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Abstract— Robotic arms are increasingly being utilized
in shared workspaces, which necessitates the accurate
interpretation of human intentions for both efficiency and
safety. Electroencephalogram (EEG) signals, commonly
employed to measure brain activity, offer a direct com-
munication channel between humans and robotic arms.
However, the ambiguous and unstable characteristics of
EEG signals, coupled with their widespread distribution,
make it challenging to collect sufficient data and hinder
the calibration performance for new signals, thereby reduc-
ing the reliability of EEG-based applications. To address
these issues, this study proposes an iteratively calibratable
network aimed at enhancing the reliability and efficiency
of EEG-based robotic arm control systems. The proposed
method integrates feature inputs with network expansion
techniques. This integration allows a network trained on an
extensive initial dataset to adapt effectively to new users
during calibration. Additionally, our approach combines
motor imagery and speech imagery datasets to increase
not only its intuitiveness but also the number of command
classes. The evaluation is conducted in a pseudo-online
manner, with a robotic arm operating in real-time to collect
data, which is then analyzed offline. The evaluation results
demonstrated that the proposed method outperformed
the comparison group in 10 sessions and demonstrated
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competitive results when the two paradigms were com-
bined. Therefore, it was confirmed that the network can be
calibrated and personalized using only the new data from
new users.

Index Terms— Brain–machine interface, electroen-
cephalogram, robotic arm, deep learning, network
calibration.

I. INTRODUCTION

ADVANCES in robot intelligence enable a robotic arm to
interact with humans physically [1], [2]. For safe and

precise control, the robotic arm should interpret the control
intentions of humans and execute accordingly. One of the
intuitive ways to detect human intentions is by decoding
brain signals such as electroencephalogram (EEG) signals [3].
EEG signals can be obtained non-invasively and are thus
practical for external device control [4], [5], [6]. Brain-
machine interface (BMI) commonly uses EEG signals as
control signals [7], and therefore this study applies BMI
settings in the context of robotic arm control. Two major
endogenous paradigms are introduced to consistently generate
EEG signals: motor imagery (MI) [8] and speech imagery (SI)
[9]. MI involves imagining muscle movements without actual
physical motion [8]. Meanwhile, SI—also known as imagined
or silent speech—involves imagining words and sentences
without actually speaking them out loud. SI is known as
an intuitive paradigm because it simply requires a speaking
imagination [10]. Through intuitive paradigms, BMI allows
users to intuitively control external devices.

Although BMI has shown its potential, several obstacles
hinder its practical use: (1) Due to the complex and unstable
characteristics of EEG signals [11], the decoding algorithm
needs to be calibrated to maintain its performance. However,
these characteristics cause the data to form a large distribution,
which interferes not only with the calibration of decoding
algorithm for new data but also with data sharing among users.
This leads to a degradation in performance, thereby under-
mining the reliability of BMI-based applications. (2) Factors
such as user fatigue and concentration level can influence
the generation of these inconsistent EEG signals [12]. As a
result, obtaining ample amounts of data from individual users
is challenging, which limits the number of classes available
for BMI application. (3) The presence of background noise in
EEG signals [13] and low signal-to-noise ratio leads to incon-
sistent data quality. This makes it difficult to apply advanced

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8273-1293
https://orcid.org/0000-0003-4837-6333
https://orcid.org/0000-0002-5032-0892
https://orcid.org/0000-0003-4261-875X
https://orcid.org/0000-0002-6249-4996


2794 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

machine learning and even data augmentation techniques [14],
further increasing data distribution and complicating inter-
user data combination—thereby posing challenges in acquiring
sufficient data.

To address the aforementioned issues, we propose an itera-
tively calibratable decoding algorithm for EEG-based robotic
arm control. Under the assumption of daily usage conditions,
a session is defined as a sequence of steps where users wear
an EEG cap, control a robotic arm based on their EEG signals
and then remove the cap. The aim of this study is to enhance
classification performance, enabling it to be calibrated for
unseen users in each session. Moreover, as data from new
users accumulate, the study also involves an experiment on
whether the decoding algorithm can be personalized. To this
end, a pipeline is proposed that increases the capacity of the
neural network through feature input and network expansion
strategies. However, to prevent indiscriminate network expan-
sion, selective initialization and training are applied prior to
expanding the network. Our baseline evaluation was performed
using publicly available datasets. Subsequently, we conducted
a total of 10 sessions with novice users for data collection; this
collected data was then divided into calibration and test sets.
The calibration set was collected under identical circumstances
as the public datasets and was employed to adjust the model
parameters. In contrast, the test set was collected through
pseudo-online test in an environment where the robotic arm
was controlled, and the collected data was evaluated and
analyzed offline, as detailed in references [15], [16]. Using
these datasets, the proposed method was calibrated to ensure
classification performance on unseen data. Essentially, our
goal is to ascertain if the proposed method can effectively
adapt to EEG data that significantly deviates from the initial
training data. Therefore, experiments were conducted to test
whether the proposed system exhibits resilience against vari-
ations in EEG patterns as sessions progress.

