performance.

The gradients on the constraint terms are derived as

∇θ M ( p)=
1
K

∑K

k=1

(
log

(
pk,n

mn

)
−log

(
1− pk,n

1− mn

))
∇θ pk,

∇θ Ln =
1
K

∑K

k=1
Vn V T

n
(

pk − m
)
∇θ pk, (7)

where ∇θ pk represents the backpropagation for the weights
of the spike generation model.

The gradient on the objective function, ∇θ J (θ), is estimated
by the policy gradient [13] as

∇θ J (θ) =
1
K

∑K

k=1
Gk∇θ log

(
P

(
yk

))
, (8)

where log
(
P

(
yk

))
is the log-likelihood of spike trains, written

as yk log pk +
(
1− yk

)
log

(
1− pk

)
. This gradient term can

be viewed as a weighted sum of the log-likelihood to guide the
model learning more from generated spike trains with higher
behavioral rewards.

C. Spike Generation Model
We use a spike-in, spike-out point process model to generate

M1 spike trains from the mPFC spike trains. The model has
the identical ANN structure as [13] for a fair comparison.
Briefly, the model first preprocesses the input spike trains into
a history ensemble and then passes it through a 2-layer fully
connected ANN. Given Nx input mPFC neurons and H past
relevant spikes, the entry in the i th row and j th column of the
input ensemble Xk ∈ RNx×H at time k is expressed as

Xk (i, j) = exp
(
−

k − ki, j

τ j

)
i = 1, . . . , H ; j = 1, . . . , Nx , (9)
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Fig. 1. Comparing the recorded and the generated neural population activities in the PCA space. a-b, The second-order moment of the
neural activities on the principal components (PCs) for Rat A and Rat B on the test set. The x-axis is the index of PCs, and the y-axis is the
second-order moment. The black, red, orange, and blue lines represent the results from the real M1 recordings during the freely moving period,
the recordings during the successful trials, the predicted M1 firing probabilities by reinforcement learning (RL) without constraint, and the model
predictions by RL with the neural manifold constraint, respectively. c-e, The distribution of Rat B’s neural population activity in subspaces spanned by
PCs. In each subspace, the two axes correspond to two PCs, and the data points correspond to the firing probabilities of the M1 neural population.
The colors of the data points have the same definition as in a-b.

where ki, j is the time index of the i th past spike of the j th

input neuron; τ j is the decay parameter for the j th neuron.
Then,

pk = Sig
(
W T

2 Sig
(
W T

1 · vec {Xk} + b1
)
+ b2

)
, (10)

yk,n ∼ Bernoulli(pk,n), (11)

where yk,n denotes the generated spike of the nth M1 neuron
at time k, and θ ≜ {W1, W2, b1, b2} are model weights in
compatible sizes. The Sig(·) is the sigmoid function, and
vec {Xk} vectorizes the ensemble Xk for model input.

III. RESULTS

We evaluate the proposed method on the multi-trial neural
data from two rats with five-fold cross-validation and compare
the model performance with the constraint to those without
any constraints. The hyperparameters related to the constraint
terms are explored for best performance. We set the learning
rate β for Lagrangian multipliers as 1 and the damping
constant c as 10. The strength of the entropy regularization
γ is explored and set as 0.005, a relatively small value to
prevent the predicted firing probabilities from fast convergence
to constant values. The relaxation parameters un are explored
on each rat, following the principle that greater un should
be given to the first few PCs to allow more space for model
exploration. For Rat A, u1 is set as 3 and un for the rest of
the PCs is set as 2. For Rat B, u1 is set as 2 and un for

the rest is 1, i.e., no relaxation on the other PCs. The other
hyperparameters unrelated to the constraint remain the same
as [13]. The maximum iteration number is 5000, while the
model weights with the best behavioral performance task on
the training batch out of all iterations are used for testing.
Each model is re-initialized 16 times, and the one with the
best performance is used for further analysis.

