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Effect of Inverse Solutions, Connectivity
Measures, and Node Sizes on EEG Source

Network: A Simultaneous EEG Study
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Abstract— Brain network provides an essential perspec-
tive for studying normal and pathological brain activities.
Reconstructing the brain network in the source space
becomes more needed, for example, as a target in
non-invasive neuromodulation. Precise estimating source
activities from the scalp EEG is still challenging because
it is an ill-posed question and because of the volume
conduction effect. There is no consensus on how to
reconstruct the EEG source network. This study uses
simultaneous scalp EEG and stereo-EEG to investigate
the effect of inverse solutions, connectivity measures, and
node sizes on the reconstruction of the source network.
We evaluated the performance of different methods on
both source activity and network. Numerical simulation
was also carried out for comparison. The weighted phase-
lag index (wPLI) method achieved significantly better
performance on the reconstructed networks in source
space than five other connectivity measures (directed
transfer function (DTF), partial directed coherence (PDC),
efficient effective connectivity (EEC), Pearson correlation
coefficient (PCC), and amplitude envelope correlation
(AEC)). There is no significant difference between the
inverse solutions (standardized low-resolution brain elec-
tromagnetic tomography (sLORETA), weighted minimum
norm estimate (wMNE), and linearly constrained minimum
variance (LCMV) beamforming) on the reconstructed
source networks. The source network based on signal
phases can fit intracranial activities better than signal
waveform properties or causality. Our study provides a
basis for reconstructing source space networks from scalp
EEG, especially for future neuromodulation research.

Index Terms— EEG source network, simultaneous EEG,
EEG source imaging, connectivity measure, node size.

I. INTRODUCTION

BRAIN network dysfunction or abnormalities have been
implicated in various neurological disorders, such as

epilepsy, Parkinson’s disease, stroke, and others [1], [2],
[3]. Brain network analysis offers crucial assistance in
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diagnosing and treating these conditions [4], [5], [6]. Non-
invasive functional neuroimaging techniques have significantly
enhanced our comprehension of brain networks, offering
insights into both normal and pathological brain states. Non-
invasive neuromodulation techniques, such as transcranial
magnetic stimulation(TMS) [7], transcranial direct current
stimulation (tDCS) [8], and transcranial focused ultrasound
stimulation (tFUS) [9], have been widely investigated in
treating brain diseases [10], [11]. The reconstruction and
analysis of individualized brain networks may significantly
improve the therapeutic effect. Electroencephalogram (EEG)
is an ideal tool for feedback of transcranial stimulation
because of its high temporal resolution. Still, it falls short
in estimating the brain network underneath the skull due
to the volume conduction effect. The EEG source imaging
(ESI) may solve this problem by considering the volume
conduction effect and physiological or anatomical constraints
in inverse solution [12], [13], [14]. From the perspective of
EEG source connectivity, there is still no consensus on solving
the inverse solution and which network measure provides a
better reconstructed network in source space.

ESI methods have been widely used in scalp EEG analysis,
including standardized low-resolution brain electromagnetic
tomography (sLORETA) [15], weighted minimum norm
estimate (wMNE) [16], and linearly constrained minimum
variance (LCMV) [17] beamforming, ESI has played an
essential role in the localization of epileptic lesions [18],
[19], [20]. Recently, some studies adopted machine learning
approaches to solve the inverse solution [21], [22], [23].
Source leakage may blur the EEG source network [24].
Some studies have investigated the effect of channel density,
inverse solutions, connectivity measures, and source extraction
measures on EEG source networks [25], [26], [27], [28].
While no ground truth is available in most cases, numerical
simulation is widely used in investigating EEG source
networks [29], [30]. Simultaneous scalp EEG and intracranial
EEG provide the best model for studying EEG source
networks because the intracranial activities can be treated as
the ground truth of the scalp EEG’s inverse solution [31],
[32], [33]. To our knowledge, rare studies use simultaneous
intracranial EEG recording for evaluating the source network
reconstruction measures.
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Fig. 1. The workflow for evaluating the effect of inverse solutions, connectivity measures, and node sizes on EEG source network using
simultaneous EEG. Three inverse solutions, six connectivity measures, and three node sizes were investigated. The Pearson correlation between
the EEG source network and the SEEG network was calculated to evaluate the performance of the different approaches.