The main contributions are as follows: (1) The proposed
method consistently improved classification performance
across 10 experimental sessions. The results indicated that
the suggested approach is robust against variations in EEG
patterns and exhibits proficiency in personalizing decoding
algorithm. (2) To the best of our knowledge, this is the
first attempt at combining two intuitive endogenous BMI
paradigms with the aim to increase the number of control
signals for intuitive robotic arm control. (3) We introduced
a network capacity expansion strategy to prevent the decrease
in decoding algorithm calibration performance due to the large
distribution of EEG data during the calibration stage, thereby
obtaining a decoding algorithm robust against the variability of
EEG and advantageous for real-life use. (4) Through ablation
studies, it is confirmed that the proposed method could be
considered an efficient approach towards practical EEG-based
robotic arm control using advanced machine learning methods.

II. RELATED WORK

In recent years, numerous studies have contributed to
improving endogenous BMI classification performance based
on machine learning techniques. Schirrmeister et al. [17]
proposed a deep and shallow convolutional neural networks

(CNNs) to classify EEG signals and provided an under-
standing of the network design and training through EEG
features extracted by CNNs. Particularly, the shallow ConvNet
pipeline was inspired by the filter bank common spatial
pattern (FBCSP) [18], which specifically deals with band
power features that are advantageous for MI classification.
Lawhern et al. [19] introduced depth-wise and separable
convolutions to summarize individual features over time,
by considering more channel information. They applied sepa-
rable convolution to the BMI and demonstrated that CNNs can
be trained with a small number of parameters. Amin et al. [20]
proposed the use of multiple CNN models to extract differ-
ent levels of relevant features from the raw EEG signals.
They explored raw data using CNN models of different
depths to extract abundant features. Xie et al. [21] introduces
Transformer-based models designed for the classification of
MI EEG signals. By utilizing the attention mechanism inherent
in Transformers, these models are capable of extracting fea-
tures from long-sequence data and providing visualization. The
spatial-temporal dependencies found within EEG signals serve
as vital information for precise classification. Song et al. [22]
proposed a model called EEG Conformer that employs a
convolution module for learning low-level local features and a
self-attention module to extract global correlations from these
features. The model also uses a simple classifier based on
fully-connected layers for EEG signal categorization. Addi-
tionally, the paper introduces a visualization strategy that
projects class activation mapping onto brain topography to
enhance interpretability.

Some studies have conducted investigations on multi-
session and multi-paradigm approaches. Tam et al. [23] carried
out a multi-session investigation to determine a minimal set of
electrodes for individual stroke patients, which were utilized
in MI tasks to control assistive devices through functional
electrical stimulation across 20 sessions. Lee et al. [24]
presented a dataset for brain-computer interface (BCI) sys-
tems, incorporating three key paradigms: MI, event-related
potential and steady-state visually evoked potential. The data,
collected from numerous subjects across multiple sessions,
includes psychological and physiological user details. The
study evaluates decoding accuracies per paradigm and inves-
tigates performance differences across subjects and sessions.
Thomas et al. [25] examined evaluation metrics for increas-
ingly complex MI BCI, featuring adaptive classification, error
detection and correction, signal fusion and shared control.
They encompassed simulated and experimental data, also
surveying recent literature to understand BCI evaluations,
particularly focusing on the correlation between data usage
and the BCI subcomponent under scrutiny.

However, the aforementioned studies still raise questions
about their reliability. This is because variations in EEG
patterns limit the number of classes and contribute to per-
formance degradation, thereby hindering further progress in
research. Therefore, it is imperative that the decoding network
be adequately calibrated to unfamiliar EEG patterns, neces-
sitating a substantial calibration process. However, applying
personalized network weights to each individual user proves
challenging due to significant differences in EEG signal
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Fig. 1. Overall architecture. Three types of features are obtained from the feature extractors. The adversarial loss Ladv is introduced to extract
EEG-invariant features ziv and consequently, fixed random noise x ′ is provided as an anchor for the discriminator Dθ . Paradigm-specific zps and
class-specific features zcs are obtained by their corresponding feature extractors fps and fcs. These three features are concatenated, yielding the
same shape as the image and are provided as feature input z to the image transformer. The image transformer then conducts the classification.

patterns among users. This presents a complication as it
becomes difficult to predict various users’ intentions with
only one set of network weights, which restricts its reliability.
Therefore, applications based on BMI must undergo reliability
assessments across multiple sessions.

A. Prerequisites
We posit that the major obstacles to reliable BMI are

the lack of classification performance due to large variations
in EEG patterns and the diversity of EEG signals between
different users [14], [26]. We hypothesize that a network with
sufficient capacity can robustly handle diverse EEG patterns.
Therefore, our proposed method primarily focuses on ensuring
efficient network capacity to mitigate these aforementioned
problems.

Sufficient capacity allows the network to learn from new
data in order to calibrate its parameters, even if this data
greatly differs from the initial training dataset. One way to
increase network capacity is through network expansion. For
efficient expansion of the network, training is required to
identify redundant nodes before initializing and retraining
them; new nodes should be added as necessary. However,
despite the efficient growth of the network, expansion leads to
increased inference time and computational costs. Therefore,
it’s essential for an expanded network to be compressed in
order to maintain computational costs. Thus our proposed
method incorporates both network expansion and compression
steps while maintaining manageable computational costs.

III. METHODS

To achieve robust performance amidst variations in EEG
patterns of users, this section describes novel strategies includ-
ing feature inputs, image transformer, network expansion, and
compression for maintaining constant computational complex-
ity. The architecture of the proposed method is depicted in
Fig. 1.