In the following sections, we will compare the generated
neural activity from the trained models with or without the
proposed constraint terms. Sections A and B visualize the
generated spike train in the feature space and the time domain,
respectively. Section C compares the behavioral performance
of RL models. Sections D and E discuss the advantages of
the neural manifold constraint in the model’s robustness and
functional neural connectivity, respectively.

A. Neural Manifold Constraint Shapes the Generated
Neural Activity in the PCA Space

We first examine the generated neural activities in the PCA
space. With the neural manifold constraint, we expect that the
RL model predictions have similar distributions to the real
recordings in the PCA space, while the RL model without the
constraint will have different distributions.

Fig. 1a and b compare the second-order moment of PCs
on the test set of Rat A and B, respectively. Here, the black
curves show the variances on each PC of the freely moving
period M1 recordings. Then, we project the neural population
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Fig. 2. The distribution evolvement of neural population activities during model training. We show the distribution of Rat B’s M1 neural
population activities in the subspace of the first two PCs. In each subplot, the x-axis and y-axis are the values of PCs. The red and dark red areas
correspond to the estimated distributions of recorded M1 neural activities during press and rest movements, respectively. In a-c, the light and dark
blue areas show the distribution of RL predictions with constraint during press and rest movements. In d-f, the yellow and brown areas represent the
distribution of RL predictions without constraint during press and rest movements. Specifically, in c and f, we calculate the centroids of the neural
activities during the rest or press movements for different data and label the centroids in corresponding colors. The black lines show the distances
between centroids for the same movement.

firing probabilities of real recordings (red), predictions by
RL models without constraint (orange), and predictions by
RL with constraint (blue) to the same PCA space and show
their second-order movements on each PC. The real recordings
(black and red curves) show a rapid decrease in the second-
order moment, a typical characteristic in neural recordings,
indicating that the information is primarily encoded in the low-
dimensional space. Note that the real recordings have a larger
variance than the freely moving recordings on some PCs,
especially the first PC, showing the necessity of relaxation
parameters during model training. For RL model predictions,
models with the constraint show similar second-order statistics
to the real recordings on each PC. However, RL predictions
without the constraint have different statistics in the latent
space, showing much larger power in most PC dimensions.
This suggests that these predictions do not follow the natural
patterns of M1 neural firing and may not be suitable for
potential micro-stimulations.

We further visualize the M1 firing patterns at each time bin
in the PCA space, taking Rat B as an example. In Fig. 1c-e,
each subplot shows a subspace spanned by two of the PCs.
The numbers in the brackets of axis labels indicate how much
variance this PC can be explained in the real recordings of
successful trials. The yellow stars show the origins of the
subspace, that is, the center of the estimated neural manifold.
The dashed ellipses show the range of the neural manifold
constraint, whose semi-major and semi-minor axes are defined
by 3unσn for each PCs. It can be observed that data points
from real recordings (red) scatter around the center of the
neural manifold. However, the predictions of RL without
constraint (orange) are located out of the range of the manifold

(black ellipses). By contrast, the RL model with the constraint
(blue) generates neural patterns within the neural manifold and
close to real recordings (red). In summary, Fig. 1 shows that
the RL predictions with the neural manifold constraint have
statistics similar to the real recordings. This result indicates
that the proposed method successfully shapes the distribution
of the RL-generated neural activities.

The emergence of distinct neural patterns can be observed
during model training. Fig. 2 shows how the models evolve
across different training stages. The three subplots in a row
correspond to three training stages of one model, where the
subplots a-c and d-f show the evolvement of models with and
without the constraint, respectively. In each subplot, we project
the neural firing in the test set to the space spanned by the
first two PCs, which account for approximately 70% of the
total variance of the real recordings. The “press” movement
refers to the duration from the lever being pressed to being
released, and the “rest” movement refers to the state of rats in
500ms duration before the start cue. The red and dark red areas
correspond to the distributions of neural recordings during
the press and rest movements, respectively. These areas are
estimated by smoothing the data points with a 2-D Gaussian
kernel and kept unchanged across subplots, reflecting the
neural manifold’s coordinate and range. The regions in other
colors correspond to the model predictions.

