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Automatic Detection and Assessment of
Freezing of Gait Manifestations

Po-Kai Yang , Benjamin Filtjens , Pieter Ginis , Maaike Goris , Alice Nieuwboer , Moran Gilat ,
Peter Slaets , and Bart Vanrumste , Senior Member, IEEE

Abstract— Freezing of gait (FOG) is an episodic and
highly disabling symptom of Parkinson’s disease (PD).
Although described as a single phenomenon, FOG is het-
erogeneous and can express as different manifestations,
such as trembling in place or complete akinesia. We aimed
to analyze the efficacy of deep learning (DL) trained on
inertial measurement unit data to classify FOG into both
manifestations. We adapted and compared four state-of-
the-art FOG detection algorithms for this task and inves-
tigated the advantages of incorporating a refinement model
to address oversegmentation errors. We evaluated the
model’s performance in distinguishing between trembling
and akinesia, as well as other forms of movement cessation
(e.g., stopping and sitting), against gold-standard video
annotations. Experiments were conducted on a dataset of
eighteen PD patients completing a FOG-provoking protocol
in a gait laboratory. Results showed our model achieved
an F1 score of 0.78 and segment F1@50 of 0.75 in detect-
ing FOG manifestations. Assessment of FOG severity was
strong for trembling (ICC=0.86, [0.66,0.95]) and moderately
strong for akinesia (ICC=0.78, [0.51,0.91]). Importantly, our
model successfully differentiated FOG from other forms
of movement cessation during 360-degree turning-in-place
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tasks. In conclusion, our study demonstrates that DL can
accurately assess different types of FOG manifestations,
warranting further investigation in larger and more diverse
verification cohorts.

Index Terms— Freezing of gait assessment, detection,
manifestations, phenotypes, Parkinson’s disease, deep
learning.

I. INTRODUCTION

PARKINSON’S disease (PD) is a neurodegenerative disor-
der that already affects over six million people worldwide

with a prevalence that is rising [1]. One of the most debilitating
symptoms associated with PD is freezing of gait (FOG),
which has been defined as a “brief, episodic absence or
marked reduction of forward progression of the feet despite the
intention to walk” [1], [2], [3]. The unpredictable nature and
the inability of patients to take corrective steps after losing
their balance during FOG poses a significant risk of falls
and related injuries for PD patients [4], [5], [6], and a lower
quality of life [7]. Although described as a single phenomenon,
FOG is very heterogeneous and can be expressed as different
manifestations, namely: 1) episodic rapid shuffling with very
short steps and poor clearance of the feet, 2) trembling in place
visible as alternating tremulous oscillations in the legs with
minimal or no forward progression, and 3) complete akinesia
with minimal or no visible movement in the lower limbs [8].
However, whether or not shuffling should be included in
the definition of FOG is being debated given that there is
still forward progression of the feet [9]. FOG episodes could
exhibit various manifestations, with some episodes showing
only one type while others may encompass multiple types.
Akinetic FOG is more likely to occur during tasks with high
cognitive load [10], despite being less common than other
manifestations [8], [11]. Given that the etiology of the different
manifestations likely differs and that akinetic and trembling
features may respond differently to therapy [11], it is of
interest to develop an objective assessment of FOG manifesta-
tions. Consequently, a better understanding of these complex
phenomena will help to guide appropriate treatment [8].

The standard method for assessing FOG severity during
standardized tasks involves labor-intensive visual analysis of
post-task video footage by clinical experts [12]. This approach
necessitates frame-by-frame labeling of FOG episodes to cal-
culate semi-objective measures, in particular the percentage
of time spent frozen (%TF) [13]. To mitigate this challenge,
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researchers have proposed automatic annotation methods of
video data [14], [15] or of data from wearable sensors, such
as inertial measurement units (IMUs) [9], [16], [17], [18], [19],
[20], [21], or from 3D motion capture [22]. However, fixed-
camera video data collection poses challenges, particularly for
at-home monitoring, and 3D motion capture is constrained
to an in-lab setting. Therefore, IMU-based methods are pre-
ferred in this context. Despite the popularity of IMU-based
approaches, there are currently no studies proposing automatic
detection of FOG manifestations using IMU data.

The current study is the first attempt to automatically
quantify different FOG manifestations using deep learning
(DL) and lower limb movement characteristics measured by
IMUs. We proposed a FOG manifestation detection model that
consists of two components: an initial detection block and
a subsequent annotation refinement block. The former aims
to assign initial probabilities to distinct FOG manifestations
for each temporal sample, while the latter seeks to mitigate
the issue of oversegmentation inherent in predictions [23].
We adapted and assessed four state-of-the-art FOG detection
algorithms [9], [18], [19], which will be further discussed in
section II-A, for the initial detection block, aiming to select
the most effective model for detecting FOG manifestations.
Next, the multi-stage temporal convolutional neural network
(MS-TCN) [23] was utilized for refinement [9]. To quantify
FOG manifestation severity, we calculated the %TF as per
previous work [12], [13] and the percentage time frozen of
each manifestation. Given the lack of overt movement in the
legs during particularly akinetic FOG episodes, it is important
to verify that the model does not simply detect FOG in the
absence of motion and is indeed able to distinguish such FOG
events from other forms of volitional movement cessation.
As such, to determine the robustness of our approach, we fur-
ther investigated whether our DL algorithm could distinguish
between FOG manifestations and other forms of volitional ces-
sation (e.g., stopping and sitting) [24]. This involved explicit
model training to detect five classes: normal gait, trembling
FOG, akinetic FOG, stopping, and sitting.