A. Dataset Description
1) Baseline Dataset: We investigate whether the network

can improve the classification performance of new users, even
though it was initially trained using a public dataset which
may contain significant distribution differences. We used BCI
competition 2020 Track #3 and 4 [27] which are SI and MI
datasets to construct a baseline dataset Dbase = {Dtr , Dte}.
The datasets were combined in accordance with the subjects
(e.g. subjects # of Tracks #3 and #4 were considered as
the same subject). The baseline training was conducted in a
subject-independent manner [26] such that Dte was one of the
subjects of Dtr according to leave-one-subject-out validation.
Since Track #4 is composed of three MI classes (‘cylindrical’,
‘spherical’, and ‘lumbrical’), we selected ‘help me’, ‘thank
you’, and ‘yes’ from Track #3 to form a total of 6 classes,
as these are suitable for robotic arm control. To avoid the
data imbalance problem, fifty trials were randomly selected
from ‘help me’, ‘thank you’ and ‘yes’ trials. Thus, combined
dataset Dtr and Dte contained 50 trials per class and total of
4200 and 300 trials, respectively. Each trial x ∈ RC×T was
downsampled at 250 Hz yielding 1000 time points T , hence
an imagery period lasting for four seconds was applied for
each of the overlapping 58 channels C . Selected channels are
described in the supplementary document Section I.

2) Calibration Dataset: We collected a calibration dataset
from ten naive subjects aged 24 to 30 years (5 males and
5 females, all right-handed). Subjects were presented with
class labels for a duration of one second via the monitor
display, followed by a four-second imagination period accom-
panied by a sound cue. This procedure was conducted in
accordance with the same environment and protocol as the
recording environment of Dbase. Once the imagination period
is over, a two-second rest period is provided. Prior to the
EEG recording, a 20-minute practice session is assigned.
Once the recording begins, the subjects are instructed to
minimize movements during the imagination period and to
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Fig. 2. Network expansion pipeline of class-specific feature extractor. (a) The default network is a fixed size of the network. (b) Selective initialization
and (c) training are performed to improve calibration performance without expansion. (d) If a larger network capacity is required, nodes are added
to the network to increase feature size. Consequently, the size of the network continues to grow. (e) The expanded network shrinks to the default
network size while maintaining the knowledge learned from calibration data through knowledge distillation.

conduct imagination according to the corresponding label. The

collected dataset D̂ j = {
ˆD j
tr ,

ˆD j
val} consists of 6-class with

the same labels as Dbase and contains 20 training trials and
10 validation trials per class, yielding 120 training trials and
60 validation trials per subject, where j ranges from 1 to 10,
representing the session number.

3) Test Dataset: The test dataset ˆD j
te is associated with a

robotic arm control scenario. The scenario involved the robotic
arm picking up an object using various grasping methods
and handing it to the subject. In contrast to the calibration
dataset, the monitor display is not included in the recording.
Instead, only the sound cue and robotic arm are provided to
the subject, as introduced in [28]. Prior to the experiment, the
subjects were informed of the robotic arm control scenario
and were given sufficient preparation time for the imagery

period before recording ˆD j
te. It is composed of 6-class and

10 recording sessions yielding D̂ j = {
ˆD j
tr ,

ˆD j
val ,

ˆD j
te}. It con-

sists of 12 trials per subject, with each subject generating three
trials each of the ‘help me’, ‘yes’ and ‘thank you’ classes and
one trial each of the ‘cylindrical’, ‘spherical’ and ‘lumbrical’
classes. A detailed description of the scenario can be found
in Section II of the supplementary document. The operation

of the robotic arm to collect ˆD j
te was real-time but was

independent of model predictions. Subjects generated EEG
signals in response to the robotic arm operation according to
predefined scenarios. The model predictions never controlled
the robotic arm; however, this information was not disclosed
to the subjects in order to make them believe that they were
controlling the robotic arm themselves, thereby inducing a
sense of agency to improve EEG quality [5].

D̂ j is originally recorded at 2000 Hz and downsampled
to 250 Hz. It is known that the mu band (8-13 Hz) and beta
band (13-31 Hz) include MI features [17], [19] and also one
of the efficient bandwidths for SI classification is 30-125 Hz
[29]. Therefore, a band-pass filter (8-125 Hz) and a 60 Hz
notch filter are applied to D j . This not only includes all
these ranges but also excludes the lower bandwidth where
eye movement artifacts are prominently present [30], [31],
[32]. The impact of an imprecise filtering choice on network
performance is challenging to predict [33], [34]. Moreover,

losing information through filtering from the training data
contradicts our training strategy, which aims to maximize the
latent space of the training data and pursue data augmentation
of feature inputs induced by modulation. We provide experi-
mental results to support this assumption in Table V of the
supplementary document. We did not apply any additional
filtering methods, such as eye movement or noise removal
filtering, to maintain standard performances. Fig. 2 in the
supplementary document illustrates the environment used for
calibration dataset collection. Furthermore, we represent the
experimental results of applying four types of filtering methods
in Table V of the supplementary document.

To prevent the data from being biased toward a particular
class or becoming too familiar, the classes were randomly
presented to the subjects as they constructed D̂ j . The exper-
imental setup was created in MATLAB 2019a (MathWorks
Inc., USA), and EEG signals were recorded using the BBCI
toolbox [35]. This study obtained consent from all subjects for
data collection and duration. The protocols and environments
were reviewed and approved by the Institutional Review Board
of Korea University [1040548-KU-IRB-17-172-A-2].

