
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024 2759

A Hybrid BCI Integrating EEG and Eye-Tracking
for Assisting Clinical Communication in Patients
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Jianfeng Li, and Qiuyou Xie

Abstract— Assessing communication abilities in
patients with disorders of consciousness (DOCs) is
challenging due to limitations in the behavioral scale.
Electroencephalogram-based brain-computer interfaces
(BCIs) and eye-tracking for detecting ocular changes
can capture mental activities without requiring physical
behaviors and thus may be a solution. This study
proposes a hybrid BCI that integrates EEG and eye
tracking to facilitate communication in patients with
DOC. Specifically, the BCI presented a question and
two randomly flashing answers (yes/no). The subjects
were instructed to focus on an answer. A multimodal
target recognition network (MTRN) is proposed to detect
P300 potentials and eye-tracking responses (i.e., pupil
constriction and gaze) and identify the target in real time.
In the MTRN, the dual-stream feature extraction module
with two independent multiscale convolutional neural
networks extracts multiscale features from multimodal
data. Then, the multimodal attention strategy adaptively
extracts the most relevant information about the target
from multimodal data. Finally, a prototype network is
designed as a classifier to facilitate small-sample data
classification. Ten healthy individuals, nine DOC patients
and one LIS patient were included in this study. All healthy
subjects achieved 100% accuracy. Five patients could
communicate with our BCI, with 76.1±7.9% accuracy.
Among them, two patients who were noncommunicative
on the behavioral scale exhibited communication ability
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via our BCI. Additionally, we assessed the performance of
unimodal BCIs and compared MTRNs with other methods.
All the results suggested that our BCI can yield more
sensitive outcomes than the CRS-R and can serve as a
valuable communication tool.

Index Terms— Hybrid brain–computer interface (BCI),
disorder of consciousness (DOC), BCI communication,
P300, eye-tracking.

I. INTRODUCTION

D ISORDERS of consciousness (DOCs) manifest as vary-
ing degrees of arousal states and abnormalities in

cognition, including coma, vegetative state/unresponsive wake-
fulness syndrome (VS/UWS), and minimally conscious state
(MCS). Patients with VS/UWS may emerge from a coma with-
out consciousness [1]. Patients with MCS retain some level
of consciousness and may exhibit reproducible non-reflexive
movements (e.g., visual tracking) [2]. Patients with locked-in
syndrome (LIS) maintain near-normal cognitive abilities but
have significant sensory and motor deficits [3]. LIS is not
a DOC but may be mistaken for it. Some studies have
shown that LIS is misdiagnosed as VS/UWS at a rate of
approximately 10% [4]. Additionally, some LIS patients may
suffer additional brain damage beyond the brainstem, leading
to cognitive deficits [5]. Misdiagnosing the consciousness of a
patient may have significant medical and ethical ramifications.
The command-following ability is a key diagnostic marker
for DOC [6]. Currently, doctors predominantly use the Coma
Recovery Scale-Revised (CRS-R) to clinically diagnose DOC
patients [7], [8]. In the CRS-R, physicians assess patients’
functions by scoring their behavioral responses to various
stimuli. However, this method is relatively subjective, lacks
quantifiable metrics, and harbors inherent contradictions that
are difficult to resolve. These contradictions may lead to false
negatives in patients with residual consciousness, with a misdi-
agnosis rate of approximately 40% [9], [10], [11]. Obviously,
the behavior-based diagnostic method cannot meet the needs
of accurately assessing consciousness levels. Exploring non-
behavior-based objective methods to assist in the diagnosis
of DOC patients is necessary and urgent. Additionally, the
ethical justification for life-sustaining treatment (LST) in these
patients is a matter of intense ethical and social debate. Some
neurologists mostly favor limiting LST, but their attitudes
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toward LST vary greatly depending on the patient’s will-
ingness to receive treatment [12]. Improving patients’ living
standards and reducing the nursing burden on their families
also require further exploration. The development of a commu-
nication system for DOC patients has significant implications
for patients, their families, and doctors.

Brain computer interfaces (BCIs), capable of detecting brain
activities via electroencephalography (EEG), may thus offer a
reliable method for assessing DOC patients. Xiao et al. [13]
used a BCI for simulating sound localization assessment in the
CRS-R and successfully identified sound localization ability
in 11 patients. A study even revealed [14] that over 75% of
DOC patients showed evidence of command following via
the BCI. The BCI not only exhibited significant potential in
detecting residual cognition in patients but also holds promise
as a tool for communication. Lulé et al. [15] presented a
four-choice BCI to assess the responses of 18 DOC patients to
commands and observed that one patient could communicate
via the BCI (accuracy: 60%). Wang et al. [16] introduced an
audio-visual BCI to augment the assessment of communication
ability in the CRS-R. In their study, patients communicated
by performing an active task (counting the number of stimuli
for the answer). In addition to visual and auditory paradigms,
vibrotactile-based BCIs can also facilitate communication.
Guger et al. [17] instructed 12 DOC patients to communicate
by counting the vibrating stimuli on their left and right wrists.
The patients chose their answers by counting the stimuli
on their wrists denoting “yes” or “no”. The results showed
that 2 patients could communicate via the vibrotactile BCI,
achieving 70% accuracy. Notably, the above BCIs all rely on
a single modality, which may limit the information available
for decision-making. One improvement option is to combine
multiple modalities to gather more information for judgment.
Although Huang et al. [18] proposed a communication BCI
combining two types of brain signals and demonstrated the
superiority of the hybrid system, drawbacks remain. Low-
frequency visual stimuli that induce steady-state visual evoked
potentials (SSVEPs) carry the risk of triggering seizures in
patients [19], [20]. Moreover, these BCIs require continuous
cognitive tasks, which are challenging for patients with limited
attention spans. Communication is a basic ability that DOC
patients generally lack and urgently need. However, limited
research exists on communication, with only 24% of BCIs
for DOCs being used for communication [21]. BCIs for com-
munication with DOC patients are still in their infancy, and
designing a stable and easy-to-use multimodal communication
BCI is promising for improving this situation.