In this study, we investigated the effect of three inverse
solutions, six connectivity measures, and three node sizes of
the EEG source network on a simultaneous EEG recording
dataset, including: (1) three inverse solutions: sLORETA,
wMNE, and LCMV. (2) six connectivity measures: the directed
transfer function (DTF), partial directed coherence (PDC),
efficient effective connectivity (EEC), weighted phase lag
index (wPLI), Pearson correlation coefficient (PCC), and
amplitude envelope correlation (AEC). (3) three node sizes:
voxels, regions of interest (ROIs) [34], [35], and brain
regions [26], [36]. The workflow of this study is shown in
Fig. 1.

II. MATERIALS AND METHODS

A. Data and Preprocessing
The simultaneous scalp EEG and Stereo-EEG (SEEG)

analyzed in this study is part of the “Open Science
Framework” (https://doi.org/10.17605/OSF.IO/WSGZP) [37].
Subjects enrolled in the study had drug-resistant epilepsy and
met the criteria for surgical resection. Data collection took
place during interictal periods between the patients’ epileptic
seizures. Single-pulse electrical stimulation was administered
to non-epileptic regions of the brain. The SEEG data were
recorded through a 192-channel recording system and 256-
channel high-density scalp electrodes. We used the averaged
evoked potentials for each trail, and the SEEG signals only
from contacts on the cortex were used. The duration of
each averaged signal following stimulation is 700 ms. The
simultaneous EEG were filtered at 1-45 Hz.

The SEEG was recorded in only parts of the brain for a
given patient, and there might be some scalp EEG activities
unrelated to the simultaneous SEEG activities. To minimize
the effect of unknown sources on our analysis, we chose the
EEG data to mostly represent the underneath SEEG activities.
All trails of SEEG recordings were forward-project onto the
scalp using individual head models, and we calculated the

correlations between the SEEG forward-projected signal and
the scalp EEG. The simultaneous EEG trials with correlation
in the top 5% were chosen, and the correlation values are all
above 0.7. It resulted in 13 trials from ten patients (sub01-02,
sub03-03, sub13-01, sub14-01, sub14-08, sub16-02, sub18-02,
sub18-05, sub18-08, sub22-10, sub23-05, sub32-04, sub35-
09). The ten patients had 179 SEEG contacts. We mapped
those contacts from individual head models to a standard
Montreal Neurological Institute (MNI) head model, as shown
in Fig. 2.

Individual T1-weighted brain magnetic resonance imaging
(MRI) generated the patient-specific head models, which were
used in ESI. The Brainstorm toolbox, along with Brainsuite
and SVReg [38], [39], [40], was used to process the head
models. The cerebral cortex is subsequently divided into
66 distinct brain regions. A three-layer head model comprising
scalp, skull, and brain tissue was constructed using the
boundary element method (BEM). The assigned conductivities
for these layers are 1.00 S/m, 0.0125 S/m, and 1.00 S/m,
respectively [34], [41].

B. Workflow for Evaluating the Effect

The simultaneous scalp EEG and SEEG were used for
evaluation, as shown in Fig. 1. The SEEG signal was treated
as the ground truth of the scalp EEG’s inverse solution. First,
the scalp EEG was imaged to source activities using ESI
measures. The EEG source activities were compared with the
SEEG recordings. Then, the EEG source network was obtained
using connectivity measures. The SEEG network was used as
the reference for evaluating the EEG source network for a
given connectivity measure. The similarity between the EEG
source networks and the SEEG networks was calculated by
Pearson correlation. The performance of different measures
is evaluated based on correlation value. The higher the
correlation value, the better the ESI-connectivity approach.
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Fig. 2. The distribution of SEEG contacts and scalp electrodes on the standard MNI head model. The red and green dots represent SEEG contacts
and scalp electrodes, respectively.

The correlation is referred to as the Pearson correlation in
this study.

C. Inverse Solutions
The inverse problem of source imaging involves inferring

underlying source activity from recorded brain activity. The
electrical potentials recorded on the scalp sensors can be
obtained by the following [30]:

U = L J + N (1)

where U is the recorded potential vector located at the scalp
electrode. L is the lead field. J is the current density vector
at each voxel position, and N is the noise. Given that the
known quantities in source imaging are significantly fewer
than the unknown quantities, the study of inverse problems
necessitates using prior information to impose constraints.
We use sLORETA, wMNE, and LCMV to estimate the value
of the estimated current density of voxels ( Ĵ ).