B. Feature Inputs and Network Expansion

It has been established that spectral amplitude features are
effective for EEG classification [17], [19]. As such, con-
volution layers are employed for feature extraction. Three
convolution-based feature extractors were introduced to obtain
three types of features: EEG-invariant ziv , paradigm-specific
z ps and class-specific zcs features from Dtr = (xi , yi ) where
xi ∈ X represents tuple inputs and yi ∈ Y denotes the
corresponding class label.

To obtain ziv ∈ Ziv , adversarial learning was applied
without a generator [36]. The invariant feature extractor ( fiv :

X → Ziv) generates features to fool the discriminator (Dθ :

Ziv → K ) using x and random noise (x ′
∈ RC×T ) where

K ∈ {0, 1} denotes true or fake (binary class). Thus, the loss
function is defined as follows:

Ladv = min
fiv

max
Dθ

N∑
i=0

ki log(Dθ ( fiv(xi ))), (1)
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where N is the number of trials in D j
tr . In this training,

i starts from 0 because xi includes x ′. Note that x ′ is fixed
random noise. The goal is to train fiv to induce Dθ to
confuse ziv and fake features z′

iv from x ′. Therefore, z′

iv
explicitly serves as an anchor for fiv to extract “z′

iv-like”
ziv . As training progresses, it is conjectured that ziv should
resemble z′

iv (i.e., they should be similar to “fake” features),
thereby containing EEG-invariant information. Although ziv
is not directly associated with classification, it is designed to
enhance classifier training performance by expanding the input
latent space.

To obtain z ps from xi and its paradigm label pi ∈ P ,
paradigm-specific extractor ( f ps : X → P) is trained to extract
features that can distinguish between MI and SI. Therefore,
surrogate binary labels are provided for the training instead
of Y . The cross-entropy loss is formulated as:

Lps = −
1
N

N∑
i=1

p̂i log( f ps(xi )). (2)

Therefore, f ps is trained to classify paradigms. Similar to
ziv , these features are not directly associated with classification
but are provided to expand the input latent space of the
classifier.

In contrast, zcs is more closely associated with classification
because its objective aligns with that of the classifier. Class-
specific extractor fcs is designed for 6-class classification.
However, it is designed as an expandable network to increase
its capacity in response to variations in EEG patterns, a con-
cept inspired by [37]. Firstly, we sparsely train the network
and then sequentially expand its capacity to avoid excessive
network expansion. To this end, elementwise L1-norm is added
to the loss function to obtain a sparse network by penalizing
weights. This can be formulated as follows:

Lcs = −
1
N

N∑
i=1

ŷi log( fcs(xi )) + λ

L∑
l=1

|W l
base|, (3)

where W l
base denotes weights of l th layer of the network

trained using Dbase and λ and L denote regularization param-
eter and the number of layers, respectively.

Once D̂ is provided, the calibration begins with Wbase.
At a certain point T1 during calibration, the network searches
the nodes that have been trained in associated with the D̂.
The Wbase is partially updated with L1 regularization from the
topmost hidden layer. The connections between L are searched
by solving the equation obtaining w part , defined as:

min
W part

(L(W part
; W 1:L−1

base , D̂) + λ1|W part
|), (4)

where W 1:L−1
base and λ1 denote the weights excluding W part and

L1 is the regularization term. Since all non-zero connections
in W part are associated with D̂, the breadth-first search is
conducted on all corresponding nodes G to identify all connec-
tions between every node. It includes all nodes related to D̂; in
other words, the other node group Ḡ comprises nodes that are
not associated with D̂. If Ḡ is calibrated, it would enhance
calibration performance. As such, the weights of unrelated

nodes W Ḡ are initialized and the calibration continues until
T2. This process is selective initialization and is carried out
only once during the calibration.

At T2, if loss remains above the threshold τ , selective
training commences. This process assumes that W G has
been adequately calibrated and thus freezes W G , calibrating
only W Ḡ until T3. Selective training allows gradients, which
typically have a negligible contribution (and thus could be
ignored), to influence the training process by solving the
following equation:

min
W Ḡ

(L(W Ḡ , D̂) + λ2||W Ḡ
||), (5)

where λ2||W Ḡ
|| denotes L2 regularization term to avoid

increasing the complexity of W Ḡ .
If the loss value remains higher than τ even after T3, then

the network’s capacity needs to be increased. In response,
an arbitrary number of o nodes are added to the layers,
consequently expanding the network weights W = [W ; W E

],
where W E denotes the weights of added nodes (the expanded
parts). Since an arbitrary number of o nodes can be added,
objective function includes calculating the optimal number of
nodes for each layer in order to minimize weight complexity,
which is defined as follows:

min
W

(L(W ; W E , D̂) + λ|W | + λg
∑

e

||W e
||), (6)

where λg and e denote the regularization parameter and a set
of activated connections of added nodes, respectively. The
term λg

∑
e ||W e

|| is the filter-wise group LASSO [38] to
remove unnecessary nodes to obtain the optimal number of
nodes for all layers. Essentially, this process results in a
temporary increase in the number of convolution channels.
As a result, network is expanded, allowing it to extract more
critical features for classification. Algorithm 1 provides an
overview of fcs training.

