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Kinematic and Kinetic Gait Features Associated
With Mild Cognitive Impairment in

Parkinson’s Disease
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Federico Di Filippo, Paolo Barone, Maria Romano , Francesco Amato , and Carlo Ricciardi

Abstract— Mild cognitive impairment (MCI) and gait
deficits are commonly associated with Parkinson’s disease
(PD). Early detection of MCI associated with Parkinson’s
disease (PD-MCI) and its biomarkers is critical to managing
disability in PD patients, reducing caregiver burden and
healthcare costs. Gait is considered a surrogate marker for
cognitive decline in PD. However, gait kinematic and kinetic
features in PD-MCI patients remain unknown. This study
was designed to explore the difference in gait kinematics
and kinetics during single-task and dual-task walking
between PD patients with and without MCI. Kinematic
and kinetic data of 90 PD patients were collected using
3D motion capture system. Differences in gait kinematic
and kinetic gait features between groups were identified
by using: first, univariate statistical analysis and then a
supervised machine learning analysis. The findings of this
study showed that the presence of MCI in PD patients is
coupled with kinematic and kinetic deviations of gait cycle
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which may eventually identify two different phenotypes
of the disease. Indeed, as shown by the demographical
and clinical comparison between the two groups, PD-MCI
patients were older and more impaired. Moreover, PD-
MCI kinematic results showed that cognitive dysfunction
coexists with more severe axial symptoms and an increase
postural flexion. A lack of physiological distal-to-proximal
shift in joint kinetics was evidenced in the PD phenotype
associated with cognitive impairments.

Index Terms— Gait analysis, kinematics, kinetics, Parkin-
son’s disease, mild cognitive impairments.

I. INTRODUCTION

PARKINSON’S disease (PD) represents a fast-growing
neurodegenerative disease, with a worldwide prevalence

of more than 6 million individuals [1]. Neuronal loss in the
substantia nigra, leading to a reduction in dopamine production
in the striatum, is the neuropathological feature of PD [2].
Moreover, age and gender, genetics and environmental factors
may contribute to the pathogenesis of PD [3]. Generally, PD is
defined as a motor disease clinically characterised by the
presence of bradykinesia in combination with at least one of
resting tremor and rigidity. In many cases, PD patients may
have other motor deficits, including reduced facial expression,
postural instability and gait disturbance, as well as deficits
of speech and handwriting [4]. However, a growing body of
evidence demonstrated that mental non-motor symptoms are
extremely common in PD. These include mood alteration,
such as anxiety, depression, lack of motivation and a
reduced cognitive capacity, as well as fatigue and sleep
disturbance [5], [6].

Cognitive impairment is known to be a common com-
plication, which appears in a large portion of PD patients
during the course of the disease. In particular, mild cognitive
impairment (MCI) of varying severity is considered an
intermediate state between normal cognition and PD dementia
(PDD) [7], [8], [9].

Specific neuropsychological tests and cut-off scores are
employed to assess the cognitive domains commonly affected
in PD, namely executive, attention, memory, language, and
visuospatial domains [10]. MCI in PD (PD-MCI) is diagnosed
when one or more cognitive domains are affected, without
significantly interfering with functional independence [10].
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Even though previously MCI was considered a symptom
occurring later during the course of PD, several scientific
research have shown that PD-MCI can arise in the early
stages of the disease [12], [13]. However, PD-MCI prevalence
increases while PD advances, thus contributing to reduce the
quality of life with the progression of the disease.

Gait analysis, which is used for both clinical purposes and
research, provides useful information concerning quantitative
gait features which are usually organized in spatiotemporal,
kinematic and kinetic parameters [14], [15], [16]. Particularly,
kinematic parameters describe angular displacement based
on the sagittal, coronal and transverse planes for various
joints such as the ankle, knee, hip and pelvis area, while
kinetic parameters give details on the forces and their effect
on motion [17]. A few studies have also evaluated whole
body kinematics in healthy and pathological populations,
using new marker set protocols involving head, upper limb
and spinal curves in orthostatic posture [18] and during
walking [19], [20]. Indeed, there has been a significant
progress in the use of gait analysis both to quantitatively
evaluate the relationship between executive functions and
walking in healthy population [21], [22].

Recent findings reveal that gait analysis can be considered
as an effective strategy for monitoring and assessing the nature
and the severity of the disease, by distinguishing different PD
phenotypes as well as different types of parkinsonism [23],
[24], [25], [26]. Furthermore, gait is no longer considered
an automated motor task but an activity where executive
function, attention and visuospatial abilities play an important
role [27]. Alterations in one or more of these cognitive
domains may contribute to gait disturbances. Therefore, the
interplay between cognitive impairment and gait abnormalities
has received increasing attention in the last few decades.
Indeed, there has been a significant progress in the use of
gait analysis for identifying gait parameters which are strongly
correlated with PD-MCI [28], [29], [30], [31].