1) sLORETA: sLORETA estimates the current density using
the minimum norm solution. The standardized estimated
current density is used to infer the location of intracranial
sources [15]. The value of Ĵ is the following:

Ĵ = T U (2)

where T = LT
[L LT

+ λH ]
+ with H = I − 11T /1T 1,

H denotes the centering matrix, I is the identity matrix,
1 is a vector of ones, λ is the regularization parameter,
and [·]

+ denotes Moore-Penrose pseudoinverse. To obtain the
standardized Ĵ , it is imperative to determine its variance (S Ĵ ).

S Ĵ = LT
[L LT

+ λH ]
+

L (3)

Ĵ = S Ĵ J (4)

2) wMNE: The wMNE compensates for the depth depen-
dency of the standard solution of the minimum norm least
squares by weighting the source current components [16]:

minimize 1 =

∥∥∥U − L Ĵ
∥∥∥2

2
+ λ

∥∥∥C Ĵ
∥∥∥2

2
(5)

Ĵ = (CT C)−1LT (L(CT C)−1LT
+ 1λ)−1U (6)

where C is the weighting matrix related to the number of
dipoles and their components. C can be calculated using the
singular value decomposition.

3) LCMV: In this study, we employed the LCMV method
in the Brainstorm toolbox, where the noise covariance matrix
is substituted with its inverse, commonly known as dipole
modeling [38].

D. Connectivity Measures
1) DTF: A causal network enables the quantification of

directed connectivity among network nodes. This study
employs the DTF to characterize the information intensity and
the transmission directionality between brain network nodes.
The DTF is based on the autoregressive (AR) model, which
is as follows:

xt =

p∑
r=1

Ar xt−r + et (7)

where p is the model order, xt denotes the state vectors of
EEG, et is the vector of the white noise process, and Ar are
the coefficient matrices, which can be obtained by multiplying
both sides by xT

t−s . By applying the z-transform, we get the
transfer function of the AR model:

H( f ) =

(
I −

p∑
r=1

Ar e−i2π f r1t

)−1

(8)

where I is the identity matrix. f is frequency. 1t is the
sampling interval. Performing row normalization on H( f )

such that the contribution of all channels to the i th channel is
equal to 1, the causal relationship between the measurement
channels is calculated:

γ 2
i j =

∣∣Hi j ( f )
∣∣2∑k

m=1 |Him( f )|2
(9)

In this study, surrogate analyses [42] were performed
1000 times, and the causal values exceeding the top 5% were
selected for subsequent analysis.
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2) PDC: Partial directed coherence (PDC) analyzes the
connectivity between multi-channel signals, which is also
based on Granger causality [43]. Contrasting with DTF, PDC
measures the direct connectivity between two nodes, excluding
contributions from other nodes. Similarly, surrogate analyses
were performed 1000 times.

3) EEC: EEC is considered to provide a better estimation
of directed causal relationships [44], enabling more effective
identification of node connections. The AR model and the
Brug method are employed to calculate the spectrum shown
in the following:

P(ω) =
σ 2Ts∣∣∣1 +

∑p
l=1 al exp(−ilωTs)

2
∣∣∣ (10)

where, ω represents the angular frequency, Ts is the sampling
period, σ 2 denotes the power of the noise, and al refers to the
parameters of the p-order AR model [44].

The sum of maximum connectivity is used for normal-
ization. The threshold is dynamic. Spectral values exceeding
it are retained, while those falling below are assigned a
value of 0.

4) wPLI: The wPLI measures the degree of phase
synchronization between two signals by weighting the cross-
spectrum of their phases [45]. It is calculated as follows:

wP L I =
|E{|ℑ{X}|sgn(ℑ{X})}|

E{|ℑ{X}|}
=

|E{ℑ{X}}|

E{|ℑ{X}|}
(11)

Here, | · | denotes the absolute value. E {·} denotes
the mathematical expectation calculator. sgn () is the sign
function. ℑ{X} corresponds to the imaginary part of the cross-
spectrum. The Hilbert transform applied to the signals obtains
the instantaneous phase angle.

5) PCC: The Pearson correlation coefficient (PCC) quan-
tifies the linear correlation between channels in the EEG
signal. It measures the extent of linear correlation between
two variables, as shown in the following:

Pa,b =
cov(a, b)

σaσb
(12)

where Pa,b denotes the degree of linear correlation between n
dimensional signals a and b. cov(a, b) denotes the covariance
between variables a and b, and σa , σb denote the standard
deviation of a and b, respectively.