C. Network Compression
We propose a network that temporarily expands fcs to

calibrate weights when a large deviation is observed between
Dbase and D̂ j . This is achieved by increasing the network
capacity. However, due to limitations in computational com-
plexity and inference time, it’s crucial to maintain the size of
the network constant. To address this issue, we introduce a net-
work compression step before the next calibration. We employ
basic knowledge distillation as outlined by Hinton et al., 2015
[39], which allows us to preserve the size of our model and
transfer knowledge from the expanded network using a defined
distillation loss.

Ld =

∑
(x,y)∈D̂ j

LK D( fcs(x, W j−1), fcs(x, W j ))

+ γLC E ( fcs(x, W j−1), y), (7)

where LK D and LC E denote knowledge distillation and cross-
entropy loss, respectively. Initially ( j=1), W0 is Wbase. Fig. 2
depicts the pipeline of network expansion and compression.
Note that baseline training is performed once.
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Algorithm 1 Network Expansion

Input: Calibration dataset D̂, training epochs T1, T2,
T3, T4, threshold τ

Output: Calibrated network weights W
Procedures:
Initial calibration
Solve eq. (4) until T1
Selective initialization
Obtain Ḡ
Initialize W Ḡ

Solve eq. (4) until T2
if L > τ then

Selective training
Solve eq. (5) to calibrate W Ḡ until T3

end
if L > τ then

Network expansion
Solve eq. (6) to calibrate W = [W ; W E

] until T4
end
Obtain W

D. Image Transformer With Data Augmentation
DeiT, an image transformer [40], offers various sizes of

distilled models. However, it’s uncertain whether DeiT would
be efficient in BMI applications where the amount of data
is limited. To address this issue, we applied simple data
augmentation techniques in the image domain. Gaussian noise
added D′

tr , data flipped over time dimension D⃗tr and kernel
dimension D̃tr datasets were added to baseline and collected
dataset. Through data augmentation techniques, six times more
trials than the original dataset are obtained, yielding Dtr =

{Dtr , D′
tr , D⃗tr , D⃗′

tr , D̃tr , D̃′
tr } (for simplicity, ˆD j

tr is omitted).
The underlying assumption of this approach is that even if

these techniques may compromise the essential information
of x , DeiT would enhance classification performance if it
takes z as input. In other words, the classifier can avoid
underfitting by indirectly learning from the augmented data
while minimizing the loss of essential information. While
all f are trained directly with raw augmented data, making
them susceptible to performance drops, any such decrease is
deemed insignificant if classifier fθ exhibits a performance
enhancement. In this context, we consider any performance
drop as inducing modulations of feature inputs z. We selected
small and tiny versions of DeiT, which are applicable to BMI,
as fθ . To implement it, we accumulated ziv , z ps and zcs along
a axis to form three channels corresponding to RGB channels
of an image. For multi-class classification tasks, we define the
cross-entropy loss as follows:

Lθ = −
1
N

N∑
i=1

ŷi log( fθ (z)), (8)

where Y is same class labels used when obtaining zcs . Initially,
fθ employs the Adam optimizer for baseline training but
switches to stochastic gradient descent (SGD) during calibra-
tion [41].

TABLE I
PARAMETERS SELECTED FOR THE EXPERIMENTS. PARAMETERS

WERE HEURISTICALLY DETERMINED

IV. EXPERIMENTS

A. Evaluation Protocols
The evaluations are primarily segmented into three compo-

nents: (1) Baseline evaluation, which assesses the classification
performance on the baseline dataset; (2) Calibration evalua-
tion, which assesses the model performance on the calibration
dataset and is designed to quantify calibration efficiency; and
(3) Test evaluation, intended to gauge the classification efficacy
of networks within a robotic arm control scenario. Decoding
involves the process of matching model predictions to labels
based on a predefined size of model input. Thus, continuous
EEG signals are segmented into uniform sizes, with each
segment considered a single trial. The model predictions are
discrete, and classification accuracy is defined by calculating
the extent to which the labels of the corresponding trials
match the model predictions. Note that the labels for clas-
sifying between SI and MI are only applied when training
the paradigm-specific feature extractor and for all evaluations,
including test evaluations, accuracy is assessed based on
6-class classification.

All parameters used in the experiments are listed in Table I.
The evaluations were executed on a system equipped with an
Intel Core i9 12900K CPU operating at 3.20 GHz, 128 GB
of DDR4 RAM, twelve NVIDIA TITAN V GPUs (each func-
tioning at 1200 MHz) and Python version 3.9 complemented
by PyTorch version 1.12 and CUDA 11.3.

B. Comparison Group and the Proposed Methods
Publicly available methods were employed for evalua-

tion: Common spatial pattern (CSP)-based methods [42],
FBCSP [18], EEGNet [19], Deep and Shallow ConvNet [17],
ERA-CNN [43], MCNN [20], EEG-Transformer [44] and EEG
Conformer [22] which are described in Section II. To ensure
fairness in evaluation, the hyperparameters of the comparison
group were meticulously adjusted to accommodate the size
of the dataset. The data cropping method designed by [17]
was adopted for CNN-based methods utilizing a sliding time
window with a stride of 100 ms. The mean value of all
cropped data served as the final prediction [17]. CSP projects
the signal into a novel space and is designed to maximize
the variance for one class while simultaneously minimizing
it for another. Random forest (RF), support vector machine
(SVM) and linear discriminant analysis (LDA) were selected
as classifier for CSP [18], [45]. FBCSP operates by extracting
features from EEG signals that have been processed through
multiple bandpass filters based on CSP to identify and select
the most discriminative features from each filter bank. For
experiments, LDA was selected as classifier [18]. For evaluat-
ing the proposed methods, we selected VGG16 [46], tiny and
small DeiT, which respectively have 13.8 M, 5 M and 22 M
trainable parameters. We opted for VGG16 as it is widely
recognized as a baseline classifier. We conducted training until
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TABLE II
RESULTS OF BASELINE EVALUATION. PARENTHESES“()” ENCOMPASS