In previous studies, spatiotemporal parameters of PD
patients with and without MCI (PD-MCI and PD-noMCI,
respectively) have been widely investigated. The findings
have supported the notion that PD-MCI patients show
higher postural instability and gait disorders than PD-noMCI,
especially during a dual-task [29], [32].

A growing number of studies have investigated changes in
gait kinematic and kinetic parameters of PD patients during
different gait conditions [33]. Most of them describe the
kinematic and kinetic patterns of PD patients, with particular
attention on the ankle joint. Morris et al. assessed the gait
parameters of a PD patient during various conditions. The
patient was able to improve the kinematic parameters with
the aid of an external visual cue, but he continued to show
abnormality in the kinetics, such as a reduced ankle power
generation at push-off [34]. Lewis et al. observed a reduced
ankle plantarflexion at toe-off and reduced ankle power
generation at baseline when comparing PD patients with age-
matched healthy subjects [35].

The use of machine learning (ML) approaches for the
automated recognition of gait-pattern has been growing
exponentially [36], [37], [38]. An increasing number of studies

is employing ML models on spatiotemporal gait parameters for
the recognition of PD, the classification of different PD stages
and the identification of a subset of spatiotemporal variables
that could reliably describe the relationship between cognitive
domains and gait [39], [40], [41], [42].

However, the automated classification on gait kinematic
and kinetic parameters in PD has been poorly discussed
in the previous literature. Martinez et al. used pressure
insoles to quantify force characteristics of mild PD patients
during the On clinical status and reached a classification
accuracy of 64.1% using discriminant analysis [43]. Tahir et al.
classified PD gait and normal subjects using kinematic and
kinetic parameters as input of an artificial neural network.
An accuracy of 68.8% was reached for the kinematic
parameters and 71.9% for both the kinetic parameters and the
fusion of the two [44].

In the present study, the gait analysis of a large cohort of PD
patients was assessed using a 3D optoelectronic system. An ad
hoc software was implemented to extract specific kinematic
and kinetic parameters of walking (including angular joint
motions, pelvis and trunk movements, ground reaction forces
(GRF), joint moment and power) during three different gait
conditions: single-task (i.e., free walking only), motor dual-
task and cognitive dual-task.

The aim of this scientific study was two-fold:
1. The assessment of the interactions between gait kinematic

and kinetic parameters in single and dual-task of PD-MCI
and PD-noMCI patients in order to confirm the hypotheses
that PD-MCI and PD-noMCI have different gait-patterns
not only in terms of spatiotemporal parameters, as widely
investigated [24], [25], [28], [35], [36], [40], but also in
terms of kinematic and kinetic parameters. The analysis was
performed on both the complete dataset including 90 patients
and a reduced age-matched dataset including 47 patients in
order to further demonstrate the independence of our findings
from age.

2. The use of date-driven ML-based approaches to test the
hypothesis that gait kinematic and kinetic parameters can be
useful to discriminate PD-MCI from PD-noMCI.

II. METHODS

A. Study Population
The overall study population was composed by 90 PD

patients consecutively enrolled at the Center for Neurode-
generative Diseases of the University of Salerno, Italy, based
on inclusion and exclusion criteria published elsewhere [41].
The diagnosis of PD was confirmed by a movement disorder
specialist according to the MDS clinical diagnostic criteria
for PD [45]. The severity of motor and non-motor symptoms
of PD patients was evaluated using the four parts of the
Movement Disorder Society Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) [45]. Disease staging was
assessed with Hoehn & Yahr (H&Y) scale [46]. According to
the MDS diagnostic criteria for MCI in PD, among enrolled
patients, 40 of the enrolled patients were PD-MCI and the rest
were PD-noMCI [11]. For each PD patient, the main clinical
and demographic characteristics were recorded to evaluate
patients’ clinical conditions: age, body mass index (BMI),
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disease duration, levodopa-equivalent daily dose (LEDD),
H&Y score and MDS-UPDRS (for each subscore and total
score).

B. System Description
Gait kinematic and kinetic variables were assessed while

patients were during the On state. Kinematic data were
recorded using an optoelectronic system (SMART-DX 400,
BTS-Bioengineering, Italy), consisting of six video cameras
working at a sampling rate of 100 Hz and located
around a calibrated volume of 8 m x 5 m x 3 m.
Anthropometric measurements were taken for each subject
and then 22 passive retro-reflective markerswith a diameter
of 14 mm were attached bilaterally to the following bony
landmarks, according to Davis protocol [47]: the acromion,
anterior superior iliac spine, great trochanter, lateral femoral
condyle, fibula head, lateral malleoli, metatarsal head, and
heel. Individual markers were attached between the 2nd and 3rd

sacral vertebras, and on the 7th cervical vertebra. Moreover,
sticks markers were placed at 1/3 of the length of femur
and leg segments. These measurements were used for the
estimation of internal joint centers and allowed to calculate
the kinematics of the trunk and lower limb.

