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Wearable Technologies for Monitoring Upper
Extremity Functions During Daily Life in

Neurologically Impaired Individuals
Tommaso Proietti and Andrea Bandini

Abstract— Neurological disorders, including stroke,
spinal cord injuries, multiple sclerosis, and Parkinson’s
disease, generally lead to diminished upper extremity
(UE) function, impacting individuals’ independence and
quality of life. Traditional assessments predominantly
focus on standardized clinical tasks, offering limited
insights into real-life UE performance. In this context, this
review focuses on wearable technologies as a promising
solution to monitor UE function in neurologically impaired
individuals during daily life activities. Our primary
objective is to categorize the different sensors, review
the data collection and understand the employed data
processing approaches. After screening over 1500 papers
and including 21 studies, what comes to light is that
the majority of them involved stroke survivors, and
predominantly employed accelerometers or inertial
measurement units to collect kinematics. Most analyses in
these studies were performed offline, focusing on activity
duration and frequency as key metrics. Although wearable
technology shows potential in monitoring UE function in
real-life scenarios, it also appears that a solution combining
non-intrusiveness, lightweight design, detailed hand and
finger movement capture, contextual information, extended
recording duration, ease of use, and privacy protection
remains an elusive goal. These are critical characteristics
for a monitoring solution and researchers in the field
should try to integrate the most in future developments.
Last but not least, it stands out a growing necessity for
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a multimodal approach in capturing comprehensive data
on UE function during real-life activities to enhance the
personalization of rehabilitation strategies and ultimately
improve outcomes for these individuals.

Index Terms— Upper extremities, monitoring, wearable
technologies, rehabilitation, assistance.

I. INTRODUCTION

THE functional use of the upper extremities (UEs) is a
paramount aspect of daily life for every human being,

as it directly correlates with the ability to independently
conduct activities of daily living (ADLs) [1], [2]. Neuro-
logical disorders such as spinal cord injuries (SCI), stroke,
multiple sclerosis (MS), and Parkinson’s disease (PD) have
direct consequences on the ability to use the UEs, resulting
in reduced independence, diminished quality of life, and
limited social participation [3], [4], [5], [6]. Over the years,
various rehabilitative approaches, including technologies like
functional electrical stimulation (FES), transcutaneous spinal
cord stimulation (tSCS), and exoskeletons, in conjunction
with targeted physiotherapy and occupational therapy, have
made notable strides in improving UE function following
neurological disorders [7], [8], [9], [10], [11].

Despite significant progress in the field of rehabilitation and
assistive technologies, a substantial challenge persists. Tradi-
tional rehabilitation assessments and monitoring technologies
predominantly concentrate on evaluating the capacity domain
of UE use, as defined by the International Classification of
Functioning, Disability, and Health (ICF) framework [12].
This domain focuses on an individual’s ability to perform stan-
dardized tasks in controlled environments. However, the heart
of neurorehabilitation lies in the crucial aspect of translating
the UE function improvements observed in clinical settings
into real-life enhancements [13], [14], [15], [16]. This trans-
lation is essential for enabling individuals with neurological
impairments to achieve increased independence. To achieve
this, it is crucial to assess the performance domain of the
ICF, which gauges how individuals carry out activities in their
typical daily environment [17].

To gain a comprehensive understanding of the impact of
rehabilitative interventions on individuals with neurological
disorders affecting UE functions and to tailor rehabilitation
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strategies that enhance their independence and social partic-
ipation, it is imperative to bridge the gap between capacity
and performance evaluations [18], [19], [20]. This is where the
potential of monitoring individuals during their daily activities
becomes evident. Observing and quantifying how patients with
neurological impairments use their UEs outside of clinical
environments can provide invaluable insights for fine-tuning
rehabilitation programs, with the ultimate goal of improving
their independence and quality of life. This approach is pivotal
for crafting personalized rehabilitation strategies that address
the specific needs and challenges faced every day by these
individuals.

To achieve this goal, we stand at the crossroads of reha-
bilitation science, wearable technology, and data science. The
advent of wearable sensor technologies presents an encour-
aging opportunity to track UE usage in individuals with
neurological conditions as they go about their everyday lives.
These technologies hold the promise of revealing a wealth of
data that was previously unattainable within the limits of clin-
ical environments. Moreover, thanks to recent developments
in machine learning, this data can be efficiently processed and
conveyed to clinicians, offering valuable insights into patients’
real-life progress [21].

Within this context, this literature review focuses on the
latest advancements in wearable technologies designed to
monitor UE function in real-life, unconstrained situations
(i.e., not limited to standardized tasks), and across various
neurological conditions. By focusing on the pivotal aspect of
monitoring UEs during the unstructured activities of daily life,
we want to identify and categorize the most prevalent types
of wearable sensors employed for monitoring UE use during
daily life activities, describe the way these were used, and how
collected data was processed.

While similar previous reviews recognized the significance
of wearable sensors for telemonitoring and telerehabilitation,
they primarily focused on specific aspects (e.g., specific clin-
ical conditions, specific biological joints, specific standard
clinical assessments). For instance, Toh et al. [22] investigated
the effectiveness of wearable technologies in home-based
physical rehabilitation for stroke only, while Gopal et al. [23]
examined the use of wearables, smartphone-based, and
tablet-based apps for standardized clinical assessments of
hand function only in chronic neurological disorders. Other
reviews delved into the transition of inertial sensors from
laboratory to community settings for monitoring upper and
lower limb functions in individuals with PD [24], explored
wearable sensor data’s role in stroke rehabilitation [25], and
discussed wearable solutions in the context of MS [26]. This
field of research has seen significant progress not only in
healthcare, but also in other areas such as sports and athlete
performance monitoring. In sports, wearable sensors are used
to track and analyze the performance, health, and recovery of
athletes, showcasing the broad applicability and potential of
these technologies across diverse domains [27].