STANDARD DEVIATION. SUPERSCRIPTS v , t AND s DENOTE VGG16,
TINY AND SMALL DEIT. MI AND SI DENOTE INDIVIDUAL DATASETS. |v

DENOTES THE p-VALUE OF VGG16 IS GREATER THAN 0.05. THE

HIGHEST PERFORMANCES ARE HIGHLIGHTED IN BOLD. CHANCE

LEVELS OF MI AND SI ARE 33.33 AND COMBINED IS 16.67

500 epochs and selected the network weights that yielded
minimal loss post 200 epochs [19]. Here, an ‘epoch’ refers
to a complete pass of the dataset through the algorithm. For
baseline evaluation we utilized Adam optimizer [47] with a
learning rate set at 0.001, the mini-batch size at 128 and
weight decay at 0.01. During calibration, we performed train-
ing using an SGD optimizer along with early stopping [48].
Additionally, we set 500 epochs for knowledge distillation
with a default temperature (=1).

C. Calibration and Test Evaluation Conditions
Given that the baseline dataset comprises data originating

from 15 individuals, it yields 15 separate network weights.
This procedure is exclusively conducted during session 1, and
only one network weight is selected per test. The initially
selected network weights are then calibrated and applied to
tests over the subsequent 10 sessions. Therefore, the network
weights used in the final session are the final weights that have
been calibrated to be personalized for each individual subject.

V. RESULTS AND DISCUSSION

A. Baseline Evaluation
Table II shows the results of the baseline dataset and

individual paradigms. In single paradigm classification, the
class-specific feature extractor conducts evaluation. Given
ERA-CNN’s two-branch architecture, we selected the shared
layer for individual paradigm classification. Transformer-based
methods showed around 65% classification accuracy. EEG
Conformer [22] outperformed other methods in MI clas-
sification (67.44%). CSP-based methods showed a slightly
higher accuracies compared to the chance level (33.33) and
demonstrated relatively lower performance compared to other
techniques. EEGNet [19], as a CNN architecture, surpassed
in SI classifications. The results indicate that SI classifica-
tion performance outstripped that of MI classification. The
proposed methods showed comparable results with other
CNN-based approaches; however, they notably outperformed
others when applied to a combined dataset. Compared to
individual paradigm classifications, the performance of com-
parison group declined by up to 20%, while the proposed

methods maintained consistent results with the exception of
VGG16. ERA-CNN [43] achieved top-ranking performance
among the comparison group albeit by a small margin but was
still 13% less effective than the proposed methods. The inde-
pendent samples t-test was conducted on the combined dataset
and VGG16 only showed a p-value greater than 0.05 against
ERA-CNN, MCNN and EEG Conformer, while the rest of the
proposed methods showed statistically significant performance
differences.

B. Calibration Evaluation
Table III presents the results on calibration dataset. Remark-

ably, the proposed methods not only achieved superior
performance on the calibration dataset but also demonstrated
consistent performance improvement as sessions progressed.
This suggests that the proposed methods continued to accu-
mulate knowledge from each subject throughout the session
progression. They exhibited performance enhancements that
appeared to be personalized to individual subjects. Conversely,
other techniques displayed inconsistent performances irre-
spective of session progression. CSP-based methods showed
approximately 19%, revealing insufficient capacity. Among
CNN-based methods, MCNN [20] recorded the highest per-
formance and least degradation; it was designed specifically
to expand input latent space. In comparison with base-
line evaluations, ERA-CNN’s calibration performance was
found to be less efficient and inferior to other CNN-based
methods - potentially due to underfitting considering its three
CNN modules and limited calibration data. In this evaluation,
EEG-Transformer and Conformer [44] achieved marginally
superior performance among comparison group. The proposed
methods reported statistically significant differences compared
to the other methods (p-values are less than 0.05).

C. Test Evaluation
The results are depicted in Fig. 3. The test was conducted

before knowledge distillation of the proposed methods. Cal-
ibrated weights of each method were used for test. Notably,
our proposed methods exhibited superior performance across
most sessions and demonstrated a consistent upward trend in
performance as sessions progressed. In particular, the proposed
methodt significantly outperformed comparative methods.
Other methods showed fluctuating performances depending
on the session at hand. Excluding CSP-based methods, other
techniques recorded comparable performances at the initial
session with MCNN marginally outperforming others. As data
accumulated over subsequent sessions, an improvement in
performance was observed for the proposed methods aligning
with an upward trend; however, such a pattern was absent
within the comparison group irrespective of data accumulation.