Kinetic data were measured by means of two platforms (60
cm x 40 cm) embedded in the middle of a 3m walkway. Both
platforms were positioned one by one, and the participants
positioned one foot per force plats.

C. Experimental Procedure
The gait tests were performed during the On state of

the medication cycle (1-2h after taking the morning dose),
with a double aim: 1. To reduce the confounding role of
different motor states; 2. To capture dopamine-resistant gait
dysfunctions, being these ones more strictly associated with
cognitive decline in PD [29], [32], [48]. Subjects were
instructed to walk at their usual self-selected speed and
performed three experimental gait tasks: a single task (normal
walking (GAIT)) and two commonly employed dual-task
procedures (motor and cognitive dual-task) [49], [50]. In the
motor dual-task (MOT), subjects walked at their self-selected
speed while carrying a tray with 2 glasses filled with water.
In the cognitive dual-task (COG), subjects walked at their
self-selected speed while serially subtracting the number
7 starting from 100. All patients completed four walking
trials for each task from which spatiotemporal, kinematic, and
kinetic data were computed. For each subject, the mean of
the four trials was calculated to improve the reliability of
the data.

D. Data Elaboration
Dedicated software (Smart Clinic, BTS Bioengineering,

Milan, Italy) was used to define gait cycle events and to
process raw data. The kinematic movements of joints based
on sagittal, coronal and transverse planes were computed.
Particularly, trunk and pelvic tilt, hip and knee flexion-
extension and ankle dorsi-plantarflexion were extracted on the

Fig. 1. Kinematic data at (A)hip, (B) knee and (C) ankle across
the gait cycle. Positive angles point out joint flexion and dorsiflexion,
while negative angles indicate extension and plantarflexion. The red
line represents the left signal; the green line represents the right signal,
and the grey area represents control range. The vertical line shows the
transition from the stance to the swing phase.

Fig. 2. Kinetic data at (A) hip, (B) knee and (C) ankle across the gait
cycle. Positive angles point out joint extension and plantarflexion, while
negative angles indicate flexion and dorsiflexion. The red line represents
the left signal; the green line represents the right signal, and the grey
area represents control range. Ground reaction force at (D) antero-
posterior, (E) medio-lateral and (F) vertical. The vertical line shows the
transition from the stance to the swing phase.

sagittal plane. Trunk and pelvic obliquity and hip adduction-
abduction were computed on coronal plane. Finally, trunk and
pelvic area, and hip and knee rotation were computed on
transversal plane. GRF were recorded, by walking on the force
plates.

In addition, joint internal moments (M) and powers (P) were
computed by combining kinematic and kinetic parameters.
These data were normalized with respect to the subject’s body
mass (in kilograms):

Normalized M =
Moment (N∗m)

Body weight (K g)
(1)

Normalized P =
Power(W )

Body weight (K g)
(2)

For each of the joint movements, Smart Clinic software
extracted the right and left gait signals, as shown in Fig 1
and Fig 2.

The right and left signals of the joint movements were given
in input to an ad hoc algorithm implemented in MATLAB
(v.R2023a) for the computation of the quantitative kinematic
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Fig. 3. Graphical representation of gait cycle phases for A) Hip, B) Knee
and C) Ankle joints. The vertical red line represents initial contact phase,
the vertical green line represents mid-stance phase, and the vertical
blue line represents mid-swing phase.

and kinetic parameters of each task (GAIT, MOT & COG)
during specific gait cycle phases (Fig 3). The algorithm
consisted of the following steps:
1. The right and left gait signals (Fig 1 and Fig 2) of each

joint movement were averaged and a MEANSignal was
obtained.

2. Specific gait cycle phases were individuated in
MEANSignal (Fig 3):
- Initial contact was defined as the frame in which the

subjects’ heel first came in contact with the floor.
Generally, it is in the first 10% of gait cycle.

- Stance phase was defined as the frame in which the
subjects’ foot is in contact with the floor. Generally, it is
between 20% and 60% of gait cycle.

- Swing phase was defined as the entire frame in which
subjects’ foot is in the air. Generally, it is between 60%
and 80% of gait cycle.

3. The maximum and minimum of each MEANSignal were
computed in the above-mentioned gait cycle phases (Fig 3).

4. Range of Motion (ROM) was obtained as the difference
between the maximum and minimum angle of movement
that a joint can make during the gait cycle.