Previous studies on detecting and communicating with
DOC patients have primarily focused on traditional machine
learning. For instance, all the above studies on BCI [13],
[15], [16], [17], [18] used support vector machines (SVMs)
to process the data. This approach may not effectively mine
deeper information from the data. Deep learning methods may
offer a solution. The neural networks BN3 [22] and SCNN [23]
for P300 detection and the classical network EEGNet [24] for
processing EEG signals have shown satisfactory performance
in EEG detection tasks. However, their accuracy depends on

the quantity and quality of available data, which may not
be suitable for DOC patients. DOC patients are prone to
fatigue and inattention, making it difficult to collect sufficient
usable data from them. Despite these methods employing
batch normalization and dropout [25] strategies to improve
generalization, overfitting may still be unavoidable on patient
datasets with limited data. Different components may coexist
in EEG data over a period of time, reflecting various stages
of neural activity [26], [27]. This suggests that information
captured from various scales of EEG may contain distinct
components and contextual features, yet few studies have
noted this. In addition, most multimodal BCIs for DOC
patients adopt decision-level fusion strategies [18], [28], which
may struggle to integrate rich semantic information from
various modalities and depict the associations among them.
The development of reliable BCI techniques for clinical use
in DOC patients remains a challenge.

In addition to communication ability, visual ability is
an important diagnostic indicator of DOC. However, visual
assessment (e.g., visual tracking, visual localization) in the
CRS-R mainly relies on physicians to make manual dis-
criminations, which lacks reliability. Small eye movements
of patients may go unnoticed by physicians. Eye-tracking
technology, which detects various eye movements (e.g., gaze
localization, saccadic movements, and pupil changes), may
be a useful adjunct. Eye movements are influenced by the
subject’s cognitive processes, behavior, and external stimuli.
For example, pupil size oscillates in response to the luminance
of visual stimuli (pupillary light reflex; PLR) [29]: higher
luminance leads to pupil constriction, while lower luminance
results in pupil dilation. The use of eye movement responses
can also facilitate stable communication applications.

Mathôt et al. [30] explored the possibility of
human-computer interaction through the response of pupillary
oscillations following the allocation of attention. Sato and
Nakatani [31] utilized the PLR to control an external
device with 83.4% accuracy. Stoll et al. [32] tested the
possibility of pupil response as a tool for communication. The
results showed significantly greater decoding performance
than chance (50%) in 3 LIS patients. Villalobo et al. [33]
successfully communicated with an LIS patient via the
pupillary modulation response. The relatively poor results
of Stoll and Villalobos compared to those of other studies
may be attributed to the inclusion of patients as experimental
subjects, and it also implies that eye-tracking signals alone
cannot precisely categorize data from patients. Recent
studies [34], [35] have shown the potential for enhancing
system performance by fusing EEG data and eye-tracking
data. Mannan et al. [34] designed a hybrid speller that
incorporates SSVEP and eye-tracking signals, achieving
90.35% accuracy. However, several shortcomings remain.
First, multimodal BCIs that integrate eye tracking and
EEG primarily focus on patients with motor impairments,
neglecting DOC patients whose conditions are more specific.
Second, these BCIs mostly involve healthy subjects and lack
tests on patient populations. Although these findings increase
confidence in communication by fusing EEG and eye-tracking
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signals, the application of these multimodal BCIs in DOC
has yet to be verified.

Given the above limitations, we propose a hybrid BCI
system that combines eye-tracking signals and EEG signals
to assist physicians in clinical communication assessment
and to address the fundamental communication needs of
patients. Patients engage in binary communication via atten-
tion and gaze. Specifically, the system presented patients with
a situation question and displayed ‘yes’ and ‘no’ options
beneath it. Randomly flashing options and corresponding
audio files were used as visual and auditory stimuli. Patients
were instructed to focus on the target stimulus. P300 and
eye-tracking signals were collected from the flashing options.
By detecting and analyzing these signals, the system can
identify patient choices. To enhance feature extraction and
maximize the benefits of diverse features, we propose a
multimodal target recognition network (MTRN) consisting
of three modules. The dual-stream feature extraction module
employs multiple convolutions with varying receptive fields
to capture multiscale features from EEG and eye-tracking
data. The multimodal attention module uses a cross-channel
soft attention mechanism to adaptively capture valuable infor-
mation from multimodal data. Finally, considering the data
characteristics of patients, we introduced a prototype net-
work to classify small-sample data. Ten healthy subjects
and ten patients (1 VS, 8 MCS, and 1 LIS) participated in
this study. The experimental results demonstrated that the
system enhances the likelihood of patients providing evi-
dence of residual brain function to the examiner and can
serve as an adjunctive tool for communicating with DOC
patients. The innovations of this study can be summarized as
follows:

1. We designed a novel BCI paradigm that integrates P300
potential and eye tracking. P300 detection and eye-tracking
detection are irreplaceable and mutually complementary, and
multimodal fusion facilitates clinical binary communication.