Given the increasing efforts to implement both off-the-
shelf and customized solutions, our comprehensive perspective
covering the existing literature aim to investigate the benefits
and challenges of monitoring UE use in home settings in

Fig. 1. Review flow diagrams following PRISMA standards [34].

individuals with neurological diseases, and to recognize the
importance of extending functional recovery beyond clinical
settings. Moreover, we seek to offer insights into future
research directions to researchers and practitioners alike.

II. METHODS

The review was conducted by searching major scientific
databases (Scopus, Google Scholar), using various combi-
nations of keywords related to wearable technology, upper
limb monitoring, and real-world applications. The search was
limited to English manuscripts and journal articles only.

In the initial database search covering the period until April
2023, we retrieved a total of 1,738 titles. The first screening
was performed based on the title and abstract, applying specific
inclusion and exclusion criteria. Inclusion criteria comprised:
1) fully wearable technologies (e.g. armbands or sensors
integrated into clothes), 2) upper limb monitoring (upper arms,
forearms, hands), 3) experiments conducted outside clinical
or laboratory settings (e.g. at home), and 4) the inclusion of
adult participants aged over 18, with neurological impairments.
On the contrary, we excluded studies involving healthy indi-
viduals only, non-neurological upper limb impairments (e.g.,
amputation, traumatic orthopedic conditions), papers focusing
solely on lower limb monitoring, physiological signal monitor-
ing (e.g., cardiovascular, brain, respiration), studies enrolling
children or underage individuals, and studies conducted solely
in clinical or laboratory environments. We also excluded
studies monitoring individuals via smartphone only.

In cases of uncertainty, we reviewed the full text
before making inclusion/exclusion decisions. Additionally,
we included other documents found through a manual search
of references from existing papers. Finally, 21 papers – pub-
lished between 2007 and April 2023 – met the criteria for this
review.

III. STATE OF THE ART

The included studies underwent a data extraction process
to identify key domains for categorizing the literature in this
research field. These domains were 1) the specific neuro-
logical impairments studied for monitoring the UE functions
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TABLE I
STATE OF THE ART OF WEARABLE TECHNOLOGIES TO MONITOR INDIVIDUALS WITH NEUROLOGICAL IMPAIRMENTS IN THE COMMUNITY.IMUS

WERE CONSIDERED SINGLE-MODE SENSORS (KINEMATIC DATA) DESPITE FUSING MULTIPLE SOURCES OF INFORMATION (GYROSCOPE,
ACCELEROMETER, AND MAGNETOMETER).SCI = SPINAL CORD INJURY, MS = MULTIPLE SCLEROSIS, PD = PARKINSON’S DISEASE,

EPM1 = PROGRESSIVE MYOCLONIC EPILEPSY TYPE 1, IMU = INERTIAL MEASUREMENT UNIT. ◦ = CONSECUTIVE PERIOD

(application); 2) the hardware employed for UE function
monitoring; 3) the study protocols implemented for recording
individuals with neurological impairments at home; 4) the data
processing techniques utilized to extract valuable measures
to quantify UE performance from raw out-of-clinic data; 5)
comparison and analysis between clinical evaluations and
at-home or community-based evaluations. In the subsequent
sections, we will delve into each of these five domains. Table I
and Table II detail these studies and their main characteristics.

A. Application
The distribution of cases in the reviewed studies reflects

the incident rates of the corresponding neurological diseases
that lead to UE impairments, which subsequently result in
challenges when performing daily activities at home. There-
fore, the vast majority of investigations focused on individuals
with stroke (64%). Stroke affects approximately 1 in 4 people
worldwide [28] and it is the third-leading cause of death
and disability worldwide [29]. One of the most common
consequences of stroke is UE impairment [30], which makes
it a significant area of research in the wearable technology
domain. Following, studies examining SCI constituted 18%,
MS accounted for 9%, PD and progressive myoclonic epilepsy

type 1 (EPM1) both for 1 only out of 21, all conditions affect-
ing less than 1% of the global population, according to data
sourced from the World Health Organization [31], [32], [33].
On average, the sample size was 24±16 participants per study.
Only two studies [14], [40] enrolled more than 50 participants,
while 10 out of 21 studies enrolled less than 20 individuals.
Among the studies enrolling post-stroke individuals, 31% of
studies enrolled acute or sub-acute individuals (i.e., within
8 weeks since the event). This data is particularly interesting
and in contrast with assistive technologies studies (e.g., robotic
exoskeletons), where most of the available literature is on
chronic patients [11].