Regarding the kinematic variables, the following were
computed: maximum and minimum of the pelvic tilt (antiver-
sum/retroversum, respectively), rotation (internal/external,
respectively) and obliquity (high and low, respectively); the
maximum (at initial contact and in swing phase) and minimum
(in stance phase) of the hip flexion-extension, adduction-
abduction and internal/external rotation; maximum (at initial
contact and in swing phase) and minimum (at stance phase) of
the knee flexion-extension and internal/external rotation, and
maximum (at stance phase) and minimum (at initial contact
and swing phase) of the ankle dorsi-plantarflexion (Fig 3).
Additionally, ROM was estimated for hip and knee flexion-
extension and ankle dorsi-plantarflexion.

Regarding the kinetic variables, the following were
computed: moment in flexion-extension (at stance phase) for
hip and knee joint, moment in flexion-extension (at loading
response and at stance phase) for ankle joint; power generated
and absorbed in stance phase for each joint and the medio-
lateral (M-L), antero-posterior (A-P) and vertical (V) GRF.

Finally, an entire dataset with 45 quantitative kinematic
parameters and 15 quantitative kinetic parameters was
obtained for each task (GAIT, MOT & COG). Fig 4 shows
the 3D reconstruction of the patient in a calibrated volume in
the sagittal and frontal plane.

Fig. 4. Patient 3D reconstruction in a calibrated volume in the sagittal
and frontal plane. Red circles show the angular joint movements for hip,
knee and ankle.

Fig. 5. Workflow of the ML analysis.

E. Statistical Analysis
A univariate statistical analysis was conducted by using

SPSS. The Kolmogorov-Smirnov test and the Levene’s test
were used to evaluate the normality distribution of the
data and the homoscedasticity of variances between groups
for normally distributed data, respectively. The normally
distributed data underwent a t-test for independent samples;
otherwise, a Mann-Whitney test was employed [51]. An α =

0,05 significance level was used on clinical and demographical
variables and on kinematic and kinetic parameters in order to
find differences between PD-MCI and PD-noMCI patients.

F. Classification and Features Selection
Statistical analysis was followed by a supervised ML

approach which was implemented with MATLAB (v. R2023a).
Fig 5 shows the ML workflow.

At the beginning, a classification analysis was conducted
separately on kinematic and kinetic parameters for each
single task (GAIT, MOT & COG). Based on literature [41],
[52], [53], [54], different ML algorithms widely reported
in the classification of PD gait analysis were employed.
In the current study, seven classifiers based on various
mathematical principles were used in order to determine which
one performed the best results on gait data. Algorithms used
gait kinematic and kinetic parameters as predictor variables
and disease cognitive status (PD-MCI or PD-noMCI) as
responsible variable. Leave-one-out cross validation (LOO-
CV) was performed to validate the predictive algorithms.



2680 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

LOO-CV is a special case of k-fold cross validation, where
the number of folds is equal to the number of instances in
the dataset [55]. This effectively resulted in ‘k=90’ folds,
where ‘k’ represents the total number of data points. Thus,
ML algorithm is applied for each instance belonging to the
dataset, which is used as a test-set while all other instances
are used as a training set [56].

The ML algorithms are briefly reviewed as follow:

• Decision Tree (DT) is the easiest non-parametric
algorithm know in literature due to its simplicity,
interpretability and effectiveness. Indeed, DT does not
require much effort for data preparation and the
normalization of data is not always required. Input data
are recursively split into roots while leaves represent class
labels [57], [58].

• Random Forest (RF) is the most popular ML algorithms
that belongs to the family of ensemble methods. RF is a
combination of DT classifiers where the random vectors
generated for each tree are identically distributed and each
tree has a response variable for each input. Once the trees
are grown, the most recurrent response variable is applied
to the outputs (i.e., class labels) [57], [59].

• Gradient boosted tree (GBT) is a tree-based algorithm
that belongs to ensemble ML classifiers. The principle of
this algorithm is to turn weak learners (weak decision
trees) into strong learners that predict with greater
accuracy. Each single tree is added to the model and each
one is built considering the errors of previous trees [57].

• Support Vector Machine (SVM) is a ML algorithm widely
used because of its high performance. The underlying
idea of SVM classifiers is to find the best hyperplane that
separates two classes of the data. The best hyperplane
refers to the one with the largest distance between the
two classes [57], [60].

• K-nearest neighbours (KNN) is another non-parametric
algorithm for the classification. The principle of KNN
is that each instance is classified based on the closest
training samples present in the space. To determine the
nearest points or the closest groups can be used a distance
metric, such as the Euclidean distance or Manhattan
distance [57].