2. We propose a new multimodal target recognition network.
The dual-stream feature extraction module maximizes the
extraction of rich multiscale features of EEG and eye-tracking
signals. The multimodal attention module integrates the out-
puts from the dual streams, adaptively emphasizing important
features while eliminating redundancy. To address overfitting
and enhance small-sample data classification, we utilize a pro-
totype network based on the cosine distance as the classifier.

3. We developed a hybrid BCI system to facilitate the
clinical communication of DOC patients. The experimental
results demonstrated the feasibility and efficiency of our hybrid
BCI system. To our knowledge, this study is the first attempt
to communicate with DOC patients using a hybrid BCI based
on P300 potential and eye tracking.

II. PARADIGMS AND METHODS

A. Data Acquisition System
This study utilized a 32-electrode EEG cap (including

two reference electrodes) based on the International 10-20
system and a SynAmps2 amplifier (Compumedics, Neuroscan,
Inc., Australia) to record scalp EEG signals at a sampling

Fig. 1. The GUI of the BCI system.

frequency of 250 Hz. The reference electrode was placed on
the right mastoid. To remove the noise, 50 Hz trap filtering
was performed. We used eye-tracking glasses (SMI ETG 2w,
Germany) to record eye movement data. The scene view
and eye view were sampled at 60 Hz with resolutions of
1280 × 960 and 320 × 240, respectively.

B. Graphical User Interface and BCI Paradigm
1) GUI: Fig. 1 illustrates the graphical user interface (GUI)

of our hybrid BCI system. A question and an instruction are
displayed at the top of the screen. All questions were designed
based on the CRS-R Communication subscale. Examples
include “Is your name hailey?”, “Is this a cup/comb?”, and “Is
the doctor clapping now?”. The instructions instructed patients
to focus on the correct answer (target). Below the instructions,
the text blocks “Yes” and “No” are displayed on the left and
right sides, respectively. Each text block is a rectangle with
dimensions of 12.05◦ in width and 11.42◦ in height. The two
text blocks are spaced approximately 6.01◦ apart in the field
of view. To assist participants in gaze, a semitransparent red
dot is positioned at the center of each text block and between
them.

2) Stimulation Mode: Two text blocks served as stimulus
sources to induce P300 signals and eye-tracking signals in the
form of random flashes. Upon stimulus presentation, the text
color of the corresponding text block changed from blue to
green, while the background color shifted from black to white,
with luminance increasing from 1.27 cd/m2 to 90.76 cd/m2.
Simultaneously, the audio corresponding to the word was
played at 65 dB. Variations in the luminance of the text
block can alter the subject’s pupil size, and the magnitude of
this alteration increases with focused attention. Randomized
audiovisual stimuli can evoke P300 potentials. Text blocks
chosen by subjects are identifiable by detecting P300 potentials
and analyzing eye-tracking data.

3) BCI Paradigm: The BCI paradigm is shown in Fig. 2. The
trial started with a question and instruction stage. Within this
phase, the computer displayed and vocalized a predetermined
question and an instruction. For example, “Is this a cup? Focus
on the answer button and count its flashes silently”. Following
an 8-second question and instruction period, two text blocks
flashed in random order, with accompanying corresponding
audio broadcasts. Each flash lasted 300 ms, separated by an
interval of 700 ms. Consequently, the duration of a stimulation
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Fig. 2. The BCI paradigm for the online communication experiment.

Fig. 3. The architecture of the EEG feature extraction module.

round totals 2000 ms, defined as a cycle wherein both the left
and right text blocks flash once. The duration of the stimulus
stage was set to 20 s. A total of 10 rounds of flashing were
performed during the stimulus stage. Afterwards, the results
of this trial were returned to the screen. If the target was
recognized by our network, an applause sound was used as
encouraging feedback to provide positive reinforcement. After
a short break lasting 4 s, the next trial started.

Each experiment consisted of 10 trials, with one trial
corresponding to one question. To prevent positional bias, the
text blocks containing the correct answers were displayed an
equal number of times on both the left and right sides. Before
the experiment began, the participants were told to refrain from
any form of muscle movement (e.g., blinking) during the trial.

C. Data Processing and Algorithms
The overall data processing procedure is shown in Fig. 4.
1) Data Processing:

a) EEG data preprocessing: The scalp EEG signals
recorded during the experiment were first filtered through a
0.1–20 Hz bandpass filter. Subsequently, epochs corresponding
to each stimulus were extracted for each channel within the
timeframe of 0 to 800 ms after stimulus onset. These epochs
were baseline-corrected with a baseline of 100 ms before
stimulus onset, followed by channel filtering to remove the
reference electrodes, and finally downsampled at a rate of
4. To prevent scaling effects between different modal data,
we normalized the epochs at the channel level. In addition,

we captured electrooculograms from two pairs of electrodes,
“HEOR” and “HEOL” and “VEO” and “VEOL”, to filter
out eye movement artifacts from the EEG data. After pre-
processing, the EEG data are structured as [Nc × Nt ]. Here,
Nc = 30 is the number of electrode channels, and Nt = 50 is
the temporal dimension.

b) Eye-tracking data preprocessing: Cubic spline interpola-
tion was employed to compensate for the data gaps caused
by blinking or gaze positioning outside the detection range,
ensuring the integrity of the eye-tracking data (if insufficient
eye-tracking data were available for fitting, the data were
discarded for this trial). We extracted epochs of eye-tracking
data from 0 to 800 ms for each flash of the text block. Consid-
ering the differences in data scale and individual pupil size,
we downsampled and normalized each epoch. Additionally,
the sizes of the left and right pupils, along with the distance
between the gaze point and the currently flashing text block,
were selected as eye-tracking features. The distance features
were calculated from the gaze coordinates and the center
coordinates of the flashing text block. After preprocessing,
the eye-tracking data were shaped as [Nc × Nt ], where Nc =

3 denotes 3 features and Nt = 50 represents the temporal
dimension.