II. RELATED WORK

Various methods have been proposed to automatically detect
FOG using wearable sensor data obtained through IMUs [9],
[16], [17], [18], [19], [20], [21]. IMUs record the movement
of the associated body segment as a time series of 3-axis
acceleration and angular velocity. The raw signals themselves
or features extracted from them have been employed to train
various FOG detection models. Typically, these models seg-
ment sensor data into multiple windows of a predefined size
(e.g., 1 second). To determine the granularity of prediction,
a stride size is specified for generating FOG annotations.
Conventional models often aim to produce FOG annotations
with a stride size equal to half of the window size [19], result-
ing in downsampled FOG annotation. However, as illustrated
in Figure 1, generating predictions by sliding windows with
a stride size equal to half of the window size may not be
the most optimal for defining the exact onsets and offsets of
FOG episodes. Therefore, to annotate FOG episodes frame by

Fig. 1. This example illustrates the impact of different stride sizes for
a sliding window-based model. For each window, the model predicts a
single label (e.g., non-FOG or FOG). The x-axis represents the timeline
for the annotations. This example shows that generating predictions with
a 50% overlap between consecutive windows results in a downsampled
prediction. Additionally, the first FOG episode which was shorter than
the stride size was ignored.

frame, matching how clinical experts annotate videos, a stride
of one sample is more appropriate [9].

However, generating frame by frame FOG annotations with
DL often leads to oversegmentation errors [23], wherein
long FOG episodes are annotated as multiple short FOG
episodes, thereby impacting the FOG detection performance
of the models [22]. The MS-TCN stands as one of the
current state-of-the-art DL models, and was initially designed
for frame-by-frame sequence mapping in computer vision
tasks [23]. The MS-TCN first generates an initial prediction
using multiple temporal convolution layers and subsequently
refines this prediction over multiple TCN stages. To address
oversegmentation errors in FOG detection, DL models with a
refinement stage were used for FOG detection with 3D Motion
Capture [22] and IMU data [9].

In this section, we delve into the IMU-based FOG detection
models previously advocated in the literature, which have
potential to be extended for FOG manifestation detection.

A. FOG Detection Models for Initial Detection
Automated FOG detection models segment an IMU

sequence into fixed-length windows using a sliding-window
scheme [16], [17], [18], [19], [20], [21]. Within each window,
a single label is predicted for all the samples as either FOG
or non-FOG. Since each window can contain multiple labels
at FOG and non-FOG transitions, the ground-truth label is
typically established through majority voting [17], [18], [19]
or the label at the center of the window [9].

Such earlier approaches also relied on manual feature
engineering to distinguish between FOG and non-FOG. For
instance, Moore et al. developed a thresholding algorithm
based on the Freeze Index to distinguish between FOG and
non-FOG [25]. They defined the Freeze Index as the power in
the freezing band (0.5-3 Hz) divided by the power in the loco-
motor band (3-8 Hz), which others have subsequently applied
as well [16]. Moreover, other studies introduced modifications
like an energy threshold [26], stride features [27] and number
of turns [28], which were combined with the Freeze Index to
identify FOG episodes.

Going beyond the aforementioned threshold-based methods,
previous studies also employed traditional machine learning
(ML) models on hand-engineered features to detect FOG. For
example, Tsipouras et al. employed decision trees and random
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forests on the mean entropy calculated from the acceleration
of six IMUs (i.e., right/left wrist, right/left leg, chest, and
waist) and the angular velocity from two IMUs (chest and
waist) [29]. Moreover, Mazilu et al. tested eleven ML mod-
els (e.g., random forests, k-nearest neighbor, and AdaBoost)
on seven hand-engineered acceleration features (i.e., mean,
standard deviation, variance, entropy, energy, Freeze Index,
and power) [30]. Additionally, Shi et al. combined all the
aforementioned features with wavelet features to form a set
of 67 expressive features to characterize FOG [19]. They
compared seven popular ML algorithms (e.g., k-nearest neigh-
bors, support vector machines, and extreme gradient boosting
(XGBoost)) and concluded that XGBoost enabled the best
FOG detection performance [19].