• Linear Discriminant Analysis (LDA), in a binary analysis,
is a ML algorithm used to find a linear combination
of features that characterizes or separates two classes
of samples. LDA works by modelling the distribution
of each class using Gaussian distribution. LDA is
computationally efficient with high-dimensional data
using a small number of training samples [57].

• Naïve-Bayes (NB) is one of the ML algorithms belonging
to the family of “probabilistic classifiers” based on
applying Bayes theorem. This algorithm works by
computing the probability of each class, and then
selecting the class with the highest probability as the
predicted class [57], [61].

The very large number of kinematic (N=45) and kinetic
parameters (N=15) may lead to overfitting due to the
dataset dimensionality. Therefore, feature selection methods

offer an advanced approach to select information-full feature
subset [62].

In this study, a subsequent investigation by employing
features selection method was used on the entire dataset
to reduce the dimensionality of the data and find the best
subset of kinematic and kinetic features among the three gait
tasks [62], [63]. For this second analysis, as a preliminary
step, a hold-out cross validation was used to split the dataset
into training (80%) and testing (20%), and then the wrapper
feature selection method was employed. Wrapper method
starts training by using a subset of features and then adds
or removes a feature to select the best subset of features to
the optimal results [62].

Finally, the performance of the proposed algorithms was
evaluated through several metrics [64]:

• Specificity (Sp): capacity to correctly detect subjects not
belonging to the group under examination:

Sp =
T N

T N + F P
(%) (3)

• Sensitivity (Se): capacity to detect correctly subjects
belonging to the group under examination:

Se =
T P

T P + F N
(%) (4)

• Precision (Pr): a measure of the positive patterns
correctly predicted from the total predicted patterns in
a positive class:

Pr =
T P

T P + F P
(%) (5)

• Accuracy (Ac): the ratio of correct predictions over the
total number of records:

Ac =
T P + T N

T N + F P + F N + T P
(%) (6)

where TP, TN, FN, and FP denote true positives, true
negatives, false positives, and false negatives, respectively.

In addition, we used a further metric, namely the
Area Under the Curve Receiver Operating Characteristic
(AUCROC), which is a qualitative indicator for the binary
classification ranging from 0 to 1 with 0.5 indicating a
classification not better than random guessing.

III. RESULTS

A. Statistical Analysis
A univariate statistical analysis was carried out on both

demographic and clinical variables and on the kinematic
and kinetic parameters, separately. However, this analysis
was initially carried out on the complete dataset (comprising
90 patients). Subsequently, in order to demonstrate that
differences in kinematic and kinetic variables were not
dependent on age but rather on the patients’ pathological
condition, a statistical analysis was conducted on a reduced
dataset (comprising 47 patients) matched for age (Table I).

From the analysis on the complete dataset, the two groups
differed for age (p = 0.003), H&Y scores (p = 0.033),
MDS-UPDRS-Part III (p = 0.039) and, consequently, showed
a trend toward significance on total MDS-UPDRS (p =

0.078) (Table I). The same significances among clinical and
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TABLE I
COMPARISON OF DEMOGRAPHIC AND CLINICAL FEATURES BETWEEN PD-MCI AND PD-NOMCI THROUGH A UNIVARIATE STATISTICAL ANALYSIS

(MEAN ± STANDARD DEVIATION) ON BOTH COMPLETE AND AGE-MATCHED DATASET. SIGNIFICANT P-VALUES ARE HIGHLIGHTED IN BOLD.
SIGNIFICANCE LEVEL AT 0.05

demographic variables, except for age, were present in the
reduced dataset.

Mean values and standard deviations of kinematic and
kinetic features for the three gait trials, showing significant
p-values or statistical trends (p-values < 0.1) when
comparing PD-MCI and PD-noMCI groups, are reported in
table II and III. In the supplementary materials, tables S1 and
S2, all p-values for each single variable are shown.

1) Kinematics: The kinematic differences between the study
groups were more pronounced on sagittal plane in different
angle joints and in all three tasks (GAIT, MOT and COG) as
shown in Table II.

PD-MCI patients walked with a markedly increased pelvic
flexion on sagittal plane, as displayed by the increase on both
antiversum and retroversum pelvic tilt (p=0.016/p= 0.018 in
GAIT, p=0.027/p=0.009 in MOT and p=0.011/p=0.012 in
the COG task, respectively). In addition, pelvic tilt ROM
was significantly increased for PD-MCI in the GAIT task
(p=0.024).

Likewise, PD-MCI patients showed increased hip flexion
during the whole cycle and reduced hip extension during
stance phase. In particular, the hip flexion was significantly
increased in GAIT and MOT tasks at initial contact (p=0.007,
p=0.044, respectively) as well as in all three tasks (p=0.006,
p=0.014, p=0.053, respectively) during swing phase, while
hip extension in stance phase was significantly reduced
(p=0.002, p=0.022, p=0.004, respectively). Moreover, on the
transversal plane, the hip internal-external rotation ROM
was increased in all gait tasks with statistical differences
in the GAIT task (p=0.018) and statistical trend in dual-
tasks (p=0.087 in MOT and p=0.074 in COG, respec-
tively), thus indicating that PD-MCI tend to increment hip
internal-rotation.