2) Dual-Stream Feature Extraction Module:
a) EEG feature extraction: The dual-stream feature extrac-

tion module comprises two independent multiscale CNNs for
EEG and eye-tracking feature extraction. The EEG feature
extraction network consists of a 6-layer architecture, as shown
in Fig. 3.

L1-Spatial Convolutional Layer: Common spatial filtering
and weighted superposition averaging are utilized to eliminate
redundant spatial information and enhance the signal-to-noise
ratio of the signal. The convolutional layer has a kernel size
of (30, 1), corresponding to the number of electrodes, with a
step size of (1, 1). The computational procedure is as follows:

a[1]
n (i) = ftanh

(c=1∑
Nc

Ic,i × w[1]
n (i) + b[1]

n

)
(1)
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Fig. 4. The overall data processing procedure and the architecture of the MTRN. EEG and eye-tracking data collected from the communication
paradigm are first preprocessed. The MTRN then processes and categorizes these data. The predicted positive results are displayed on the screen.
The MTRN comprises a dual-stream feature extraction module, a multimodal attention module, and a prototype classifier. The dual-stream feature
extraction module, which is based on a multiscale CNN, outputs the spatiotemporal features extracted from the data of each modality. Learned
multimodal features undergo feature integration via an adaptive attention strategy. The task of the prototype classifier is to predict data labels by
calculating the cosine distance between the data’s nonlinear mapping (fusion feature) in the embedding space and the positive sample prototype,
defined as the average of all positive sample features in the training data.

where ftanh is the hyperbolic tangent activation function. Ic,i
is the i-th element in the c-th channel of the input data. w

[1]
n

and b[1]
n denote the convolution kernel and bias, respectively.

L2-Temporal Convolution Layer: We introduce two parallel
convolution operations and batch normalization operations to
capture diverse temporal features. Both convolutional lay-
ers share a convolutional step size of (1, 1) and employ
different-sized convolutional kernels [(1, 4), (1, 2)]. This strat-
egy improves feature effectiveness and mitigates saturation
issues. The formulas are outlined as follows:

a[2,1]
n = fB N

(
ftanh

( Nc∑
c=1

a[1]
c (i) × w[2,1]

n (i) + b[2,1]
n

))
(2)

a[2,2]
n = fB N

(
ftanh

( Nc∑
c=1

a[1]
c (i) × w[2,2]

n (i) + b[2,2]
n

))
(3)

where a[2,1]
n and a[2,2]

n denote the feature maps obtained from
the receptive fields of different scales of different convolutional
kernels, which contain the contextual features of varying
scales in the EEG data. fB N denotes batch normalization.
w

[2,1]
n , w

[2,2]
n , b[2,1]

n , and b[2,2]
n refer to the convolutional kernel

matrices and biases, respectively, for the two different kernels.
L3-Integration Layer: The temporal features extracted from

the previous layer are cascaded to integrate the local details
of the EEG data with broader global information.

L4-Maxpooling Layer: Pooling the integrated features with
a kernel of size (1, 2) to expand the receptive field and reduce
redundancy, thus improving the performance of the network.

L5-Fully Connected Layer: The multidimensional features
are flattened in preparation for subsequent fully connected
(FC) operations. Furthermore, we employ a dropout strategy

to enhance network generalization [25]. The formulas for this
layer are outlined as follows:

v = Bernoulli (P) (4)

a[5]
= ftanh

((
v × a[4]

)
× w[5]

+ b[5]
)

(5)

The Bernoulli function randomly generates a vector composed
of 0 and 1 with a probability of P. Vectwise multiplication of
this vector with the input feature map can suppress P% of the
neurons. ftanh is the tanh activation function, a[4] represents
the feature output from L4, and w[5] and b[5] denote the
convolutional kernel matrix and bias, respectively.

L6-Fully Connected Layer: This layer executes FC opera-
tions, generating representative EEG features for all the input
samples. The formula is outlined as follows:

a[6]
= ftanh

(
a[5]

× w[6]
+ b[6]

)
(6)

where ftanh is the activation function and w[6] and b[6] are the
convolutional kernel matrix and bias, respectively.

b) Eye-tracking feature extraction: The CNN designed for
eye-tracking feature extraction consists of a 7-layer architec-
ture. The structure of this network is similar to that of the
EEG feature extraction network, except that the parameter
settings are different and a new convolutional layer is added
for fine-grained feature extraction. This newly added layer
incorporates a convolutional kernel of size (1, 3) and a batch
normalization operation. The formula for this layer is as
follows:

a[5]
n = ftanh

(
fB N

( Nc∑
c=1

a[4]
c (i) × w[5]

n (i) + b[5]
n

))
(7)
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Fig. 5. The architecture of the eye-tracking feature extraction module.

Fig. 6. The architecture of the multimodal attention module.

where ftanh is the activation function, fB N is the batch normal-
ization, and a[4] refers to the feature map output from the L4
maximum pooling layer. w[5] and b[5] are the convolutional
kernel matrix and bias, respectively.