However, manually engineered features run the risk of
not being fully generalizable to all patients, given that PD
and FOG are highly heterogeneous. Recent studies have thus
shifted towards end-to-end DL models [17], [18], [19]. Due
to their large parametric space, DL techniques can directly
infer relevant features from raw input data. For example,
Zhang et al. used raw acceleration and spectrograms of one
waist IMU as input for a DeepCNN-LSTM model trained to
detect FOG [31]. Li et al. proposed a DL model using a TCN
and long-short-term-memory network for FOG detection using
acceleration signals from three IMU sensors [32]. O’Day et al.
fed raw acceleration and angular velocity data from one to
eleven IMUs into a convolutional neural network (CNN) to
detect FOG [18]. Lastly, Shi et al., besides proposing the
feature-based model, also introduced an improved method
that used the continuous wavelet transform (CWT) as a
pre-processing step on each acceleration and angular velocity
signal to generate scalograms which were used as input for
a CNN [19]. Their results showed that CWT, in combination
with a CNN, is state-of-the-art in FOG detection.

In our recent study [9], we compared three traditional ML
models with two DL models for FOG detection using raw IMU
data. Instead of generating downsampled FOG annotations,
we generate FOG annotations on the sample level by sliding
windows with a one-sample stride size. Our results indicated
that a TCN from [33] gave the best performance in frame by
frame FOG detection [9].

III. METHODS

In this study, we proposed a FOG manifestation detection
model that contains an initial annotation detection block and
an annotation refinement block. We adapted four previously
proposed FOG detection models for the task of FOG manifes-
tation detection. Our aim was to compare these models and
identify the most effective one for initial FOG manifestation
detection. Subsequently, we assessed the performance of the
best-performing model when integrated with an annotation
refinement block.

A. Initial FOG Manifestation Detection Block
We compared four models for initial FOG manifestation

detection. A feature-based approach based on XGBoost was
selected based on a study with extensive predefined fea-
tures [19]. Two signal-based models were selected: a well-used

open-source tool in clinical settings that encompassed a 1D
CNN model [18] and a 1D TCN model that was recently
proposed for fine-grained IMU-based FOG detection [9].
Additionally, we included a 2D CNN model trained with
scalograms derived from IMU signals [19]. The data prepro-
cessing steps, training strategy, and hyperparameter settings
of all models, followed those proposed and described in their
original studies. However, for model inference, we established
a uniform setting for all models, which will be explained in
section IV-B.

In the following subsections, we first explain the task of
detecting FOG manifestations for the initial detection block.
Following this, we provide detailed insights into the imple-
mentation specifics of the four selected models.

1) Problem Definition: An IMU trial can be represented as
X ∈ RT ×Cin , where T is the number of samples, and Cin is
the input feature dimension. Each IMU trial X is associated
with a ground truth label vector Y T ×L , where the label L
represents the manual annotation of FOG by the clinical
experts. To generate predictions for each sample, each IMU
trial was split from X ∈ RT ×Cin into multiple windows with
a fixed number of samples equal to the window size k. The
model learns a function f : X i

→ Ŷ i that transforms a given
input sequence X i

= x i
0, . . . , x i

k−1 into an output label ŷi that
closely resembles the ground truth label for window i .

2) XGBoost: This study used the feature-based model pro-
posed by Shi et al. [19], which applied the XGBoost [34]
algorithm on 67 features generated from the IMU on the left
tibia, including five frequency domain features, six entropy
features, and 54 wavelet features. Two features calculated
from magnetometer signals were removed as our dataset
does not include magnetometers. The accelerometer signals
were filtered with a 4th-order Butterworth band-pass filter
(0.2-15 Hz), and the angular velocity signals were filtered with
a 4th-order Butterworth low-pass filter (10 Hz), at a sampling
frequency of 50Hz. The window size was set to one second
with 50% overlap between consecutive windows [19].

3) 1D CNN: The second model is a 1D CNN model
proposed by O’Day et al. [18]. The IMU data was split
into windows of two seconds with 50% overlap between
consecutive windows. Each window was normalized to zero
mean and unit variance and augmented with random rotations
about the individual IMU axes to simulate variation in sensor
placement [18]. Notably, their original study incorporated a
post-processing step to smooth oversegmented FOG episodes.
However, in our study, we omitted this step when adapting
the model for FOG manifestation detection, as its original
approach is not suitable for multiclass classifications.

4) 1D TCN: Regarding the 1D TCN network, we applied
the same 1D TCN selected from our previous study [9],
specifically, we used the TCN architecture from [33]. The
TCN architecture has a single TCN block comprising five
temporal convolution layers. Employing a kernel size of 3,
dimensionality of 32, and dilation rates designed to cover
the input window size. This TCN utilized valid convolutions,
directly transforming the input sequence of shape k ×Cin into
an output of shape 1 × 32. The output was passed through
a linear layer with a softmax activation function, generating
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probabilities for output L classes. For multi-class classification
tasks in this study, we applied an unweighted cross-entropy
loss.

5) 2D CNN: Lastly, this study used the 2D CNN model
proposed by Shi et al. [19]. The raw IMU signals were first
normalized and split into multiple windows with a window
size of four seconds and 50% overlap between consecutive
windows. The normalized signals in each window were used
to generate scalograms with CWT.