Similarly, PD-MCI patients showed a marked increase
of knee flexion at initial contact in gait conditions other
than COG task (p=0.047 in GAIT, p=0.039 in MOT tasks,
respectively) in combination with reduced knee extension
in mid-stance in GAIT, MOT and COG tasks (p=0.009,
p=0.002 and p=0.013, respectively) and a reduced knee ROM
(p=0.004) in the COG task. When evaluating the knee joint
on the transversal plane, PD-MCI showed a reduced value

in the maximum of the knee internal-external rotation (p=

0.018, p=0.018 and p=0.043, respectively in GAIT, MOT and
COG task), thus indicating that PD-MCI tend to adopt a more
pronounced external-rotation as compared with PD-noMCI.

Regarding the ankle joint, although the maximal dorsal
flexion did not differ between the groups, PD-MCI patients
walked with slightly increased dorsiflexion during the whole
stance phase. Moreover, the values of plantarflexion observed
in the swing phase differed significantly between the two
groups in GAIT and COG tasks (p<0.001 and p=0.016,
respectively). In particular, PD-MCI vs PD-noMCI showed
increased plantarflexion during GAIT task but reverted this
pattern toward reduced plantarflexion during COG task.
Although there was no significant difference in ankle
plantarflexion in the MOT task (p=0.088), its mean values
differed between the two groups following the pattern
displayed during COG task.

Finally, PD-MCI vs PD-noMCI displayed significant
reduced pelvic obliquity on the frontal plane during COG task
and reduced trunk rotation on the transversal plane during both
MOT and COG tasks. Apart from those reported above, other
kinematics measures did not differ between the two groups.
The results from the analysis on the reduced dataset confirm
the goodness of the findings from the overall population
regarding the kinematic variables.

2) Kinetics: The kinetic differences between PD-MCI and
PD-noMCI patients were observed in the GAIT and COG
tasks, as shown in Table III. In the hip joint, hip extension
moment was reduced in PD-MCI compared with PD-noMCI
(p=0.041, p=0.044 in GAIT and COG task, respectively).
Likewise, PD-MCI vs PD-noMCI showed reduced hip power
generated (p=0.029, p = 0.004 in GAIT and COG task,
respectively) and decreased power absorbed (p=0.016 in the
GAIT task) in the stance phase. Moreover, PD-MCI showed
reduction of the hip flexion moment both in single and dual-
task even if it did not differ between the groups. In addition,
during the COG task, PD-MCI vs PD-noMCI showed reduced
knee extension moment (p<0.001) and decreased knee power
absorbed (p=0.011), whereas, at the ankle joint, they displayed
an increase of moment at loading response (p=0.002),
in combination with a reduction in power generated (p=0.016)
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TABLE II
UNIVARIATE STATISTICAL ANALYSIS OF SIGNIFICANT KINEMATIC PARAMETERS OF GAIT, MOT AND COG TASK (MEAN ± STANDARD DEVIATION)

ON BOTH COMPLETE AND AGE-MATCHED DATASET. SIGNIFICANT P-VALUES ARE HIGHLIGHTED IN BOLD. SIGNIFICANCE LEVEL AT 0,05

and an increase in power absorbed (p=0.009). The results from
the analysis on the reduced dataset confirm the goodness of

the findings from the overall population regarding the kinetic
variables.
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TABLE III
UNIVARIATE STATISTICAL ANALYSIS OF SIGNIFICANT KINETIC PARAMETERS OF GAIT, MOT AND COG TASK (MEAN ± STANDARD DEVIATION) ON

BOTH TOTAL AND AGE-MATCHED DATASET. SIGNIFICANT P-VALUES ARE HIGHLIGHTED IN BOLD. SIGNIFICANCE LEVEL AT 0.05

B. Classification
Subsequently, kinematic and kinetic parameters of each

gait task (GAIT, MOT and COG) were used to build the
ML classifiers, separately. Table IV shows the evaluation
metrics of the ML algorithms for the three gait trials.
In the supplementary materials, Table S3 shows all evaluation
metrics for each classifier.