Fig. 5 illustrates the architecture of the eye-tracking feature
extraction network. The network comprises the following
7 layers: the L1-spatial convolutional, L2-temporal con-
volutional, L3-integration, L4-max pooling, L5-fine-grained
feature extraction, L6-fully connected, and L7-fully connected
layers. The L7 layer outputs the representative eye-tracking
features for all the input samples.

3) Multimodal Attention Module: To integrate the multimodal
signal features learned from the dual-stream feature extraction
module and achieve feature complementarity, we design a
feature fusion network based on adaptive attention, whose
structure is shown in Fig. 6. First, elementwise summation
is employed to initially integrate the features extracted by the
dual-stream feature extraction module:

Ffuse = Feeg + Feye (8)

where Feeg ∈ R1×X and Feye ∈ R1×X are the representative
features of the EEG data and eye-tracking data, respectively.

For precise and adaptive feature selection, we introduce a
compact feature z ∈ R1×d . z is realized through an FC layer
that we designed to improve efficiency via dimensionality
reduction. The computation for z is as follows:

z = FC
(
F f use

)
= frelu

(
fB N

(
F f use × w[2]

))
(9)

where frelu denotes the linear rectification function. fB N is
batch normalization, and w[2] represents the kernel.

We achieve cross-channel soft attention to information at
different spatial scales by means of convolution and Soft-
max functions. Specifically, two convolutions are conducted
guided by the compact feature z to obtain the corresponding
weights for each feature. Subsequently, the Softmax func-
tion is applied at the channel level to dynamically attend
to information at different spatial scales. The calculations

are outlined below:

W [3,1]
= frelu

(
z × w[3,1]

+ b[3,1]
)

(10)

W [3,2]
= frelu

(
z × w[3,2]

+ b[3,2]
)

(11)

v[4,1]
x =

eW [3,1]
x

eW [3,1]
x + eW [3,2]

x
, v[4,2]

x =
eW [3,2]

x

eW [3,1]
x + eW [3,2]

x
(12)

where W [3,1] and W [3,2] are the feature maps computed
with different convolution kernels. w[3,1] and w[3,2] denote
the convolution kernels, and b[3,1] and b[3,2] are the biases.
W [3,1]

x and v
[4,1]
x refer to the x-th elements of W [3,1] and

v[4,1], respectively, where v[4,1]
∈ R1×X is the feature map

(soft attention vector) derived from the Softmax operation.
Similarly, W [3,2]

x , v
[4,2]
x , and v[4,2] follow a similar pattern.

Finally, the final fusion feature is obtained by weighting
each original feature with the soft attention vector.

F = v[4,1]
· Feeg + v[4,2]

· Feye, v
[4,1]

+ v[4,2]
= 1 (13)

The fusion feature F is the final representative feature of
the input sample. In other words, this layer computes the
embeddings for all samples (nonlinear mapping of inputs into
the embedding space).

4) Prototypical Classifier: To enhance the system’s clas-
sification performance on small sample data, we employ
a prototype network based on the cosine distance as the
classifier. The classifier operates on the principle that the
embeddings of samples are clustered around their class proto-
types [36]. Our work can be described as a binary classification
task, distinguishing between positive (target, labeled 1) and
negative (non-target, labeled -1) classes. We classify the
embedding F of a query sample by identifying the most similar
class prototype, which is derived by averaging the features of
all samples from the same class in the training set:

Fposi tive =

n∑
i=1

Fi

n
(14)

Here, Fposi tive denotes the positive class prototype, Fi refers
to the embedding of the i-th positive sample, n is the number
of positive samples in the training set, and Fnegative follows
a similar definition. The similarity is judged by the cosine
distance D, which is calculated by the following formula:

Dposi tive = cos
(
Fposi tive, F

)
=

Fposi tive · F
||Fposi tive|| · ||F ||

(15)

where Dposi tive ∈ [−1, 1] denotes the cosine distance between
the embedding F and Fposi tive. Dnegative is similarly defined.
A value of Dposi tive close to 1 indicates high similarity
between the shape of the input sample and that of the positive
sample. In other words, the input sample is more likely to
be positive. Conversely, if the Dposi tive value approaches -1,
the shape of the input sample is extremely dissimilar to that
of the positive sample, indicating a greater probability of the
sample being negative. Thus, the prediction for a sample can
be outlined as:

Pr ed (S) =

{
−1, Dposi tive ≤ 0
1, Dposi tive > 0

(16)
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TABLE I
SUMMARY OF PATIENT INFORMATION

where Pred represents the label prediction function, S is the
sample to be predicted, and Dposi tive denotes the cosine
similarity between the positive prototype and the embedding
F of sample S. Note that the label prediction for the sample
relies solely on the cosine distance between the embedding of
the input sample and the positive prototype.

The entire network is trained with the mean square error
(MSE) loss, and the loss function is defined by:

loss = fM SE
(
Dposi tive, y

)
+ fM SE

(
Dnegative, −y

)
(17)

where y represents the true label of the sample.

III. MATERIALS AND EXPERIMENT

A. Subjects
Our study included 10 patients (mean age ± SD =

38.8±22.2 years; 5 males) and 10 healthy volunteers (mean
age ± SD = 24.0±1.2 years; 5 males). None of the subjects
had high myopia (≥ 600 degrees) or impairments in vision
or hearing, except for P4 (inability to move the eyeball
horizontally, limited to slight vertical movement), P6 and P7
(abnormal visual evoked potentials). All patients underwent
a CRS-R assessment one week before the experiment (see
Table I for details). This study was approved by the Medical
Ethics Committee of Zhujiang Hospital, Southern Medical
University, and complied with the Code of Ethics of the World
Medical Association. The ethical number is ‘2023-KY-174-
01’.