B. Refinement Block
Given an IMU sequence of length T , the output of the

initial detection block consists of the initial probabilities of
each target class for each time sample within the sequence
with a shape of T × L . These initial probabilities serve
as the input for the refinement block. For the refinement
block, we employed a model derived from the MS-TCN
architecture [23]. This refinement model is structured with four
ResNet-style TCN stages. In each stage, the input sequence
is initially processed through a 1 × 1 convolutional layer,
adjusting the input dimension from T × L to T × C , where
C represents the number of filters. These modified features
then pass through eight TCN layers, each comprising a dilated
temporal convolution, Batch Normalization layer, Rectified
Linear Unit function, and a residual connection. Subsequently,
the final layer of each stage is a 1 × 1 convolutional layer
equipped with a softmax activation function. This final layer
outputs refined probabilities for the L classes for each sample
in time. The training procedure and hyperparameters employed
remained consistent with those detailed in [9]. In summary,
the model was trained end-to-end for 50 epochs using two
optimizers, both employing cross-entropy loss for the initial
detection and the refinement block. Both blocks employed
the Amsgrad optimizer with a learning rate of 0.0005, which
decayed by a factor of 0.95 for each epoch.

IV. EVALUATION

A. Dataset
We utilized an existing IMU dataset [9], and expanded it

from twelve to eighteen subjects in this study. The testing
setup for the extension remains identical to that outlined in [9].
The dataset includes eighteen PD patients, all recruited if they
subjectively reported having at least one FOG episode per
day with a minimum duration of five seconds. All subjects
provided informed consent, and the study was approved by
the Ethics Committee Research UZ/KU Leuven, with proto-
col number S65059. Subjects varied in their age (Range =

54 - 76; Mean = 67.33 ± 6.71 years), disease duration
(Range = 3 - 23; Mean = 12.39 ± 5.01 years), and
self-reported FOG severity with the New Freezing of Gait
questionnaire score (19.11 ± 3.53) [35] and Movement Disor-
ders Society Unified Parkinson’s Disease Rating Scale (total
score = 79.22 ± 24.07) [36]. Seven of the subjects underwent
deep brain stimulation (DBS), and two subjects (S10 and S11)
utilized mobility aids during the experiments.

The dataset was recorded with five Shimmer3 IMU sensors
on all subjects, attached to the pelvis, both sides of the

tibia and talus. All IMUs recorded at a sampling frequency
of 64 Hz during the measurements. Synchronously, RGB
videos were captured at 30 frames per second for offline FOG
annotation purposes. FOG events were visually annotated at
a frame-based resolution by a clinical expert, after which all
FOG events were verified by another clinical expert, using
Elan annotation software [12]. Annotators used the definition
of FOG as a brief episode with the inability to produce
effective steps, and the episode ended at the foot off that
was followed by at least two effective steps [1], [12], which
adopts a stricter definition of FOG that distinguishes shuffling
and festination as non-FOG events, and only trembling in
place and complete akinesia as FOG events. The definition
of shuffling was based on [8], namely small steps with
minimal forward progression, while festination was defined
as a tendency to move forward with increasingly rapid but
ever smaller steps [2].

The dataset featured the timed up-and-go (TUG) test, with
turning in both directions, and the 360 turning in-place
(360Turn) test [37], with alternating 360-degree turning for
one minute. The tasks were measured with and without a
dual task, namely the auditory Stroop task [37], and with
and without a self-generated or researcher-imposed stopping.
Stopping in the TUG was performed four times, twice with
a stop in the straight walking part and twice with a stop in
the turning part of the TUG; while stopping in the 360Turn
was performed once. All pre-mentioned tasks were done first
in the clinical Off-medication state (approximately 12 hours
after the last PD medication intake) and repeated in the
same order during the On-medication state (approximately
one hour after medication intake). Based on the measurement
protocol, 32 trials were collected for each subject. Subjects
with more than 32 trials underwent repeated measurements,
while subjects with fewer than 32 trials encountered technical
difficulties.

B. Experimental Setting
The FOG detection models proposed in [18] and [19]

exhibit several limitations. Firstly, they rely on majority voting,
which alters expert annotations and impacts the determination
of FOG severity outcome values, as depicted in Figure 2a.
Secondly, these models lack the granularity necessary for
precise identification of the onset and cessation points of each
FOG episode, due to sliding windows with 50% overlap during
inference time. Lastly, these models were trained and assessed
without padding on both ends. Consequently, they tend to
generate predictions shorter than the original input sequence.
Illustrated in Figure 2b, even when generating predictions with
a one-sample stride size, they still predict a shorter sequence
of length T − k + 1 from an input sequence of length T and
a window size of k.