1) Kinematics: In the GAIT task, almost all the classifiers
reached an accuracy over than 80% on kinematic parameters.
Particularly, different tree-based methods achieved an accuracy
greater than 85%. Indeed, GBT obtained the best accuracy
(87.1%), followed by DT (86.1%), SVM (83.1%). In terms
of other evaluation metrics, GBT and SVM showed the
highest AUCROC (0.871 and 0.831, respectively). However,
GBT showed low power in the identification of presence and
absence of MCI (Se = 66.7%, Sp=66.7% and Pr=57.1%,
respectively), whereas SVM showed a good trade-off among
these evaluation metrics with the best capability to detect the
patients belonging to the group with and without MCI (Se =

85.7%, Sp=81.8% and Pr=75.0%). As concern DT, although
it showed an accuracy over than 80%, its capability to identify
the affected group was only around 65%. Among the best
classifiers, RF also reached good performance with values
over the 80% for the AUCROC (0.815), specificity (88.9%)
and precision (81.8%) and around the 75% for the accuracy
(75.2%) and sensitivity (75.0%).

In contrast to GAIT task, the performance of the ML
classifiers was severely reduced in the dual tasks [65].

In the MOT task, LDA classifier showed higher accuracy
(71.3%) and a good ability to identify the true negative (sp
= 75.5%). The DT and GBT algorithms confirmed their
capability to classify the two groups with an accuracy and
an AUCROC over than 60%.

In the COG task, RF, DT and KNN reached accuracy
values over 60% (62.9%, 61.8% and 61.8%, respectively) and
AUCROC values in the range between 60% and 70%.

In dual-task experiments, the best performance by the
classifiers was reached in the classification of patients without
MCI. Indeed, different algorithms, such as SVM, KNN, LDA
and DT, achieved over 70% specificity, while different other
algorithms showed lower sensitivity with values under the 60%
in the MOT task and under 50% in the COG task (Table S3).

2) Kinetics: With regards to the kinetic parameters, the
best results were obtained in the COG dual task (Table IV).
Trees-based algorithms showed the best performance in the
classification of PD-MCI and PD-noMCI patients. Indeed, DT,
RF and BGT reached an accuracy greater than 75% (76.9%,
77.5% and 76.4%, respectively) and an AUCROC over than
85% for the ensemble methods (0.850 and 0.857). In addition,
RF and GBT obtained the highest specificity and precision
with metric values greater than 80% (RF: 89.8% and GBT:
80.0%).

In contrast to COG task, the accuracies obtained by ML
classifiers on kinetic parameters were around 60% in GAIT
and 70% in the MOT task. Nevertheless, DT and GBT
achieved the best evaluation metrics. In the GAIT task,
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TABLE IV
EVALUATION METRICS OF THE BEST CLASSIFIERS ON KINEMATIC AND KINETIC PARAMETERS FOR EACH TASK

DT showed the highest values in all metrics (AUCROC =

0,723; Ac = 69.7%; Sp = 63.3%; se = 77.5%; Pr = 77.5%)
followed by GBT (Ac = 63.3%; AUCROC = 0.702). In the
MOT task, both tree-based classifiers reached values greater
than 70% in accuracy and AUCROC.

C. Feature Selection
All kinematic and kinetic gait features selected by

wrapper method and performance metrics according to this
classification on reduced subsets are summarized in Table V.
In Table S4 of the supplementary material the evaluation
metrics and features selected by all classifiers are shown.

In agreement with the previous classification on the whole
kinematic dataset, the major number of kinematic parameters
belonged to GAIT and COG task. Table V shows that most of
gait features helping in classifying PD-MCI and PD-noMCI
patients are related to the ankle joint movements on sagittal
plane, and, to a lesser extent, to trunk and pelvis movements
on transversal and frontal plane, as shown in Table IV and
Table S4.

Among the tested classification algorithms, DT reached
an accuracy (83.3%) as well as AUCROC (0.856) (greater
than 80%), using the lowest number of features selected
(n◦

= 2). This was followed by KNN with scores around
80% (Ac=81.5% and AUCROC=0.817). Moreover, NB. RF,
GBT and LDA classified the two groups with an accuracy

around 70% (77.8%, 72.2%, 71.9% and 73.0%, respectively).
Conversely, SVM selected the highest number of features
(n◦

= 5) and showed the lowest result in terms of accuracy
(67.4%).

Similar to the kinematics analysis, the number of kinetic
attributes employed for each tested algorithm is shown
in Table V and Table S4. Most gait features capable of
classifying the groups are related to hip power generated and
hip moment extension, knee power absorbed and knee moment
extension in the COG task. Additionally, we identified knee
moment extension in the GAIT task and hip power generated
and absorbed in the MOT task.

With regards to classification, KNN obtained the highest
accuracy (79.8%), precision (79.0%) and specificity (83.7%),
while exploiting the lowest number of kinematic features
(n◦

= 3). This is followed by tree-based classifiers RF and
GBT which reached an accuracy over 75% and an AUCROC
over 85% using 8 and 5 features selected, respectively.
Conversely, the NB algorithm got the lowest accuracy (70.8%)
and precision (66.7%).