The scenario for the test evaluation consisted of picking
up an object and bringing it to the user by performing the
6-class classification. The results demonstrate the possibility
of controlling a robotic arm in real life by combining MI and
SI. This can be utilized for the rehabilitation of patients, such
as those with stroke, because these paradigms are based on the
principle of activating corresponding brain areas by having the
user imagine specific actions or speech. This can be used for



2800 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

TABLE III
RESULTS OF CALIBRATION BETWEEN THE PROPOSED AND COMPARISONS METHODS. PARENTHESES “()” DENOTES STANDARD DEVIATION.

SUPERSCRIPTS v , t AND s DENOTE VGG16, TINY AND SMALL DEIT. THE HIGHEST PERFORMANCES

ARE DENOTED IN BOLD. CHANCE LEVEL IS 16.67

Fig. 3. Results of test evaluation. Superscripts v, t and s denote
VGG16, tiny and small DeiT. The proposed methods outperformed the
comparative methods in all sessions, with the exception of the initial
sessions involving the VGG16.

training the brain activity patterns and characteristics of stroke
patients and it can help recover lost functions by activating
related areas of the brain through imagination alone, even if
the patient cannot actually move or speak [49]. For example,
a patient who has lost the ability to move a certain part of
the body or the ability to speak due to a stroke can activate
the corresponding neural circuits in the brain by imagining
movement or speech, which can help regain motor skills.
Thus, imagery-based BCIs can be very effective tools in the
rehabilitation of stroke patients [50], [51], [52], [53].

D. Ablation Study
Several studies were conducted to explain the effect of

individual design choices and to offer a more comprehensive
understanding through in-depth analysis.

TABLE IV
RESULTS OF WITH AND WITHOUT EACH FEATURE EXTRACTOR

TABLE V
PERFORMANCE COMPARISON BETWEEN WITH AND WITHOUT DATA

AUGMENTATION TECHNIQUES

1) Effect of Feature Extractors: We hypothesize that a clas-
sifier, when supplied with a more expansive input latent space,
can be trained more effectively for superior classification
performance. To validate this, we conducted ablation studies
on the baseline dataset by selectively excluding certain fea-
ture extractors while preserving the size of the feature input
through zero-padding features where necessary. As demon-
strated in Table IV, the lowest accuracy was observed when
fcs was omitted; however, when other feature extractors were
added to fcs , the classification performance improved com-
pared to using fcs alone. In other words, while fcs contributes
the most to performance, it yields the best results when used
in conjunction with other feature extractors. This confirms
that expanding the input latent space contributes to improving
classification performance.

Fig. 4 visualizes features by reducing them to a lower
dimension using t-distributed stochastic neighbor embedding
(t-SNE) [54]. Interestingly, even though z ps formed more
distinct clusters per class than ziv as depicted in Fig. 4,
it was determined that ziv had a greater contribution towards
enhancing performance according to Table IV. In addition,
while it seemed that z ps formed clearer clusters than zcs,
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Fig. 4. t-SNE visualization of features. (a) class-specific zcs, (b) EEG-invariant ziv, (c) paradigm-specific zps and (d) final features of baseline
training through t-SNE. Compared to (a), (b) seems to form a single cluster rather than class-wise clusters (i.e. shared or invariant features of
all EEG signals). On the other hand, two paradigms are clearly distinguished in (c). Final features of DeiT form distinct class-wise clusters more
pronounced than those in (a).

this did not directly affect classification outcomes. It can be
deduced that since the objective function of z ps is oriented
towards paradigm classification rather than class-specific dis-
tinction, it has less relevance to classification tasks. However,
integrating all three features, zcs , ziv and z ps , generated more
vital information compared to using only zcs , as depicted in
Fig. 4(d).

Moreover, we observed that while simple data augmentation
techniques can decrease each feature extractor’s performance,
they improve overall classifier performance as shown in
Table VI. Despite the increased loss of fiv and performance
decrease in the other two feature extractors with augmented
data, the performance of fθ improved. These results suggest
that utilizing feature input could serve as an approach to
mitigate constraints imposed by unclear ground truth of EEG
signals.

2) Effect of Data Augmentation: We combined data from
different paradigm datasets and their included subjects, despite

the potential for large distribution differences among the data.
Additionally, we introduced data augmentation techniques to
ensure that state-of-the-art machine learning methods could be
sufficiently trained. For this purpose, we introduced feature
input. One advantage of using feature input is that it allows
EEG signals to be treated like images. We employed data
augmentation techniques such as adding noise and flipping
over to dataset. Given the characteristics of EEG signals,
using raw augmented data for training would likely be ineffi-
cient [55]. However, it’s crucial to verify the impact of data
augmentation techniques on feature inputs. An ablation study
was conducted comparing performance with and without the
application of noise addition and flipping over techniques.
ERA-CNN was chosen to evaluate the effect of raw augmented
data because it exhibited superior performance among compar-
ison methods on the baseline dataset. The results are presented
in Table V. Data augmentation techniques resulted in per-
formance improvements of 4.14%, 9.62% and 10.57% with
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Fig. 5. Performance comparison between with and without network expansion and selective initialization. (a) network expansion with random and
selective initialization and expansion only, (b) random and selective initialization without network expansion. Selective initialization results in superior
performance in the initial session compared to other methods in both (a) and (b). Random initialization exhibits a more pronounced performance
increase than no initialization. In the absence of network expansion, performance is inconsistent, mirroring trends observed in other comparison
groups.