To overcome these issues, we defined a uniform evalua-
tion setting for comparing the models. Firstly, we addressed
the issue of adapting the experts’ annotations by defining
the ground truth label as the center label of the window.
This consistent ground truth labeling approach was employed
during model training and inference, ensuring coherence and
comparability. Secondly, to achieve consistent granularity in
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TABLE I
DATASET CHARACTERISTICS

Fig. 2. Visual representation highlighting how sliding window-based
FOG detection models alter the ground-truth experts’ annotation.
Figure (a) shows that majority voting results in minor temporal shifts
and the removal of short segments. In contrast, using each window’s
centered label as ground truth maintains the experts’ annotation.
(b) Shows that shifting each prediction window with a stride of one sam-
ple enables frame by frame sample-wise predictions, but still reduces
the sequence from length T to T − k + 1, given a window of duration k.

predictions, we slid the windows with a stride of one sample
during inference (as illustrated in Figure 1b). Meanwhile,
during model training, we maintained a 50% overlap approach.
Thirdly, each model was trained explicitly for multiple dif-
ferent window sizes, i.e., 1, 2, and 4 seconds (k = 64,
128, 256 samples), to identify the optimal window size for
individual models. This comprehensive evaluation accounted
for varying temporal contexts and allowed a more thorough
analysis of the model’s performance. Nevertheless, the window
size impacts the predicted sequence length as illustrated in
Figure 2b. To ensure a fair comparison among these models,
we set the value of k to 4 seconds (256 samples) for all
models. Conversely, while examining the overall model’s
performance (initial FOG manifestation detection block +

refinement block) in distinguishing the FOG manifestations
from other forms of volitional movement cessation, the entire
T predicted sequence was evaluated. Lastly, except for the
feature-based model, i.e., XGBoost, all models were trained

using data from all five IMUs. The XGBoost exclusively
employed features derived from the left tibia IMU (denoted
as “leg” in [19]).

All 545 trials in the dataset were used to train and evaluate
the models. The labels for the FOG manifestation detection
task were three (L = 3), with l = 0 for non-FOG (i.e.,
walking, turning, sit-to-stand, stand-to-sit, and other volitional
movement cessations), l = 1 for trembling in place, and
l = 2 for complete akinesia. Next, we evaluated the model
performance in discerning FOG manifestations from other
types of volitional movement cessation, such as stopping and
sitting. The model was trained with five target classes (L = 5),
where l = 1 represents trembling in place, l = 2 represents
complete akinesia, l = 3 represents stopping, l = 4 represents
sitting, and l = 0 represents all other events (i.e., walking,
turning, sit-to-stand, and stand-to-sit). All other events are
hereinafter simply referred to as “normal gait”.

All experiments employed a leave-one-subject-out cross-
validation approach on all 18 subjects. The dataset was split
into training (17 subjects) and testing (the left-out subject) sets.
This procedure was repeated iteratively until each subject had
been used for testing.

C. Metrics
This paper assessed FOG severity from a clinical perspec-

tive, primarily focusing on the percentage time-frozen (%TF)
[13]. To further quantify the FOG manifestations, this study
proposed the percentage time of trembling in place (%TF-T)
and percentage time of complete akinesia (%TF-A), inspired
by previous studies [38], [39]. The (%TF-T) was calculated
as the total duration of trembling in place divided by the
total duration of all tasks. The %TF-A was calculated as
the total duration of complete akinesia divided by the total
duration of all tasks. Table I summarizes the FOG severity
for each subject in the dataset. To assess the agreement
between model-predicted FOG severity and expert-annotated
FOG severity, the intra-class correlation coefficient (ICC(2,1))
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was used. The ICC value indicates the agreement between
the model and the experts. A higher ICC value suggests
higher agreement. As the clinical metrics are a summary
of FOG severity per subject and insufficiently sensitive for
model comparison [9], the F1 score was used to compare the
performance of the different models.

The F1 score is a widely used metric for evaluating the
accuracy of binary classification models. For sample-wise
predictions, the comparison is performed at the individual
sample level. Each prediction of the sample is classified as
True Positive (TP), False Positive (FP), or False Negative (FN)
based on the correspondence between the predicted and ground
truth labels. The F1 score is calculated under the formula:

F1 =
2 × T P

2 × T P + (F P + F N )

For the tasks of multi-class manifestation classification (non-
FOG, trembling FOG, and akinetic FOG) and multi-class
manifestation and volitional movement cessation classification
(normal gait, trembling FOG, akinetic FOG, stopping, and
sitting), we calculated an F1 score for each class individually
in a one vs. all manner. This means that when computing the
F1 score for a specific class, that class is considered positive,
while all other classes are treated as negative. In our study, the
non-FOG and normal gait classes were regarded as background
classes, consistently treated as negative classes throughout
the analysis. Specifically, for the multi-class manifestation
classification, the F1 score was calculated under the formula
for all subjects s:

F1-Totals = (F1-Tremblings + F1-Akinetics)/2

For the multi-class manifestation and volitional movement
cessation classification, the F1 score was calculated under the
formula:

F1-Totals = (F1-Tremblings + F1-Akinetics

+ F1-Stoppings + F1-Sittings)/4

These individual F1 scores were then averaged (F1-Total) for
all eighteen subjects:

F1-Total =
1

18

18∑
s=1

F1-Totals

To assess the potential benefits of integrating a refine-
ment block aimed at reducing oversegmentation errors, the
F1-score at an intersection over union of 50% (F1@50) was
employed [40]. Furthermore, we computed the F1@50 for
both manifestations and derived an averaged F1@50-Total,
calculated using the same formula as for F1-Total. All F1
scores were calculated for each subject by averaging scores
across all trials. For non-FOG trials where the model detected
no FOG episodes, an F1 score of 1 was assigned, indicating
correct recognition in the absence of FOG [9].