IV. DISCUSSION

In the present study, we show that the presence of
MCI in PD patients is coupled with kinematic and kinetic
modifications of gait cycle that can identify two different
phenotypes of the disease. Indeed, as displayed by the
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TABLE V
FEATURES SELECTED AND EVALUATION METRICS OF THE BEST CLASSIFIERS ON KINEMATIC AND KINETIC PARAMETERS BY WRAPPER METHOD

demographical and clinical comparison between the two
groups, PD-MCI patients were older and more impaired,
in accordance with published data [7], while showing
comparable disease duration and LEDD. Such differences
mirror two of the main clinical features associated with MCI
in PD, suggesting a close relationship among MCI, age and
more severe motor impairment. In other terms, gait features
observed in PD-MCI patients reflect the contribution of all
these factors, that are inseparable in real-life clinical settings.
Anyway, in order to minimize the possible confounding role
of age, we have performed an additional sub-group analysis
on age-matched PD-MCI and PD-noMCI patients. The sub-
analysis showed that the findings remained significant, thus
further supporting the reliability of our results.

Regarding kinematic analysis, PD-MCI as compared with
PD-noMCI, showed increased sagittal flexion in the pelvis,
hip and knee in all three tasks, suggesting that such features
may represent the expression of a more malignant phenotype
in which cognitive dysfunction coexists with more severe
axial symptoms [66]. In addition, they showed increased
internal-rotation at the pelvis and augmented external-rotation
at the knee that may be interpreted as compensations for the
abnormal postural flexion [67].

When assessing ankle kinematics, PD-MCI as compared to
PD-noMCI showed increased plantarflexion during GAIT task
and the reversion of this pattern, i.e. reduced plantarflexion,
in the dual task condition. Augmented plantarflexion may
constitute the compensation for both the excessive knee flexion
and the decreased demand on proximal joints, due to the
reduction of the physiological age-related distal-to-proximal

shift in joint kinetics in PD patients [68], [69], [70]. Under dual
task conditions, PD-MCI tended to reduce such compensation,
thus increasing heel rocker with increased instability [67].
Accordingly, reduced pelvic obliquity and trunk rotation under
dual task conditions would represent the response to the
decreased ankle plantarflexion [67].

With regards to the kinetic analysis, PD-MCI vs PD-noMCI
displayed reductions in both moment (dynamic force) and
power (velocity of dynamic force) at the hip joint in both
GAIT and COG task, whereas, only during COG task, they
showed reduction in both moment and power at the knee
joint with corresponding increased moment, reduced energy
generation and augmented energy absorption at the ankle
joint. On the one hand, these findings suggest that the lack
of physiological age-related distal-to-proximal shift in joint
kinetics in PD patients [70] is more evident in the PD
phenotype associated with cognitive dysfunction; on the other
hand they imply that PD-MCI show reduced control at the
ankle joint, as suggested by increased energy absorption [71],
especially under dual-task conditions.

When analyzing ML classifications based on kinematic
variables, our findings suggest that kinematic patterns distin-
guishing PD-MCI from PD-noMCI mainly loaded on GAIT
task rather than on dual-task features, mirroring, as reported
above, a more malignant phenotype, independently from
cognitive contribution to such features. On the contrary, when
examining ML classification based on kinetic parameters,
our results suggest that the most accurate algorithms able
to differentiate PD-MCI from PD-noMCI loaded on COG
task variables. Dual-task interference tasks engage shared
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higher-order neural networks which are involved in the
simultaneous performance of gait and the concomitant
task [28], [72]; therefore, these findings might indicate a
peculiar cortical contribution on joint forces scaling in PD
patients. Certainly, further studies are needed to confirm these
hypotheses.

The present study has some limitations. In the first
instance, in the present study we did not include an age-
matched healthy control group. This might have better pointed
identified differences due to PD without MCI, along with
those associated with PD-MCI. A direct comparison with a
healthy control group was beyond the scope of the present
study. In addition, we acknowledge that some results should
be regarded as preliminary, and a further validation may be
useful. Finally, due to paucity of published data on kinematic
and kinetic features in PD patients with cognitive impairment,
most interpretations of our novel findings are speculative and
hypothetical at this stage and need further confirmation.

V. CONCLUSION

In conclusion, our findings suggest two main features that
may have an impact on both PD pathophysiological knowledge
and rehabilitation therapy approach. First, most kinematic
features distinguishing PD-MCI from PD-noMCI identify
a worse disease phenotype in which cognitive impairment
coexists with more severe posture and gait dysfunction.
Second, kinetic findings might suggest that some cortical areas
shared with cognitive processes may have a specific role on
force scaling in PD.
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