In the early stages of training (61 iterations), neither model
exhibits a clear separation in the generated neural activities.
This can be seen by the large overlap between light and
dark blue areas in Fig. 2a or yellow and brown areas in
Fig. 2d. However, the RL predictions with the constraint
(Fig. 2a) already reside within the neural manifold (red and
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Fig. 3. Comparing the instantaneous firing patterns between RL models. a, A segment real movements from the test set of Rat A. The
x-axis is the time index. The grey, purple, and green bars represent the rest, press low, and press high movements in the task, respectively. b-c,
Firing probabilities of M1 Neuron 9 and Neuron 2 of Rat A in the same segment as a. The y-axis is the firing probability. The vertical bars on the
top show the spike trains. The red, orange, and blue colors correspond to the real M1 recordings, RL predictions without the constraint, and RL
predictions with the constraint, respectively. d-e, Mutual information (d) and mean squared error (e) between the recorded and the model-predicted
firing probabilities. Each box represents the range of the metric values across the nine M1 neurons. The orange boxes correspond to the results
between RL predictions without the constraint and the recordings. The blue boxes correspond to the results between the RL predictions with the
constraint and the recordings. f-h, A segment from the test set of Rat B, showing the behavioral movements and neural activities of M1 Neuron
2 and Neuron 4. i-j, Mutual information and mean squared error results across the seven neurons of Rat B.

dark red areas). In contrast, the RL predictions without the
constraint (Fig. 2d) already deviate from the real recordings.
In the middle training stage (1501 iterations), the RL model
with constraint (Fig. 2b) keeps exploring within the neural
manifold, gradually learning to generate distinct patterns for
different movements. In contrast, the RL model without con-
straint (Fig. 2e) generates neural activities that significantly
deviate from the neural manifold. By the final stage of training,
where the models show the best behavioral performance
on train sets, the constrained model’s predictions (Fig. 2c,
4884 iterations) remain within the neural manifold, while the
unconstrained model’s predictions (Fig. 2f, 2840 iterations)
drift further away. The distances for the centroids of neural
activities between real recordings and model predictions are
also illustrated by black lines in Fig. 2c and f. The aver-
age distance (length of the black lines) for RL predictions
with the constraint is 0.08, much better than 0.26 for RL
predictions without the constraint. The same metric on Rat
A is 0.24 and 0.39 for RL predictions with or without the
constraint, where our method also performs better. Overall,
the sequential presentation in Fig. 2 provides a clear view of

the model’s evolvement during training and reveals the role
of the neural manifold constraint in generating realistic neural
patterns.

B. The Constraint Leads to Natural Instantaneous Firing
Patterns

This section compares the instantaneous neural activities
generated by RL models with or without the constraint.
We first display the behavioral movements of Rat A in Fig. 3a
and Rat B in Fig. 3f, which show the rhythmic patterns of
rats’ behavior. The following subplots illustrate the firing
probabilities and spike trains of two neurons from each rat.
Results show that the constraint can help RL models generate
more natural firing patterns in the time domain.

Firstly, the constraint can reduce the overall power of
the neural firing to a more reasonable range. For instance,
in Neuron 9 of Rat A (Fig. 3b), the predictions by RL with
constraint (blue curve) have smaller amplitude and are closer
to real recordings (red curve) than the predictions by RL
without constraint (orange curve). This observation is also
evident in Rat B’s Neuron 2 (Fig. 3g). The predictions of RL
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with constraint exhibit lower power during high firing periods
(e.g., 38-40s) than that of RL without constraint and maintain
the background firing during low firing periods (e.g., 40-42s).
These differences make the RL predictions closer to the natural
firing patterns.