B. Experiment
The main screen of the experiment, a 24-inch monitor with

a 60 Hz refresh rate, was positioned approximately 1 meter
from the subjects. A 20-inch secondary screen was utilized
for monitoring and calibration. To obtain more accurate gaze
data, eye-tracking calibration should be performed for all
subjects. However, manual calibration was not performed for
patients because of the lack of assurance that patients would
gaze at the calibration points as instructed, thus maintaining
uniform gaze deviation. We synchronized the EEG data and
eye-tracking data by sending event triggers to two servers via

the parallel port of the computer. Since patients are easily
fatigued and unable to stay awake for long periods, the exper-
iments were scheduled across two days with a two-day break
in between.

This experiment comprises two phases, offline training and
online testing, as depicted in Fig. 2. Offline training: Before
conducting the online experiment, each subject completed a
training experiment comprising 10 trials to collect data to train
the MTRN. Note that offline training cannot provide feedback
on results. Online testing: Each participant performed 5 online
tests, each consisting of 10 trials. However, due to discomfort,
patients P1, P4, and P8 completed only three and four online
tests, respectively. The setup and procedure of the online test
are similar to those of offline training, with the difference that
during the online experiment, the collected data are processed
in real time by the MTRN to provide feedback on the test
results at the end of the stimulation.

In each online experiment, the representative epochs
for the text blocks were calculated as the average from
10 rounds of flash stimulus epochs. The trained model
was applied to the representative epochs of the text blocks,
and the predicted results were the highest scoring text
blocks.

In our study, the communication accuracy for each subject
was determined by the ratio of correct responses to the total
number of trials. To evaluate the significance of the accuracy,
a χ2 statistical test was performed with the following formula:

χ2
=

k∑
i=1

(
foi − fei

)2
fei

(18)

where foi and fei are the observed and expected frequencies
of the i-th class, respectively. Here, the observations were
divided into two classes (hit or miss), so the degree of freedom
was 1. For example, in two-choice paradigms, the chances of
hitting and missing were both 25 for 50 trials. Differences were
deemed statistically significant at P≤0.05. Thus, the calculated
χ2 value was 3.84, indicating a 64% accuracy rate for 50 trials.

IV. RESULTS

To validate the design and superiority of our multimodal
system, we conducted offline tests. These tests assessed the
accuracy of the MTRN in unimodal mode and the performance
of three representative models (SVM, EEGNet, and EyeNet)
in each modality. SVM is a classification algorithm commonly
used in communication BCIs. EEGNet [24] is a classical
network for EEG recognition. As no network specializes in
eye-tracking data processing and classification, we designed
EyeNet, a feature extraction network referencing the classical
convolutional neural network AlexNet [37]. EyeNet comprises
three convolutional blocks and one fully connected block.
Each convolutional block contains convolution, normalization,
activation, and pooling operations. The fully connected block
comprises a dropout operation and three fully connected
operations. Additionally, to verify the effectiveness of the mul-
timodal attention module and prototype classifier, we tested
the MTRN-A and MTRN-B under multimodal conditions.
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TABLE II
ACCURACY OF THE ONLINE AND OFFLINE EXPERIMENTS FOR THE TEN HEALTHY SUBJECTS (50 TRIALS)

TABLE III
ACCURACY OF THE ONLINE AND OFFLINE EXPERIMENTS FOR THE TEN PATIENTS

MTRN-A and MTRN-B are variants of the MTRN network we
designed. MTRN-A employs a data-layer fusion strategy (i.e.,
the collected multimodal data are directly concatenated after
preprocessing), and MTRN-B discards the prototype classifier
and uses a Softmax classifier instead.

Table II details the accuracies of the experiments for the ten
healthy subjects. The results showed that all healthy subjects
achieved 100% online accuracy, which was much greater than
the significance threshold (P≤0.05). For all healthy subjects,
the accuracy of the unimodal-based systems surpassed the
significance level of 64%. Moreover, the multimodal-based
system, whether employing SVM, MTRN-A, MTRN-B or
MTRN, achieved higher accuracy than the system based only
on P300 or eye tracking. This finding suggests that multi-
modal systems outperform unimodal systems, confirming the
effectiveness of the MTRN and multimodal communication
design. The multimodal-based SVM, MTRN-A, MTRN-B and
MTRN all attained identical accuracies of 100%, rendering
them incomparable. However, under unimodal conditions, the
MTRN outperformed the SVM and EEGNet/EyeNet, indi-
cating that the MTRN has superior feature extraction and
classification capabilities.

Table III presents the accuracy rates of the online and offline
experiments for the 10 patients. Among them, 5 patients
(4 MCS and 1 LIS) achieved significant results in the

online experiment, with an average accuracy of 76.1±7.9%.
We divided the patients into a response group (P1, P4, P5,
P8, and P10) and a nonresponse group (the other 5 patients)
based on whether their online accuracy reached the signifi-
cance threshold. For the response group, the multimodal-based
MTRN achieved the highest accuracy. Moreover, the overall
accuracy of the MTRN was significantly greater than that of
the SVM, EEGNet/EyeNet, MTRN-A, and MTRN-B under
both unimodal and multimodal conditions, further validating
the effectiveness of the multimodal attention module. For the
nonresponse group, the mean accuracy was 60.0±2%, which
was slightly above the 50% chance level.