All these neurological conditions present diverse challenges
to UE function. Stroke often leads to hemiparesis, spasticity,
and fine motor skill loss, impairing arm, hand, and finger
movements and hindering object manipulation during daily
activities [70]. Given these characteristics, most of the stud-
ies monitoring stroke individuals focused on understanding
the use of the impaired side compared to the healthy one
during daily life. Cervical SCI, instead, results in tetraplegia,
accompanied by spasticity, loss of hand motor function, and
sensation [71], while MS typically manifests as muscle weak-
ness and dysmetria, affecting arm and hand coordination [72].
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TABLE II
OVERVIEW OF THE METRICS EMPLOYED TO MEASURE UE PERFORMANCE, ALONG WITH DETAILS ON THE CORRELATIONS BETWEEN AT-HOME

MEASUREMENTS AND CLINICAL EVALUATIONS. N/A = INFORMATION NOT AVAILABLE OR NOT REPORTED IN THE ARTICLE; ARAT = ACTION
RESEARCH ARM TEST; BBT = BOX AND BLOCK TEST; DASH = DISABILITY OF THE ARM, SHOULDER, AND HAND; EPM1 = PROGRESSIVE
MYOCLONIC EPILEPSY TYPE 1; FMA-UE = FUGL-MEYER ASSESSMENT - UPPER EXTREMITY SUBSCALE; GRASSP = GRADED REDEFINED

ASSESSMENT OF STRENGTH SENSIBILITY AND PREHENSION; MAL = MOTOR ACTIVITY LOG; MS = MULTIPLE SCLEROSIS; PD = PARKINSON’S
DISEASE; REACH = RATING OF EVERYDAY ARM-USE IN THE COMMUNITY AND HOME; SCI = SPINAL CORD INJURY; UEMS = UPPER

EXTREMITY MOTOR SCORE; UMRS = UNIFIED MYOCLONUS RATING SCALE; UPDRS = UNIFIED PARKINSON’S DISEASE RATING

SCALE; 9-HPT = 9-HOLE PEG TEST

For these conditions, the focus was more on monitoring
participant independence and ability to perform any activities
of daily living. Finally, in PD and EPM1, attention is focused
on identifying tremors [73] and myoclonus [47], respectively,
which can disrupt daily activities by interfering with hand
interaction and object manipulation.

B. Hardware
From a hardware standpoint, the most common strategy

to monitor UE functions in individuals with neurological

impairments was the use of accelerometers and inertial mea-
surement units (IMUs), the latter generally being composed of
a 3-axis accelerometer, a 3-axis gyroscope, and – depending
on the sensors – a 3-axis magnetometer (see Figure 2). While
accelerometers are capable of measuring linear acceleration,
used for computing activity counts and duration metrics (see
Section III-D), IMUs, through sensor fusion techniques [74],
can reconstruct their pose and orientation in the 3D world,
enabling tracking of the UE kinematics. Both technologies
are widely used due to their ability to record continuously for
hours (typical runtime on batteries is around 30 days [14],
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Fig. 2. Overview of the main sensing technologies, body locations, and cumulative testing sizes for monitoring individuals with neurological
impairments in the community. Two accelerometers or inertial measurement units (IMUs, which usually include a 3-axis accelerometer and a 3-axis
gyroscope, less frequently a 3-axis magnetometer too), placed on both wrists, were the most used configuration for remote monitoring.

[35], [36], [40], [41], [45], [46], [52]), with the option
to store a limited amount of data on the device’s internal
memory (usually ranging from few MB – e.g. [35], [36],
[40], [41] – to tens of GB on modern devices [14], [45],
[46], [49], [50], [53] ). They are also user-friendly, often
integrated into textiles and communicating wirelessly with
computers. Additionally, they are cost-effective (commercial
solutions range from $300-400 for single sensors [14], [40],
[41], [46] to a few thousand dollars for full suits embed-
ding 15-20 IMUs [39]), compact (accelerometers are often
embedded in smartwatches [14], [40], [41], [46], while IMUs
are typically encapsulated in small boxes placed on the body
through velcro-straps), and lightweight (weighing within 50g
per sensor, including batteries and electronics). In the reviewed
studies, accelerometers and IMUs were generally placed on the
wrist (unilaterally [35], [49], [50] or bilaterally [14], [36], [38],
[39], [40], [41], [46], [51], [53]), forearms [39], [43], [44],
[47], upper-arms [39], [45], [52], and on the chest [39], [43],
[44], [45], [52], mostly as a reference to compensate for trunk
movements.

Only 4 out of 21 studies did not use these sensors: Ban-
dini et al. [18] and Tsai et al. [42] both used an egocentric
camera (Hero 4 or 5, GoPro, 120g including batteries, about
$400, approximately 2h battery runtime at 1080p and 30fps),
mounted on the forehead, to record activities that involved
the use of the hands during daily life; Saleh et al. [37]
manufactured conductive ink-based bending sensors integrated
into the index and middle fingers of a glove to monitor
hand movements (within $100 of costs, 48h battery runtime);
Yang et al. [48] used the TENZR, a commercial force myo-
graphy to detect the state of the hand by monitoring the
surface (i.e., skin) stiffness on the wrist musculo-tendonous
complex. Instead, in 2 studies, accelerometers/IMUs were used
in combination with other sensors. De Lucena et al. [49],

[50] embedded an IMU and four external magnetometers into
a custom wrist-watch, and used this in combination with a
magnetic ring on the index finger to track index and wrist
movements (24h battery runtime). Rissanen et al. [47] used
surface electromyography (sEMG) sensors placed on the fore-
arms of the participants in combination with accelerometers.

A few research groups designed their devices from
scratch [35], [37], [49], [50], while most of the investigations
were carried out using off-the-shelf technology (with clas-
sical suppliers as GoPro, ActiGraph, Xsens, APDM). From
a real-time data standpoint, only in one of the reviewed
papers [51] data was collected and remotely available to the
research team, and only in four of the studies [37], [49], [50],
[51] data were available in real-time to the participants as a
feedback of their performance.