Secondly, the constraint can shape the modulations of
generated neural activity. In Neuron 2 of Rat A (Fig. 3c),
the RL model fails to learn the dynamical patterns without
the constraint. In contrast, the RL model with the constraint
successfully generates modulations similar to real recordings.
A more extreme case is Rat B Neuron 4 (Fig. 3h). Here,
the neural firing generated by the RL model without the
constraint displays an inverse modulation to real recordings,
particularly evident in 38-44s and 49-51s. In contrast, the
RL model with the constraint learns the correct modulations.
This improvement might be because the neural manifold con-
straint optimizes the model with the correlation information
among M1 neural spike trains, thereby enhancing single-
neuron prediction.

Then, we statistically evaluate the differences between the
recorded and the model-predicted firing probabilities across
multiple neurons for each subject. Here, we use the mutual
information and MSE to assess the differences between gen-
erated and recorded neural activities. Mutual information
measures the relative deviation in the distribution of neural
firing, while MSE focuses on the absolute differences in
temporal patterns. The results are given in Fig. 3d-e for Rat
A and i-j for Rat B. For both rats, the mutual information
values show no significant difference between the two RL
models (two-sided, paired Wilcoxon signed rank test, p =
0.43 for Rat A and p = 0.22 for Rat B). This means that the
firing probabilities predicted by RL with or without constraint
do not likely encode information completely different from
the recordings, which contributes to explaining why both
models can accomplish the task (see Section C). However,
when it comes to the MSE between RL predictions and the
recordings, the RL models with the constraint are significantly
better than the RL models without the constraint (one-sided,
paired Wilcoxon signed rank test, p = 0.002 for Rat A and
p = 0.016 for Rat B). On average, the absolute differences
are largely reduced by 61.8% for Rat A and 59.7% for
Rat B by applying the constraint. These results statistically
show that the predicted spike trains are closer to the natural
firing in temporal patterns by introducing the neural manifold
constraint.

C. Statistical Performance in the Behavioral Tasks
We further examine the statistical behavioral performance

of the generated neural spike trains. We decode the predicted
M1 spike trains into the three movements, rest, press low, and
press high, to see if they can accomplish the behavioral task.
Specifically, we expect that the generated spike patterns are
decoded into the rest movement before the start cue, and into
the press on the correct lever after the cue. The performance
is assessed on a time-bin basis and a trial basis, as shown
in Fig. 4. The time-bin success rate is the ratio of time bins
that the decoded movements match the ground truth, with a
chance rate of 0.33 by randomly choosing one of the three

Fig. 4. Behavior-level performance across five folds. The upper and
lower subplots display the time-bin success rate and the trial success
rate of the decoded movements, respectively. Each bar represents the
mean and range of the performance on the test sets of five-folds for
each rat. The orange and blue bars represent the results from the RL
predictions with and without the constraint, respectively, and the dashed
lines label the chance rate.

movements. The trial success rate is the ratio of successful
trials (correct movement in more than 70% of the time bins
within a trial) over all trials in the test set. For trial success,
randomly choosing movements in every time bin throughout
the trial can barely accomplish the task. Thus, we simplify the
trial into a sequence with two steps, randomly selecting one
movement before the start cue and another after the cue. This
simplified task has a 0.11 chance rate of trial success.

Both RL models significantly beat the chance rate (dashed
lines). The time-bin success rates of the RL models are more
than 2.26 times the chance rate, and the trial success rates are
over 6 times the chance rate. We also notice slight performance
drops by introducing the constraint term (about 5% for the
time-bin success rate and 10% for the trial success rate). This
might be because the RL models need to explore within the
neural manifold, instead of generating extreme firing patterns
to cater to the given decoders. Overall, the RL model with the
constraint can not only generate quite similar neural patterns
on the microscopic scale, but also accomplish the task well at
the behavioral level.

D. RL Model With Constraint Shows Better Robustness
The neural manifold constraint defines a specific exploration

range in the feature space of output patterns. Thus, we antic-
ipate that the RL-generated spike trains under the constraint
will converge to similar patterns, regardless of initial states or
training data variance. In other words, the RL model with the
constraint should be more robust.