Interestingly, P5 and P10 achieved 84% and 64% accuracy,
respectively, in the online communication experiment, which
far exceeded the threshold of significance. This suggests that
P5 and P10 were deemed communicative and capable of binary
communication in the BCI assessment. However, they scored
0 on the communication subscale of the CRS-R, implying a
potential lack of communicative ability.

By averaging the EEG signals for each stimulus type
(target and nontarget) across all online trials, we extracted
P300 event-related potential (ERP) waveforms from 0 to
800 ms for the response group and the healthy control
group (H4) and calculated the standard deviation of their
ERPs for all experiments. Fig. 7 displays the average EEG
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Fig. 7. ERP waveforms in selected channels for patients in the response group (P1, P4, P5, P8, and P10) and healthy controls (H4). The solid
red and dashed blue lines correspond to the EEG waveforms during target and nontarget stimuli, respectively. Shading in red/blue indicates the
standard deviation of the corresponding ERPs across all experiments. Significant differences between the two stimulus conditions (t-test, FDR
correction, p≤0.05) are denoted by gray shaded areas.

signal amplitude and standard deviations across the selected
channels (‘Pz’, ‘CPz’, ‘Cz’, and ‘Oz’) for these five patients
and H4. The EEG waveforms of the five patients and H4
clearly showed P300 responses to the target stimuli. Addi-
tionally, we performed pointwise t-test statistical analyses of
ERPs under different stimulation conditions and corrected for
multiple comparisons using the false discovery rate (FDR)
procedure (P≤0.05).

To analyze the eye-tracking data, we obtained representative
pupil sizes for the response group and the healthy controls
from 0 to 1 s following stimulus onset by averaging the
pupil data for each stimulus type across all online trials.
Additionally, we averaged the distance data obtained from
10 trials in each experiment to determine the average dis-
tance of the gaze point from the target and nontarget points
across these 10 trials. Fig. 8 displays these visualized data.
Approximately 300 ms after the target stimulation, the pupils
of both the response group and healthy subjects exhibited
varying degrees of contraction. Specifically, the left pupil of
the response group/healthy subjects decreased by an average of
0.11 mm/0.5 mm, and the right pupil decreased by an average
of 0.11 mm/0.54 mm.

V. DISCUSSION

We developed a hybrid BCI to assist DOC patients in
consciousness detection and communication. In this study,
we proposed a novel communication paradigm and a multi-
modal target recognition network. The BCI analyzes EEG and
eye-tracking data collected during paradigm stimulation via
the MTRN to identify patient answers. Ten healthy volunteers
and 10 patients participated in the communication experiment.
All healthy participants achieved a high accuracy rate of
100%, demonstrating the system’s potential for communica-
tion. Moreover, 5 out of 10 patients (4 DOC and 1 LIS)
significantly exceeded chance level, reaching 76.1±7.9%,
which indicates their ability to communicate. Most notably,
two DOC patients, previously deemed noncommunicative in
CRS-R assessments, succeeded in communicating via the BCI,
suggesting that the hybrid BCI holds promise for improving
the detection of brain function among this challenging patient
group.

We integrated eye tracking into a communication paradigm
for three primary reasons: (i) Pupil constriction, mediated
by the autonomic nervous system (ANS), does not require
a functional somatomotor system in principle. Furthermore,
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Fig. 8. (A)/(B): Variations in left/right pupil size upon stimulus presentation. The blue line indicates the pupil size during nontarget stimulation.
The red line denotes the pupil size during target stimulation. The gray shaded area signifies the occurrence of the PLR under the target stimulus.
(C): Average distance of the gaze point from the target and nontarget text blocks. The pink line depicts the distance from the center of the target
text block, while the green line depicts the distance of the gaze point from the nontarget text block.

despite the extensive neurological damage in patients, the ANS
can be largely spared [38], [39] and therefore may constitute
an output pathway for patient communication. (ii) Eye tracking
requires only that patients open their eyes and possess vision,
aligning with the prerequisites for eliciting the visual P300
ERP and thereby not increasing the threshold for BCI use.
Moreover, eye tracking does not demand that subjects perform
extra tasks beyond gaze (e.g., counting), reducing training and
execution difficulty. Even if the patient is unable to maintain
sustained gaze behavior (i.e., intermittent attention) during
the stimulus phase, it does not affect the final recognition
result. This is because the MTRN can recognize the patient’s

choices by detecting eye movement responses (e.g., pupil
constriction, gaze) produced during the stimulus process. (iii)
Eye tracking is more user-friendly than the methods used in
other studies [18], [40]. Recent studies have demonstrated the
effectiveness of monitoring hemodynamic signals related to
yes/no responses in re-establishing communication with LIS
patients [40]. However, this method requires costly equipment.

Observing P300 responses in patients indicates the presence
of residual cognitive function. Despite the inconsistency in
P300 waveforms and latencies between the patient response
group and healthy controls, we still observed that their P300
components were evoked to varying degrees (Fig. 7). The
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TABLE IV
COMPARISON OF AVERAGE CLASSIFICATION PERFORMANCE FOR TEN HEALTHY SUBJECTS

inability to clearly observe the P300 potential of P1 in the
EEG waveform graph may result from fluctuations in the
consciousness levels of DOC patients over time, hindering
the effective evocation of P300. The LIS patient (P4) had
near-normal cognitive abilities, enabling him to induce a more
pronounced P300 potential. However, P4’s ERP did not signif-
icantly differ between the two stimulus conditions. This may
be because P4 experienced psychomotor agitation during most
of the experiments, preventing him from performing the test.
This agitation may also account for P4’s poor accuracy in com-
munication using only the EEG-based BCI. In addition to the
average ERP waveforms, the standard deviations of the ERPs
for all experiments have been calculated and are included
in Fig. 7. Patients P1, P4, and P5 exhibit markedly higher
variability in their ERPs, particularly in response to target and
nontarget stimuli. This increased dispersion is indicative of the
substantial inter-experimental differences encountered, largely
attributed to the patients’ variable fluctuating conditions and
states of consciousness during the communication trials. These
observations are consistent with the inherent challenges in
interpreting EEG data from DOC patients, highlighting the
importance of considering individual variability and physio-
logical states when analyzing neurological responses.