Finally, it is interesting to note that most of the studies
reviewed in this work did not consider comfort and wearability
during their analysis. Saleh et al. [37] stands out as the
only study where the comfort of the monitoring device was
assessed through a custom questionnaire administered at the
end of the study. The results showed good acceptance by the
participants of their custom glove. In contrast, Kos et al. [35]
found that the wrist IMU was comfortable and well tolerated,
while the ankle one was more visible and less appreciated.
Tsai et al. [42] reported discomfort with the forehead-mounted
camera after one hour due to weight and heat, which was then
confirmed by a mixed-method study conducted on the use of
wearable cameras at home [60]. Yang et al. [48] mentioned
that their custom force myograph was uncomfortable for
two participants. All the other studies did not provide any
comments or qualitative feedback on comfort and wearability,
which are crucial aspects to characterize the performance of
monitoring devices, particularly regarding long-term usage and
user acceptance.
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Fig. 3. On the left, pie-charts with the most common clinical conditions and sensing modalities. Stroke participants wearing one or more
accelerometers or IMUs was the most common scenario. On the right, a scatter plot of population size vs monitoring duration in the 21 reviewed
papers, grouped by sensor type. The majority of the studies monitored less than 30 individuals, for less than 100 hours.

C. Study Protocol

From a study protocol point of view, most of the reviewed
work had similar characteristics. They employed a variety of
tasks to record and assess UE function, encompassing typical
daily routines and ADLs that are relevant to individuals in
their home environments. As an example, Saleh et al. [37]
investigated a broad range of activities, including household
tasks, writing, using a remote control, dressing, grooming,
working on a computer, tying shoes, and using a phone, all
performed using the impaired hand. While Rissanen et al. [47]
and De Lucena et al. [49] did not specify the types of tasks
performed, they likely incorporated activities commonly found
in a normal daily routine. Another similarity was the settings
where the recordings of upper limb activity happened. Most
of the studies took place directly within the participants’
homes [14], [18], [35], [37], [38], [40], [41], [45], [46], [47],
[48], [50], [51], [52], [53]. The importance of recording at
home lies in its ability to capture the performance domain
of the ICF, allowing for situations that closely mimic the
real-life experiences of individuals with neurological disorders
in their daily environments. These home-based settings, though
entirely unstructured and requiring a more complex hardware
integration, offer a natural and familiar environment for moni-
toring UE activities. In other studies [36], [39], [43], [44], [49],
data collection initially commenced in clinical settings before
transitioning to community-based recordings. This approach
facilitated a valuable comparison between controlled clinical
conditions and real-world home environments.

The overall recording duration and the maximum duration of
a single recording varied considerably among studies, reflect-
ing the diverse objectives and protocol designs, as well as the
different technological approaches adopted (i.e., battery life is
shorter for a camera compared to an accelerometer). Consider-
ing the total duration, some studies employed relatively short
monitoring periods, such as less than 5 hours [18], [42] and
between 5 and 10 hours [39], [44], [53]. Longer monitoring
durations were adopted in other studies, with duration over 2-3
days [35], [35], [36], [37], [38], [40], [41], [43], [45]. In [37],
part of the study was conducted for a two-week period, and a
similar duration was achieved in [46], while in [50], the study
lasted three weeks. Lastly, in [51] and [52] authors opted for
more extended 30-day monitoring periods.

Regarding the maximum single duration of a recording
session, some studies, such as Adams et al. [43] and Ris-
sanen et al. [47], conducted continuous monitoring sessions
spanning an impressive 45 and 48 hours, respectively. Simi-
larly, in [48] authors recorded data continuously for 48 hours,
only during waking hours. In [14], [35], [36], [38], [40],
and [41], the maximum duration for a single session of data
recording was 24 hours. De Lucena et al. [50] recorded data
for around 12 hours in a single session. In contrast, shorter
periods were reported in [39] (3h) and in [18] (1.5h). It is
worth noting that for some studies, the maximum duration of
a single session was not explicitly specified (e.g., [51], [52]).

D. Data Processing
As a consequence of the hardware selection, in the majority

of research papers UE performance measures were derived
from accelerometry data alone or in conjunction with other
signals, including angles [38], and angular velocity [52].
If considering IMUs as a single-mode sensing technology
(IMUs fuse data from 2-3 sources but the resulting outcome
is purely kinematic), interestingly, only in two works a mul-
timodal sensing strategy was implemenetd. In [47], authors
used data both from accelerometers and sEMG placed on
both forearms of 23 individuals with EPM1 to measure their
kinematics and muscular activity; in [49] and [50], authors
embedded in their wrist-mount device an IMU and four
magnetometers, and asked the participant to wear a magnetic
ring on the index finger: in this way, they were able to track
both wrist and index finger movements.

The majority of studies opted for an offline data analysis,
where data were only recorded and stored during the inter-
vention, while processed only after the monitoring session
has concluded [14], [18], [35], [36], [39], [40], [41], [43],
[44], [45], [46], [47], [48], [49], [52]. Interestingly, however,
a subset of studies employed real-time analysis, allowing for
immediate processing and feedback during monitoring [37],
[50], [51]. Saleh et al. [37] equipped their glove with an array
of light-emitting diodes (LED) to inform the user about the
finger flexion ROM. De Lucena et al. [50] had a screen in
their wrist-watch showing the hand movement count and hand
use intensity metrics (see below for more information), and an
emoji representing their recent performance towards their daily
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goals. Esbjornsson et al. [51], instead, in case of an imbalance
in arm movements, made their bracelets vibrate, requiring
participants to take an app-based test on their smartphone to
detect the onset of a stroke.