Fig. 5a-f present the spike raster and modulations of two
M1 neurons, where the first row corresponds to Neuron 4 of
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Fig. 5. Variance of neural modulations across five folds. a-c, The modulations of Rat A Neuron 4 for (a) real recordings, (b) RL predictions
without the constraint, and (c) RL predictions with the constraint. In each subplot, the left part shows the neural activity in low-lever trials, and the
right part shows the high-lever trials. For each part, the x-axis is the time index, where the first 500 ms corresponds to the neural activities before
the start cue (rest movement), and the last 500 ms corresponds to the neural activities during the low/high press movement. A gap is added in
between the two periods representing the response time of the rats. The y-axis for the raster plots on the top is the trial index, and for the bottom
plots is the firing probability. d-f, The modulations of Rat B Neuron 4 with the same layout as a-c. g-h, Statistical comparison for the time-averaged
variation of the neural modulations on Rat A and Rat B. The x-axis is the data source, and the y-axis is the averaged variations. Each box shows
the results across M1 neurons of one subject. The colors of the boxes have the same definition as a-f.

Rat A, and the second row corresponds to Neuron 4 of Rat B.
In each subplot, the raster plots show the spike trains across
multiple trials, where the five colors correspond to the five
test folds. We then calculate the peri-event firing probability
within each fold. The curves with shades under raster plots
show the mean ± standard deviation of the peri-event firing
probabilities across folds at each time bin. For real recordings
(Fig. 5a and d), the raster plots on top of each subplot display
similar firing patterns across all five folds. This results in
a small standard deviation of peri-event firing probabilities,
as shown by the narrow red shades on the bottom of each
subplot. Indeed, the neurons have stationary tuning properties
in this well-trained session. However, RL models without
constraint (Fig. 5b and e) generate markedly different firing
patterns across test folds. For instance, for the raster plots
in Fig. 5e, the generated spike trains on folds 1 (black) have
higher spike firing during the rest movement than the press
movement, i.e., negatively modulated to press. However, the
generated spike trains on fold 4 (green) display a positive
modulation to press. These differences lead to a significant
variance in the neural modulation across folds, as the orange
shade shows. In contrast, RL with constraint (Fig. 5c and f)

can generate neural firing with similar modulations and low
variance, akin to the real recordings.

Fig. 5g-h illustrate the time-averaged variation of the neural
modulations by box plots. Such an average value can be
regarded as the area of the shades on all movements and
normalized by the total time length (2000 ms) in Fig. 5a-f.
The recorded spike trains show small variations across folds,
representing the fluctuation in real neural firing. Results of
RL without constraint (orange) have much larger variations.
In contrast, the variations of RL with constraint (blue) are
significantly lower than those of RL without constraint, closer
to the fluctuation in real recordings (orange). These results
suggest that the RL models without the constraint may con-
verge to different policies depending on the training data or
initial points. The proposed constraint method substantially
reduces the uncertainty in model training, resulting in robust
predictions on microscopic neural patterns.

E. The Constraint Induces the Functional Neural
Connectivity

Functional neural connectivity is a key feature of neural
population firing, which can interpret neural adaptation and
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Fig. 6. Functional correlations among neurons. a, b, and c show the correlation matrix estimated from Rat A’s M1 spike trains of the real
recordings, RL predictions without constraint, and RL predictions with constraint, respectively. Similarly, d, e, and f show the estimated correlation
matrix of Rat B. In each subplot, the x-axis for the left/right image is the index of mPFC/M1 neurons, and the y-axis is the index of M1. The indexes
of the neurons are rearranged in the descending order of the sum of absolute CC values in real recordings.

improve neural decoding in BMI systems [26], [27]. The
neural manifold is regarded as a statical representation of
neural correlations, which results from the connectivity among
cortical networks. Therefore, we hypothesize that the neural
manifold constraint can induce functional neural connectivity
within the RL-generated neural activities.