TABLE VI
EFFECTS OF DATA AUGMENTATION TECHNIQUES ON INDIVIDUAL

FEATURE EXTRACTORS WHEN USED WITH TINY DEIT

the proposed methods. However, ERA-CNN only showed a
slight performance improvement (0.49%). Despite an increase
in data volume, this negligible difference in ERA-CNN’s
classification performance suggests that directly using simply
modulated EEG signals for training may not be effective.
These results demonstrate that if data augmentation techniques
are used in conjunction with feature input, state-of-the-art
machine learning methods can be effectively utilized even
under conditions where the data distribution is large and the
quality is inconsistent and when there is a small amount of
data.

3) Network Expansion and Selective Initialization: Even with
meticulous calibration steps, the calibration performance of
the network can be degraded due to large data distributions
or intricate characteristics as shown in Table III. To mitigate
this, a network capacity expansion technique was introduced.
We designed a network that only expands fcs to increase
its capacity while maintaining low computational complexity.
Experimental results demonstrate that network expansion leads
to the best and progressively improved performance in both
calibration and test. Therefore, this demonstrates that our
proposed method enables reliable EEG-based robotic arm con-
trol by facilitating session-by-session calibration. Table VII

presents the calibration performance of the proposed methods
without network expansion. They show relatively consistent
performance but no gradual improvement. It is confirmed that
selective initialization prevents severe performance degrada-
tion and network expansion contributes to the improvement of
classification performance by increasing the network capacity
during the calibration. Finally, this demonstrates that network
expansion can effectively calibrate data with varying distribu-
tions across sessions. Despite potentially higher computational
costs, it suggests that network expansion could be a feasible
strategy for performance improvement with appropriate cost-
reduction measures.

Additional experiments were conducted on the calibration
dataset to assess the contribution of both network expansion
and selective initialization. Fig. 5 illustrates the classification
performance of network with different settings of expan-
sion and initialization. As per Fig 5(a), gradual performance
improvement was observed with network expansion. Selective
initialization yielded higher initial session performance com-
pared to other settings. While random and no initialization
also led to gradual improvements, recording a steep rise
over selective initialization; however, they displayed incon-
sistent performance trends with several sessions experiencing
drops in efficiency. In contrast, selective initialization showed
steadily improving performances. Without employing network
expansion, the proposed methods exhibited similar trends as
comparison group as shown in Fig 5(b). Nevertheless, selec-
tive initialization results in smaller fluctuations in performance
compared to random initialization. Selective initialization
recorded higher initial session performances than random ini-
tialization did. Experimental results affirm that both selective
initiation and network expansion are critical considerations for
effective network calibration.
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TABLE VII
CALIBRATION PERFORMANCE WITHOUT NETWORK EXPANSION. TINY AND SMALL DENOTE THE SIZE OF DEIT

TABLE VIII
THE BEST ACCURACY ACCORDING TO THE TRAINING EPOCH ON THE

BASELINE DATASET

4) Performance Difference Between Tiny and Small DeiT:
In all experiments, tiny DeiT performed better than small
DeiT, especially in test, achieving a more robust performance
than other methods. Both networks have the same number of
layers, but small DeiT is a larger network in terms of the
number of heads and embedding dimension. It is known that
large networks are more easily optimized without decreasing
generalization performance [56]. Given this, it was expected
that the small DeiT would converge faster [57], [58], but
this was not the case according to Table VIII. Despite apply-
ing data augmentation techniques, there is a possibility that
underfitting occurred because the small DeiT has four times
more parameters than the tiny DeiT. While the tiny DeiT
showed convergence from the 400 epoch, the small DeiT only
demonstrated its best performance upon reaching 500 epochs.
By the point of 600 epochs, both models started to show
signs of performance degradation; thus even if training were
to continue further, there is little room for improvement
in small DeiT’s performance. Contrary to our expectations,
this suggests that the amount of data was not sufficient to
train small DeiT effectively. Despite these findings, further
investigation into this phenomenon is necessary.

VI. CONCLUSION

Our study presents a robust method that consistently
improves classification performance across multiple sessions,
pioneers the combination of two intuitive endogenous BMI
paradigms for intuitive robotic arm control and confirms
through ablation studies the efficiency of this approach for
practical EEG-based robotic arm control using advanced
machine learning methods. To achieve this, we propose the
utilization of feature input and network expansion techniques
to obtain well-optimized network weights capable of accom-
modating variations in EEG patterns and new users. The
feature input expands the latent space of classifiers, effectively
maximizing the benefits of data augmentation techniques to
overcome the inherent instability of EEG signals. Furthermore,
network expansion enables upward performance trends with
faster convergence. In all conducted experiments, the proposed
methods consistently outperform comparison group, particu-
larly during the test, demonstrating consistent performance
across multiple sessions. However, it is crucial to investigate
the underlying reasons for observed performance differences

based on network size. Considering the amount of available
calibration data, it remains uncertain whether the small DeiT
model has been adequately trained. Therefore, one aspect
of our future work will involve exploring the effects of
network size and overparameterization in order to develop
an iterative calibration pipeline that ensures stable perfor-
mance. Additionally, EEG signals contain valuable high-level
cognitive information pertaining to control speed, force and
trajectory associated with robotic arm movements. However,
current technologies predominantly focus on classifying EEG
signals and subsequently controlling robotic arms based on
those classifications. Consequently, one area we intend to
explore in future research is interpreting higher-level cognitive
information derived from EEG signals.
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