Regarding the measures used to quantify UE performance,
the most prevalent metrics were activity count and activity
duration. Activity count metrics encompass various measures
that quantify the number of upper limb actions during daily
life, typically expressed as the number of actions per unit of
time. Activity duration metrics, on the other hand, quantify the
duration of these activities in time units. Other less common
measures included the type of activity performed, frequency
metrics that described upper limb motion, and traditional
biomechanical measurements such as range of motion (ROM)
and muscle activity. Table II provides an overview of the types
of measures used to quantify UE performance at home or in
community settings.

Activity count was typically estimated from acceleration
data by calculating the magnitude of the raw acceleration
within a specific window length [35], [38], [51], [53]. Conse-
quently, it was essential to establish an optimal threshold for
acceleration magnitude to distinguish between functional and
non-functional movements. For example, in [53] the authors
addressed this issue by determining the optimal threshold for
both affected and non-affected arms (i.e., maximizing the area
under the curve) and subsequently trained a logistic regression
classifier to discern functional from non-functional interactions
using raw IMU data. Since recordings were often conducted
in unconstrained settings, it was necessary to filter out walking
periods by detecting lower limb accelerations through shank
accelerometers [38]. The results were typically presented as
the average counts per unit of time (e.g., per minute or hour).

Activity count was also estimated from angles using various
methods:

• Ratio of movement [37], as movement episodes detected
by applying a 2-degree threshold to identify changes in
a specific joint angle (in this case, finger flexion). The
ratio of counted samples over the entire dataset yielded
the ratio of movement values for each finger.

• Integral of individuated movement [37], a parameter
related to the mean difference in angle between two
fingers, representing individual finger movement.

• Gross arm movement identification [38], based on
forearm elevation orientation, with specific criteria for
defining gross arm movement.

Finally, less common strategies to estimate activity counts
included data from magnetic fields [49], [50], force myogra-
phy [48], and egocentric video [18].

Activity duration metrics were commonly computed from
accelerometry data, often determined by summing the seconds
in which the acceleration magnitude exceeded either zero [14]
or a predefined threshold [46]. Angular data were also used to
calculate the percentage of time spent in different elevation
bins [45], offering insights into humeral elevation angles.
Angular velocity data [44] was used to extract arm activity
data, employing the Hilbert transform and a binary threshold
to identify active arm periods. The arm activity time was then
determined according to this definition during the recording

time. Video data could also be used to calculate the average
duration of hand-object interaction, providing insights into
activity duration [18], [42].

Activity type was determined by some authors who delved
beyond quantifying the active time of the upper limbs and
considered the type of actions and activities being performed.
From accelerometry data, metrics such as bilateral magnitude
and magnitude ratio [14], [36], [40], [41], [46] were used to
assess both upper limb use. These metrics offered insights into
the intensity and contribution of each limb to daily activity
on a second-by-second basis. Mono and bilateral arm use
index [46] quantified the frequency of independent movements
in everyday activities. Use ratio [14], [36], [40], [41] measured
the total duration of activity of one limb relative to the other.
Density plots graphically represented accelerometry data from
both limbs, providing visual insights into movement patterns.
In contrast, in [52] authors employed machine learning to
estimate activity types, using a set of 13 features as predictors
in a neural network model.

Frequency measures were used to understand the type of
motion, particularly in conditions like Parkinsonism, where
tremors at specific frequencies are important predictors of
treatment efficacy. These measures included the maximum of
the acceleration power spectrum, as well as the amplitude and
frequency of rhythmic hand motion [43].

Muscle activity analysis, although less explored in this
context, due to the comfort offered by accelerometers and
IMU (especially for long recordings), is noteworthy. Rissa-
nen et al. [47] employed several measures, including sample
kurtosis, correlation dimension, recurrence rate, root-mean-
square amplitude, and burst frequency, to assess EMG signal
characteristics related to muscle activity.

E. Comparison Between Performance Metrics and
Clinical Assessments

When evaluating wearable technologies for monitoring UE
performance at home or in community settings, validation
against clinical assessments is crucial. Indeed, more than half
of the studies included a comparison of the collected data
with clinical assessment scores. Considering that most of
the reviewed studies focused on stroke, the most common
clinical evaluations were the Fugl-Meyer Assessment - Upper
Extremity subscale (FMA-UE) [64] and Action Research Arm
Test (ARAT) [65].

Yang et al. [48] found a decreased functional activity in
the affected hand in individuals with lower FMA-UE scores,
indicated by a strong negative correlation (Spearman’s correla-
tion ρ = −0.70) between FMA-UE scores and the asymmetry
index. De Lucena et al. [49] reported a positive correlation
between FMA-UE scores and hand use intensity (Pearson’s
correlation r = 0.68), with a weaker correlation for upper
extremity activity (r = 0.42). However, Pohl et al. [53] found
no significant correlation between acceleration thresholds and
FMA-UE scores. Concerning ARAT, Urbin et al. [36] observed
strong correlations with performance measures like use ratio
(ρ = 0.79) and magnitude ratio (ρ = 0.83). Waddel et al.
[41] and Lang et al. [14] both found that lower initial ARAT
scores correlated with greater potential for improvement.
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Studies using the Box and Block Test (BBT) [38] showed
moderate to high correlations with total paretic arm activity
counts (r = 0.69 to r = 0.93). De Lucena et al. [49] also found
correlations between BBT scores and both hand use intensity
(r = 0.67) and UE activity intensity (r = 0.64). Pau et al.
[46] used the BBT and 9-Hole Peg Test (9HPT) to evaluate
MS patients’ UE function. BBT scores positively correlated
with minutes of use and vector magnitude (VM) counts (r =

0.51 and r = 0.55), whereas 9HPT scores showed negative
correlations with these measures (ρ = −0.56 and ρ = −0.54),
where shorter times indicated better performance.