We estimate the functional connectivity with the correlation
coefficient (CC) between the firing probabilities of two neu-
rons. Fig. 6 shows these pairwise correlations among mPFC
and M1 neural firing probabilities for Rat A (left column) and
Rat B (right column). The CC values are computed on each test
fold and averaged across five folds as the weights of the func-
tional connectivity among neurons. The firing probabilities of
mPFC neurons are smoothed from the recorded spike trains,
and the firing probabilities of M1 neurons are either smoothed
from the recordings (Fig. 6a, d) or generated by the RL
models. Within each subplot, the rectangle on the left shows
the correlations between mPFC and M1 neural activities, and
the square on the right shows the inner correlations among M1
neural activities. The red color represents positive correlations,
and the blue represents negative correlations, where a darker
color means a larger CC value and indicates a higher functional
connectivity weight.

We notice that the correlation matrix for the predictions
with constraint (Fig. 6c, f) resembles the correlation among
real recordings (Fig. 6a, d), while the predictions without
constraint (Fig. 6b, e) show different correlations. For instance,
the square matrix in Fig. 6d is mainly filled in red, showing
that all selected M1 neurons of Rat B positively correlate with
each other in recordings. In contrast, the generated neural
activities by RL models without constraint have negative
correlations among neurons, shown by the blue blocks inside
the black circle in Fig. 6e. After applying the constraint
(Fig. 6f), the correlations among M1 neurons are dominated
by positive again. Overall, the mean squared errors (MSE)
between the correlation matrices of real recordings and the

one of RL with constraint are 0.061 and 0.039 for Rat A
and Rat B, respectively, which is much better than the MSE
for RL without constraint (0.117 and 0.099 for Rat A and
Rat B, respectively). These results indicate that the proposed
constraint method can induce realistic neuronal correlations.

IV. CONCLUSION

Bi-directional neural prostheses restore the damaged neural
pathway through electrical stimulations on downstream neu-
rons. Spike prediction models that predict downstream neural
spiking activities from upstream are essential for generating
spatiotemporal stimulation patterns. When ground truth neural
firing is unavailable due to neural pathway damages, the
models can be trained using RL methods. However, previous
studies neglect the intrinsic correlations among neurons and
the constraints in neural firing patterns, thus may result in
firing patterns deviating from the natural neural activities.
Using these patterns as stimulations may hinder the subject’s
learning and cause safety concerns. In this paper, we propose
the neural manifold constraint for RL-based spike prediction
models and evaluate our method on the spike prediction
from mPFC to M1 neurons of SD rats during the two-lever
discrimination task. Results show that these novel constraint
terms successfully shape the generated neural activity into
patterns similar to real recordings. This resemblance is found
in both neural population activities and individual neurons’ fir-
ing probabilities. Compared with previous methods, the neural
manifold constraint reduces the mean squared error between
the predicted firing probabilities and the real recordings by
61%. Besides, the models with the constraint reach similar
behavioral performance as those without the constraints, but
become more robust in generated firing patterns across mul-
tiple data segments. Moreover, since the neural manifold is
a statistical representation of the connectivity among neural
populations, our constraint method ultimately induces realistic
correlations among output neurons and between input and
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output neurons. In summary, the proposed RL models with
the neural manifold constraint simultaneously achieve high
behavioral performance and better microscopic neural patterns.
Our method is an important step toward the clinical usage
of RL-based spike prediction models for generating neural
stimulation patterns.

Future research could be conducted in two aspects. Firstly,
current constraint terms only describe the spatial correlations
among neurons and are evaluated on discrete movements.
However, the temporal dynamics in neural population activities
are also critical for transregional communication functions,
especially when precisely controlling the complex limb trajec-
tories in the three-dimensional space [28], [29]. Our models
should capture these neural dynamics for continuous behavior
in real-world applications. Secondly, long-term learning may
change the neural manifold over time [30]. It is essential to
adapt to these non-stationary changes. For instance, in the
simplest case, the estimated neural manifold needs periodical
recalibration to update the constraint terms. These approaches
will lead to dynamic and adaptive spike prediction models for
neural prostheses.
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