The observed PLR responses to the target stimulus in
the response group and healthy controls (Fig. 8) reflected
their attention to the target. Although the pupil of P4 also
constricted significantly during nontarget stimulation, this does
not imply that P4 necessarily actively gazed at the nontarget.
Limited eye movements may expose P4 to target and nontarget
stimuli of equal intensity, thus potentially inducing PLR in
both cases. Indeed, we discovered that patients were unable to
fixate on the target as precisely as we anticipated. Throughout
the experiment, due to body tension or other reasons, some
patients (e.g., P5) exhibited uncontrollable eye movements,
preventing a sustained gaze. Fig. 8(c) shows that the patient’s
gaze did not consistently remain on or near the target, aligning
with our observations. This may be the reason for the limited
accuracy of communicating with DOC patients solely through
eye tracking.

It should be noted that the absence of significant accuracy
in BCI assessment does not conclusively indicate a lack
of awareness in DOC patients. Intact cognition, including
language comprehension, memory, and attention, is neces-
sary for patients to effectively use command-following-based
BCIs. The absence of any of the aforementioned cognitive
abilities may result in misdiagnosis of the patient’s condition.
A hybrid BCI integrating eye tracking and P300 potentials
could enhance the detection of covert awareness in patients
with low cognition. For instance, some patients (e.g., P1)
may communicate via eye tracking but not via the P300 ERP.
Enhanced BCI performance can boost patient confidence and
motivation, fostering greater engagement in treatment [41].
Moreover, patients with motor-cognitive dissociation (showing
awareness on neuroimaging but no detectable command-
following behavior) tend to have a better prognosis [42].
Detecting potential awareness in patients can foster family
positive expectations.

We computed commonly used metrics to further evaluate the
categorization performance of the MTRN and the contributions
of its different components. The true positivity rate (also
known as the sensitivity) is often used to estimate the sensitiv-
ity of a test. A higher sensitivity indicates a lower probability
of missed detection. Our model primarily identifies targets
by detecting P300 and eye movement responses, so emphasis
should be placed on the sensitivity of the method. In addition
to sensitivity, accuracy, specificity, F1 score, and precision are
also crucial metrics. Table IV displays the average classifi-
cation performance of each model for ten healthy subjects.
The sensitivity of the MTRN in each modality surpassed that
of other models, illustrating its ability to classify P300 and
eye movement responses and demonstrating the validity of
multiscale and prototype-based classification techniques. The
multimodal-based MTRN outperformed the MTRN-A without
the multimodal attention module and the MTRN-B without
the prototype classifier in all the metrics, suggesting that the
adaptive attention strategy and the prototype classifier can
facilitate the fusion and classification of small-sample data.
Additionally, we statistically compared the accuracy of the
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Fig. 9. The impact of the convolution kernel size in the L2 temporal
feature extraction layers on target identification and repetition.

Fig. 10. The impact of the compact feature’s dimension size (d) on
target recognition and repetition.

MTRN under unimodal and multimodal conditions. Given the
small number of subjects, we used the Wilcoxon signed-rank
test for the analysis. The results showed a significant difference
(P≤0.05) in accuracy between multimodal-based MTRN and
unimodal-based MTRN for both healthy subjects and patients,
suggesting that communication through the integration of eye
tracking and EEG is effective.

The results of the ablation and comparison experiments
confirmed that the hybrid system outperformed the unimodal
system based solely on P300 or eye tracking, validating the
effectiveness of the MTRN. In the MTRN, the feature extrac-
tion module captures differentiating temporal features through
two parallel convolutions, and the multimodal attention mod-
ule guides adaptive feature selection through compact features
z. To ascertain the optimal kernel size and assess the impact
of z size on model performance, we conducted tests with
several sets of common convolution kernels and dimension
sizes in patient data, as illustrated in Fig. 9 and Fig. 10.
With an equal number of kernels, the kernel sizes [(1,2),(1,4)]
outperform the kernels [(1,3),(1,5)] and [(1,5),(1,10)] in terms
of accuracy. The optimal performance was achieved with
a z size of 32. The reason may be the short duration of
the P300 and PLR responses. Larger convolution kernels
expand the receptive field, potentially introducing redundant
and irrelevant information. Moreover, overly large or small
compact features may lead to information loss or redundancy
during feature selection. The task of prototype networks is
to perform classification by calculating the distance between

embeddings and class prototypes in metric space. Numerous
studies have used the Euclidean distance as a distance metric
with good results. However, Pan et al. [43] suggested that the
cosine distance metric is more sensitive to small-sized data
and may yield better results for classifying such datasets.

Despite these encouraging results, several limitations should
be overcome. First, the limited sample of this study, which
included only 10 patients, affects the generalizability of
the results. Second, communication is constrained to yes/no
answers, which limits interaction for patients with high cogni-
tive abilities. Future work should optimize the communication
model to enhance the utility of the system.
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