In individuals with cervical SCI, Bandini et al. [18] used
the Upper Extremity Motor Score (UEMS) and the graded
redefined assessment of strength sensibility and prehension
(GRASSP) [66]. They found moderate-to-strong positive cor-
relations between egocentric measures of hand use and
bilateral UEMS. Dominant hand correlations were weak-to-
moderate compared to unilateral scores, while non-dominant
hand correlations were moderate-to-strong. In PD patients,
Adams et al. [43] found that tremor time correlated with
maximal at-rest scores for both OFF and ON states (assessed
through the unified Parkinson’s disease rating scale –
UPDRS [67]). The strongest correlation was in the right hand
OFF condition (r = 0.79). Real-world tremor proportions were
strongly correlated with clinical assessments for both hands
(r = 0.88 for right; r = 0.87 for left).

Rissanen et al. [47] assessed myoclonus in EPM1 using
the unified myoclonus rating scale (UMRS) [68]. They found
that accelerometry measures had stronger correlations with
UMRS scores than EMG features. Maximum acceleration
power spectrum showed very strong correlations for both arms
(ρ = 0.90 for dominant; ρ = 0.80 for non-dominant), whereas
EMG features had moderate to strong correlations.

Lastly, Waddell et al. [40] assessed UE functions post-stroke
with the Motor Activity Log (MAL) [69], a self-report ques-
tionnaire. They discovered a moderate association between
MAL scores and use ratio at both baseline (ρ = .31) and
after intervention (ρ = 0.52).

Table II presents an overview of the metrics employed to
measure UE performance, along with details on the correla-
tions between at-home measurements and clinical evaluations.

IV. DISCUSSION

In this review, we explored the latest advancements in
wearable technologies designed for real-life and unstructured
monitoring of UE function in individuals with neurological
disorders. Our specific objectives encompassed several cru-
cial aspects, such as identifying and categorizing the most
commonly used technologies for monitoring UE function
during daily activities, as well as gaining insights into the
prevailing methods for data processing and measurement, and
investigating the types of protocols developed for conducting
such studies.

A. Stroke as the Main Monitored Condition
As in the case of other wearable technologies [11], stroke

survivors comprised the majority of the study population

(64%). This prevalence can likely be attributed to the fact
that stroke ranks as one of the leading global causes of both
mortality and disability, with UE impairments as a common
consequence. The significance of UE recovery for stroke sur-
vivors should not be understated, as regaining UE functionality
ranks among their highest rehabilitation priorities [61], [62].
This underscores the research community’s keen interest in
monitoring individuals at home to gain insights into their UE
usage during daily life. Such knowledge serves as a foundation
for developing therapies aimed at optimizing UE functions
at home, with the ultimate goal of enhancing individuals’
independence.

Notably, some of the reviewed papers extended their
focus beyond chronic cases, including acute and sub-acute
stroke survivors in their investigations. For example, Wad-
dell et al. [41] demonstrated that sensor-measured UL
performance improves in the first 12 weeks post-stroke, prov-
ing with data from unsupervised conditions the well-known
spontaneous capacity of the body to improve after stroke [58].
Lang et al. [14], instead, showed how UL performance in
daily life reached a plateau only 3-6 weeks post-stroke,
thus often before neurological impairments and functional
capacity started to stabilize. The availability of data early
after a stroke is particularly valuable as it addresses a critical
phase in patients’ recovery. Once patients are discharged
from the hospital, the progress of their rehabilitation may
become challenging to track. Having a means of observing
and understanding their performance upon returning to the
community assumes paramount importance. This monitoring
is essential for further enhancing their recovery, especially
during outpatient care, and ensures that the gains made in
the clinical setting continue to progress effectively in the real-
world context [22], [23], [24], [25], [26].

In most of the reviewed studies (12/21, 57%), authors
compared data collected in the community through wearable
monitoring technologies with clinical assessments performed
in clinics, often involving correlation analyses. This validation
process is crucial as it forms the basis for developing novel
outcome measures of UE performance that reflect real-life
hand use. In many cases, it was shown that improved UE
function according to clinical scales corresponded to increased
UE usage at home, such as heightened engagement in daily
activities. While this comparison approach has been widely
adopted (see Table II), it represents only the initial phase
in developing new outcome measures for hand function.
To achieve further validation, future studies must incorporate
these monitoring systems and metrics into longitudinal inves-
tigations, to evaluate the effectiveness of various rehabilitation
interventions over time.

B. Monitoring Kinematics Only Is Not Enough
The majority of the studies predominantly relied on IMUs

and accelerometers. These choices were motivated by user-
friendliness, extended recording capabilities spanning hours or
days, and the devices’ lightweight and affordability. Moreover,
these technologies are very mature as they are widely used
in many commercial applications beyond patient monitoring
(e.g., modern smartphones embed IMUs). Such attributes make
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IMUs and accelerometers the natural choices for studies that
require non-intrusiveness and portability to collect ecological
data. A noteworthy observation from Figure 3 is that the
studies utilizing accelerometers tended to have the largest par-
ticipant populations [14], [40], and reached a favorable balance
between expanding the number of recruited participants and
maintaining extended recording durations [46], [51]. In this
review, we excluded studies using smartphone-embedded
IMUs as a source of information, given that they are not
properly wearable devices. However, they can provide a very
user-friendly and affordable sensing solution to easily assess
a large number of individuals (see e.g., Pratap et al. who
monitored almost 500 MS individuals with this strategy [55]).