D. Statistics
The Repeated Measures ANOVA test was used to investigate

whether the differences between the models in the F1 scores
were statistically significant. Post hoc paired Student’s t-tests

TABLE II
COMPARISON OF THE FOUR MODELS IN

TERMS OF THE F1 SCORE

were applied to investigate significant differences between
pair-wise models. Post hoc hypotheses were corrected for
multiple comparisons with the Li correction [41]. Additionally,
the paired Student’s t-test was applied to examine significant
differences between models trained with and without a refine-
ment block. Homogeneity of variances across subjects was
verified with Levene’s tests. The Shapiro-Wilk test was used
to determine whether the variables were normally distributed
across subjects. The Bland-Altman plot was used to inves-
tigate systematic bias between FOG severity outcomes (i.e.,
%TF, %TF-T, and %TF-A) predicted by the model and the
experts’ annotation. The significance level for all tests was
set at 0.05. Analyses employed SciPy1.7.11, bioinfokit2.1.0,
statsmodels0.13.2, and pingouin0.3.12 in Python 3.7.11. Post
hoc tests used scmamp0.2.55 in R 4.0.3.

V. RESULTS

A. FOG Manifestation Detection: Initial Detection Model
Comparison

We compared the four models for detecting the initial
manifestation of FOG. Models trained with a four-second
window size achieved the highest F1-Total and F1-Trembling
scores (Table II). ANOVA tests revealed significant differences
between all F1 scores (all p<0.005). Post hoc tests in Figure 3
confirmed that the 1D TCN outperformed XGBoost in terms
of F1-Trembling and F1-Total, 1D CNN in terms of all three
F1 scores, and 2D CNN in terms of F1-Trembling.

As depicted in Figure 4, both the 1D CNN and XGBoost
exhibited numerous instances of oversegmentation, with the
1D CNN particularly prone to false positives for akinetic
FOG. Although the 2D CNN model demonstrated fewer errors,
it misclassified trembling as akinetic and failed to detect
short FOG episodes. Conversely, the 1D TCN model exhibited
robustness in distinguishing trembling from akinetic FOG
episodes and displayed fewer instances of oversegmentation
compared to other models.

B. FOG Manifestation Detection: Initial Detection +
Refinement Block

Subsequently, we explored the advantages of incorporating
a refinement block into the best-performing initial detection
model, namely the 1D TCN. As shown in Table III, concerning
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Fig. 3. The spread of the F1-Score across subjects. The ANOVA
test showed a significant difference between all F1-Scores of the four
models. The significance levels of the post hoc tests with respect to the
1D TCN model (corrected for three pairwise comparisons) are visualized
above their respective box plot. Significance levels were visualized
as: p≤0.005 (***), p≤0.01 (**), p≤0.05 (*), and p>0.05 (#).

Fig. 4. Representative example of a FOG trial with predictions of
the best four models and the 1D TCN model with a refinement block
compared with the experts’ annotation. The figures visualize the over-
segmentation of the models. The x-axis indicating trial time in seconds.

sample-wise F1 scores, the F1-Akinetic and F1-Total exhibited
a significant improvement in the model with the refinement
block in comparison to the model without it. Moreover, the
model with a refinement block exhibited significantly higher
F1@50 scores than the model without it. This enhancement
indicates a reduction in oversegmentation errors, emphasizing
the evident advantage of incorporating such a refinement block
for precise detection of FOG manifestations. A visual compar-
ison between the 1D TCN with and without a refinement block
is illustrated in Figure 4.

C. FOG Manifestation Severity Assessment
Next, we assessed the overall performance of the model,

which consists of the 1D TCN as the initial detection block
followed by a refinement block, in terms of FOG manifestation
severity outcomes. The results indicated a strong agreement
between the model and experts for both %TF (ICC = 0.92,
CI=[0.81,0.97]) and %TF-T (ICC = 0.86, CI=[0.66,0.95]),
as well as a moderately strong agreement for %TF-A
(ICC = 0.78, CI=[0.51,0.91]). Bland–Altman plots (Figure 5)
revealed no systematic error between our model and expert
annotations, with a mean bias of 2.17% (CI=[−0.94,5.28])
for %TF, 2.91% (CI=[−0.52,6.33]) for %TF-T, and −0.74%
(CI=[−3.29,1.82]) for %TF-A. Notably, three outliers: S10,
S14, and S15, were identified, all of whom underwent DBS,
with S10 also using a mobility aid during experiments. Mis-
classifications occurred, such as trembling being mistakenly

Fig. 5. The Bland-Altman plot compares three clinical metrics between
the model and experts. Each dot represents score differences per
patient against the mean score. Orange shows 95% CI for mean bias,
gray for upper and lower LOA CI. Three outliers are marked (S10: blue,
S14: red, S15: green).

labeled as akinetic for S10, likely due to the mobility aid,
while festination and continuous shuffling were frequently
misinterpreted as FOG for S14. Additionally, oversegmenta-
tion of numerous long FOG episodes during Off-medication
occurred for S15, a characteristic not present in other training
subjects. Additionally, as shown in Bland–Altman plots, the
limits of agreement (LOA) for %TF-T ranged from −10.61%
to 16.42%, while for %TF-A, the LOA ranged from −10.81%
to 9.33%. The lower ICC for akinetic FOG compared to
trembling suggests lower consistency with experts. However,
the narrower LOA for %TF-A indicates greater confidence in
predicting %TF-A, likely due to reduced variability compared
to %TF-T.