It is important to note that IMUs and accelerometers primar-
ily offer global kinematic information, which can subsequently
be processed to calculate activity metrics like counts and
durations. In fact, given the scope of this review – where
included papers monitored patients during daily life to quantify
performance – the use of activity metrics is pretty intuitive,
as the performance domain directly relates to how individuals
carry out activities in their typical environment. Yet, for a more
in-depth analysis, particularly to understand specific types of
grasps and the contextual nuances of UE functions, IMUs and
accelerometers alone may prove insufficient.

In response to this limitation, some studies have introduced
video-based approaches, capitalizing on the advantages of
recording richer information about the surrounding environ-
ment [18], [42]. This includes details such as the manipulation
area, objects, and the broader context, which aids in deci-
phering the functional aspects of hand-object interactions and
the specific activities being performed. However, it is worth
noting that wearable cameras may not be optimal for extended
recordings due to comfort issues and battery runtime [60].
Alternatively, some studies have explored the use of mag-
netic sensors to gather additional information about finger
movements [49], [50], while others have delved into EMG
recordings [47]. Magnetic sensors offer enhanced detail but
may introduce artifacts when interacting with metal objects,
while EMG, although valuable for capturing low-level muscle
activation, was not extensively examined for deciphering grasp
patterns, as already seen in other studies [59].

While this review discussed several wearable technologies
(e.g., accelerometers, IMUs, cameras, etc.), there exist other
approaches to monitoring using different strategies that were
not covered by this work (e.g., tattoo sensors [76] ). Challenges
such as robustness – in terms of sensor materials and data
cleanliness (e.g., absence of drift and low noise), especially
when used unsupervised in unconstrained environments –
along with long-term usability, still present barriers to their
adoption for monitoring UE functions at home. These issues
hinder their transition into marketable products. Despite these
obstacles, these advanced technologies hold significant poten-
tial to positively impact the field, and further validation studies
are anticipated in the near future.

In the meantime, adopting multi-modal approaches that
combine the strengths of different sensors could offer a
more comprehensive understanding. However, the majority
of the reviewed studies predominantly relied on single-mode

technologies, with only Rissanen et al. [47] implementing
a true multimodal sensing strategy by using data from both
accelerometers and sEMG placed on the forearms of 23 indi-
viduals with EPM1. The scarcity of multi-modal strategies
may be attributed to the numerous challenges that need to be
addressed when approaching multi-modal monitoring. Firstly,
data processing from multiple sensors is generally more com-
plex. Integrating data streams with different characteristics,
such as sampling rates and noise levels, requires sophistication
in calibrating the sensors, fusing, and synchronizing the data,
thus increasing the computational burden and complicating
analysis. Moreover, managing a richer dataset presents sig-
nificant storage, transfer, and processing challenges. From a
hardware standpoint, implementing multi-modal sensing often
results in larger, heavier, and more expensive setups. Integrat-
ing multiple sensors into wearable devices affects their form
factor and portability, making them less practical for daily use.
Finally, the limited number of studies exploring multi-modal
sensing in UL activity monitoring may discourage researchers
from pursuing this approach. Single-sensor technologies are
more established and easier to implement, potentially over-
shadowing the benefits of multi-modal sensing.

C. Short, Offline Recording, With Poor
Feedback to the Patients

Concerning data processing, the majority of analyses were
conducted offline. This approach may be suitable for tracking
recovery progress in neurorehabilitation, where changes and
improvements may be appreciated over weeks or months.
Reviewing wearable technologies through the lens of the
performance domain can be advantageous for telerehabilitation
techniques. Such approaches enable a direct evaluation of the
interventions’ influence on patients’ performance. Addition-
ally, they offer benefits like motivating rehabilitation efforts
and fostering a sense of accomplishment or satisfaction in
patients, who can witness the therapy’s impact on their daily
lives.

Nonetheless, real-time data analysis offers distinct advan-
tages, particularly for providing immediate feedback to
patients during telemonitoring and telerehabilitation [63]. It is
important to highlight a few articles that were excluded [54],
[56], [57]. While these studies concentrated on telerehabil-
itation and did not include monitoring ADLs, they utilized
compelling wearable methods to study the UEs at home
in people with neurological conditions. Besides, real-time
processing, with only the processed data transmitted, may
even help address privacy concerns, which is a critical issue
associated with technologies like those based on cameras [60].

When it comes to activity metrics, the most prevalent
measures focus on quantifying the duration and frequency of
activities. However, in a rehabilitation context, understanding
not only the quantity but also the context of these mea-
sures is crucial for identifying specific challenges patients
encounter during different activities. Machine learning tech-
niques, as proposed by Fortune et al. [52], have the potential
to recognize the types of activities being performed. This infor-
mation, combined with the quantity of hand use, is essential
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Fig. 4. Comparison of wearable technologies for monitoring UE function
at home in individuals with neurological impairments.

for gaining a comprehensive understanding of UE use at home,
thus quantifying the performance domain.