D. FOG Manifestations Versus Other Forms of Volitional
Movement Cessation

Next, we investigated the proposed model’s ability (i.e.,
1D TCN combined with a Refinement Block) to distinguish
FOG manifestations from volitional movement cessation by
training the model with five target classes, i.e., normal gait,
trembling, akinetic, stopping, and sitting. The model achieved
an overall F1 score of 0.65 and an overall F1@50 score of
0.63. The dataset consists of 275.18 minutes, with 75.49%
normal gait samples, 12.96% trembling samples, 3.85% aki-
netic samples, 4.02% stopping samples, and 3.67% sitting
samples. As seen in the confusion matrix (Figure 6), the model
correctly predicted 94% of the normal gait samples, 71% of
the akinetic samples, 65% of the stopping samples, and 82% of
the sitting samples. However, the model struggled to accurately
identify trembling samples, with only 56% of them correctly
classified, while 28% were classified as normal gait and 14%
as akinetic. To investigate the model’s ability to distinguish
between stopping and FOG manifestations, we split up the
evaluation for non-FOG and FOG trials. When evaluating
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TABLE III
COMPARISON OF THE MODELS TRAINED WITH AND WITHOUT A REFINEMENT BLOCK

Fig. 6. The normalized confusion matrix visualizes the model’s ability
to distinguish between the five classes. Each row shows the true label
and the total number of samples for that label, while each column shows
the predicted label. The matrix is normalized by dividing each element
by the total number of samples in the true class, indicating the ratio of
correct predictions for each class.

non-FOG trials, the model could accurately annotate 75% of
stopping samples as stopping. In contrast, when evaluating
FOG trials, the model could only correctly annotate 51%
of stopping samples, with 31% as normal gait, and 12%
as akinetic. Within these FOG trials, the model correctly
annotated 71% of stopping in the TUG tasks, but only 37% in
the 360Turn tasks (38% as normal gait and 17% as akinetic).
Additionally, in FOG trials, the model correctly annotated 48%
of akinetic episodes in the TUG tasks (21% as normal gait
and 21% as stopping), while it correctly annotated 81% of
akinetic episodes in the 360Turn tasks. These phenomena are
demonstrated in the qualitative results presented in Figure 7,
which shows FOG trials with both manifestations, both with
and without stopping. In Figures 7a and 7b, the model strug-
gled to distinguish between trembling and akinetic when both
manifestations were present, resulting in lower F1 scores.
Similarly, Figures 7c and 7d illustrate the model’s difficulty
in differentiating between trembling and stopping, as well
as between trembling and akinetic, also leading to lower F1
scores.

VI. DISCUSSION

Previous FOG assessment studies [9], [18], [19], [22] com-
bined various types of FOG into a single category. However,
FOG can have different manifestations, which may have other
pathophysiologic origins [8]. Therefore, objectively detecting
these different FOG manifestations is crucial to tailor future
FOG treatment approaches. To address this bottleneck, this
study proposed a DL model to support the detection of two
FOG manifestations, i.e., trembling and akinetic FOG. Our
model comprises an initial detection block and a refinement
block. We adapted and compared four state-of-the-art FOG
detection models to identify the best model for initial FOG
manifestation detection. Furthermore, the MS-TCN model was
applied for the refinement block. Our results exhibited that
1D TCN [33] model statistically outperformed XGBoost [19],

Fig. 7. Overview of the annotations for four IMU trials (selected from
S2 for 360Turn tasks) featuring FOG trials with both manifestations
but without stopping, and FOG trials with both manifestations and with
stopping. For each condition, the trial with the best model prediction
and the worst model prediction was selected. The figures compare
the experts annotation (top) with the model prediction (bottom). The
color codes are: white=normal gait, green=trembling, yellow=akinetic,
red=stopping, and blue=sitting. The x-axis denotes the trial time in
seconds.

1D CNN [18], and 2D CNN [19] in detecting FOG mani-
festations, particularly regarding the F1-Trembling. Moreover,
the incorporation of a refinement block significantly reduced
oversegmentations, resulting in higher F1@50 scores.