Furthermore, as shown in Figure 3, the duration of record-
ing sessions is typically limited to a few hours in the majority
of cases. While some of these studies often explored the
feasibility of using technology at home, it is essential to extend
the recording duration to encompass a broader range of daily
living activities typically performed by participants during
their daily routines. This ensures that the recorded behavior
in the home environment closely reflects the participants’
everyday activities. This is particularly important in light of
the findings by Waddell et al. [40] showing how self-reports
UL performance are neither consistent nor accurate with
sensor-based use assessment. A potential explanation for the
limited duration of the recordings may be attributed to wear-
ability and comfort concerns. However, as demonstrated in
Section III, almost none of the studies considered these factors
in their analyses. This presents a significant issue because
the ability to extend recording duration, aside from factors
like battery size and data storage, is closely linked to the
device’s acceptance by participants. This acceptance, in turn,
is correlated with factors such as comfort, appearance, and
weight. Adding analysis of these parameters, for instance via
surveys or mixed method studies [37], [60], is crucial and
should be targeted in future works. One potential cause of
this gap is that most of the studies utilized commercially
available devices (such as the Motionlogger, the Link, or the
GT3X accelerometers by Actigraph, the BioStampRC IMUs
by MC10, the Emerald or the Opal IMUs by APDM, the Xsens
IMUs suit by Movella, or the Hero 4 and 5 cameras by GoPro),
potentially considering comfort outside their scope and relying
on the manufacturer. However, this approach may be limited,
and highlighting comfort and wearability in monitoring studies
remains fundamental to understanding our current stance on
this specific topic.

D. Final Remarks and Future Directions
The results of this literature review underscore the growing

significance of monitoring UE performance remotely in the

neurorehabilitation field, with the majority of the research
conducted in this domain emerging over the past 15 years,
and a notable surge in the last three years. This trend can
be attributed to the increasing accessibility and affordabil-
ity of off-the-shelf technologies, facilitating the recording of
extended periods of unconstrained activities in the community.
The potential unlocked by this capability is indeed promis-
ing, offering the opportunity to tailor rehabilitation strategies
to better suit individuals’ specific needs within their daily
lives.

However, it is crucial for researchers to consider several key
aspects while pursuing these opportunities. Firstly, ensuring
device usability is essential, as these technologies are intended
for use by non-expert individuals in their home environments.
This user-friendliness is vital to guarantee the quality of
the recorded data. Secondly, it is essential to consider the
potential challenges associated with attaching sensors to their
arms and hands, as this may impact how they perform daily
activities. Thirdly, privacy concerns may arise from monitoring
individuals in their homes, especially in the case of video
monitoring, and this must be addressed. In considering the
future directions of wearable technology for monitoring UL
function, several key considerations emerge, each essential for
advancing the field and addressing the diverse needs of users.

1) Non-intrusive and Lightweight Design. It is paramount
to ensure the wearables to be non-intrusive and lightweight,
as they must seamlessly integrate into users’ daily lives,
minimizing discomfort and inconvenience. Examples of such
devices include wristbands or sensors embedded within cloth-
ing. Prioritizing comfort and ease of use facilitates continuous
wear over extended periods, enabling comprehensive monitor-
ing and analysis of UL performance.

2) Detailed Capture of Hand and Finger Movements.
Effective differentiation of hand and finger movements is
also fundamental for gesture recognition and task assessment.
Wearables should be capable of capturing detailed information
about these movements with high accuracy and precision.
Finger-worn devices [49], [50] or sensorized gloves [37], [75]
may provide granular data for nuanced analysis. However, they
are limited in detecting contextual information, which instead
may be provided by video-based approaches [18], [42].

3) Integration of Contextual Information Complementary
to the previous point, contextual information enriches the
understanding of UE function, enhancing the usefulness of
wearable devices. Multimodal strategies could enable the
capture of contextual cues essential for interpreting movements
within their environmental context. Advanced algorithms and
machine learning techniques for action and activity recognition
could also facilitate the extraction of meaningful insights from
rich datasets collected at home.

4) Long-term Monitoring Capabilities. The ability to per-
form long recordings spanning several hours is imperative for
comprehensive assessment and monitoring of UE function.
Challenges such as power consumption, data storage, and user
comfort must be addressed to facilitate continuous monitoring
over extended periods. Efficient power management strategies,
data compression techniques, and cloud-based storage solu-
tions offer avenues for overcoming these challenges, enabling
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sustained monitoring without compromising device usability
or performance.

5) Privacy Considerations. As wearable technology con-
tinues to proliferate, ensuring the privacy and security of
user data is paramount. Wearable devices must be designed
with robust privacy safeguards, including data encryption,
user-controlled data access, and anonymization techniques.
Adherence to relevant privacy regulations, such as the General
Data Protection Regulation (GDPR) and Health Insurance
Portability and Accountability Act (HIPAA), is essential to
instill trust and confidence among users and stakeholders.

By looking at the above review, it becomes evident that a
singular technology that fulfills all these requirements is cur-
rently nonexistent (see Fig. 4). This underscores the increasing
need for a multimodal approach to effectively capture how
individuals function in their home environments. Moreover, the
availability of long recordings makes this field ideal for imple-
menting machine learning and deep learning approaches. Some
reviewed studies already use these methods to recognize activ-
ity types or extract hand location and contact state information
from raw videos [18], [20], [52]. Regardless of the hardware
and data collected, machine learning and deep learning will
be essential for interpreting the vast amounts of data collected
at home and summarizing it into simple measures for tracking
upper extremity function progress. With new extended and
multi-modal datasets, AI will become increasingly important,
addressing key requirements such as recognizing contextual
information and summarizing long-term recordings, ultimately
providing interpretable information to therapists and clinicians
to enhance patient care.
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