To quantify the severity of FOG manifestations, previous
studies calculated the percentage of each FOG manifestation
with respect to the total duration of FOG [38]. However,
this metric does not measure the duration of each specific
FOG manifestation directly. Instead, it indicates the distri-
bution of different manifestations within the total duration
of FOG episodes. Therefore, using the percentage of each
manifestation within observed FOG as a metric to quantify
the severity of FOG manifestations may not be reliable. As a
result, inspired by previous studies [38], [39], we proposed two
metrics extended from %TF, i.e., %TF-T and %TF-A, to quan-
tify FOG manifestation severity. Our proposed model showed
a strong agreement with the experts’ observations for %TF-
T (ICC=0.86) and a moderately strong agreement for %TF-A
(ICC=0.78). The ICC for FOG manifestation severity between
independent raters was reported as 0.31 (CI=[0.11,0.49]) for
the percentage of trembling and 0.44 (CI=[0.35,0.54]) for
the percentage of akinetic [38]. Although [38] showed that
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annotating FOG manifestations is challenging, which would
result in a low inter-rater agreement, our model prediction
showed a moderate to strong agreement with our experts’
annotation, showing its ability to learn how our experts’
annotated the trials.

Next, we investigated the model performance in distin-
guishing FOG manifestations from other forms of volitional
movement cessation, i.e., stopping and sitting, by evaluating
the model trained explicitly for the five classes: normal gait,
trembling, akinetic, stopping, and sitting. Results showed that
our model could correctly detect sitting from FOG manifes-
tations. However, stopping could only be accurately detected
in TUG trials or trials that did not contain FOG. In 360Turn
trials with FOG, short stopping events were often mislabeled
as normal gait. Akinetic episodes were accurately detected
only in 360Turn trials, while in TUG trials, trembling was
misclassified as akinetic, and akinetic as stopping. Hence,
motor signals alone may be insufficient to distinguish stopping
from FOG, particularly during complex motion sequences that
are likely to be encountered in everyday life. A promising
avenue is to amalgamate motor and physiological signals
(e.g., heart rate), which have recently shown potential in
distinguishing between FOG and stopping, but lack the expres-
sivity to distinguish between FOG and gait [24], which was
highly distinguishable in our approach. Therefore, including
physiological signals in our method seems a promising future
improvement to disentangle the different FOG manifestations.

Furthermore, the results showed that the agreement between
our model and the experts in terms of %TF-A was lower
than %TF-T. This finding shows different results than [38]
with previously reported lower inter-rater ICC values for
trembling compared to akinetic FOG. Trembling FOG (i.e.,
alternating tremulous oscillations with no forward progression)
and akinetic FOG (i.e., no visible movement in the lower
limbs) are determined based on observable leg motion. There
are several potential explanations: Firstly, some trembling
movements may not be observable in the videos by the experts,
especially if the movements are very small. Although our
study procedure had participants wearing tight-fitting shorts,
this may become even more challenging in clinical practice
where patients with FOG are wearing their own comfortable
long-legged pants. Secondly, as FOG manifestations may
shift within one episode, it becomes very challenging and
time-consuming for the experts to label it to the highest detail.
Therefore, they resort to labeling the episode (or larger blocks
of the episode) to the manifestation that is dominantly present.
Moreover, when annotating FOG, experts may observe no leg
motion, making it challenging for them to discern whether
the subject is hesitating during tasks, stopping volitionally,
or experiencing akinetic FOG.

Several limitations should be considered. Firstly, we adapted
and compared four FOG detection models for initial FOG
manifestation detection, using window sizes of 1, 2, and 4 sec-
onds. The best performance was at 4 seconds. Due to limited
GPU memory, we couldn’t use an 8-second window. However,
differences in F1 scores between models were more significant
than those between window sizes. Secondly, the dataset used
in this study consisted of videos annotated sequentially by

two clinical experts, with the second expert verifying and
correcting the annotations made by the first expert. Due to
our sequential annotation process, there was no opportunity to
measure inter-rater agreement in terms of %TF-T and %TF-
A to compare against our models’ annotations. The third
limitation involves adapting four state-of-the-art FOG detec-
tion models from binary FOG detection to three-class FOG
manifestation detection. To address this, future research could
focus on fine-tuning or developing alternative DL models for
multi-class classification tasks, enhancing comparative analy-
sis. The fourth limitation is the limited FOG manifestations
in the dataset: 35.66 minutes of trembling and 10.59 minutes
of akinetic episodes out of 275.18 total minutes. Given the
infrequency of FOG and the rarity of akinetic FOG [37],
[38], this ratio is in line with the literature. Our dataset
uniquely includes detailed FOG manifestation annotations and
is one of the larger datasets available (N=18, #FOG=935).
For comparison, other public domain datasets include Daphnet
(N=10, #FOG=237) [26], O’Day et al. (N=16, #FOG=211)
[18], CuPid (N=18, #FOG=237) [30], and Rempark (N=21,
#FOG=1321) [42]. Further validation will be required in
larger and less heterogeneous cohorts. The fifth limitation
is that gait demographics (such as height, weight, and leg
length) were not collected in this study. Consequently, the
potential influence of gait demographics on FOG manifestation
detection was not investigated.

VII. CONCLUSION

The current study is the first attempt to automatically quan-
tify FOG manifestations using DL. Our approach demonstrated
a strong agreement with experts’ annotations on %TF and
%TF-T and a moderately strong agreement for %TF-A. Future
work is now possible to establish whether these results hold
for a larger and more varied verification cohort.
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