6) AEC: The AEC of the signal, derived from the Hilbert
transform, indicates the synchrony among different brain
regions [26].

E. Node Sizes
Node size is one factor influencing EEG source connectivity.

This study separately selects the voxels, ROIs, and brain
regions as network nodes. The voxels represent the smallest
unit within the head model. Specifically, the BEM head
model in this research comprises a cortex model of 15,000
voxels. To compare the reconstructed network with the SEEG
network, the voxels closest to the SEEG contacts were selected
for analysis. In this study, the ROI was fixed to a circle with
a radius of 12.5 mm [30], and the voxels closest to the SEEG

contacts were the center of the ROI. The brain regions with
SEEG contacts are used as nodes when analyzing the network
between brain regions. The connectivity between ROIs or brain
regions containing multiple voxel points is extracted using the
mean-after approach [27].

F. Numerical Simulation

We also investigated the source network with simulated
data to compare it with the result of the simultaneous EEG.
Based on the lead matrices, the simulated intracranial sources
were first forward-projected on the scalp. ESI methods solved
the source activities for those projected signals. To evaluate
the performance, the source connectivities reconstructed
from the simulated and imaged sources were compared. This
procedure is similar to the analysis of simultaneous EEG
recording, except that simulated intracranial sources forward-
project to fake scalp EEG.

The SEEG contacts used in this study mainly reside in the
frontal, temporal, and parietal lobes. The simulated sources
were randomly placed perpendicular to the cortical surface in a
brain region, a randomly selected one of the above three brain
lobes. Each brain region contains three simulated sources.
Equation (13) is the mathematical model with nine simulated
nodes.

Z11(t) = 8(t) + n11(t)
Z12(t) = 0.2Z11(t − 0.2) + 0.2Z12(t − 0.1) + n12(t)
Z13(t) = 0.15Z11(t − 0.2) + 0.1Z13(t − 0.1) + n13(t)
Z21(t) = 0.35Z11(t − 0.1) + 0.25Z21(t − 0.0075)

+ 0.1Z21(t − 0.0125) + n21(t)
Z22(t) = 0.3Z21(t − 0.2) + 0.125Z22(t − 0.2) + n22(t)
Z23(t) = 0.1Z21(t − 0.2) + 0.3Z23(t − 0.1) + n23(t)
Z31(t) = 0.6Z11(t − 0.2 + 0.1Z31(t − 0.0125) + n31(t)
Z32(t) = 0.4Z31(t − 0.2) + 0.3Z32(t − 0.2) + n32(t)
Z33(t) = 0.2Z31(t − 0.2) + 0.1Z33(t − 0.1) + n33(t)

(13)

where Zi1 (i = 1, 2, 3) represents the simulated source in the
i th brain region. The 8 is a simulated Gauss signal. The ni j
is a white noise signal added on Zi j (i = 1, 2, 3 and j = 1, 2,
3). The Z21 and the Z31 are affected by the Z11 with a delay.

We used the network with nine nodes since its size is closer
to the SEEG network [30]. The candidate regions for the
location of the nodes are shown in Fig. 3(a). The simulated
source signals and connectivity diagram for nine nodes are
shown in Fig. 3(b).

G. Statistical Analysis

We employed the Wilcoxon signed-sum test to compare
differences between paired samples with significance level
is 0.01. The Wilcoxon rank-sum test was used to compare
differences in samples from five unpaired sets of lobes. The
false discovery rate (FDR) is used for multiple statistical
corrections.
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III. RESULT

We present the results with simulated data and simultaneous
EEG separately.

A. Simulated Data
Fig. 3(c)-3(e) shows the correlations between the simulated

and the imaged sources. There are no significant differences
between the three inverse solutions at the voxel level. At the
ROI level, LCMV is higher than sLORETA (p < 0.01) and
wMNE (p < 0.01). At the region level, wMNE is higher than
sLORETA (p < 0.01).

The correlations between the simulated network and
imaged source network using three inverse solutions with
six connectivity measures were shown in Fig. 3(f)-(h) and
Table I. The wPLI is significantly higher than the other five
connectivity measures (p < 0.01). AEC is also higher than
DTF (p < 0.01), PDC (p < 0.01) and PCC (p < 0.01).
No significant difference was found between EEC and AEC
(p = 0.09). EEC is higher than DTF (p < 0.01) and PDC
(p < 0.01). DTF is also higher than PDC (p < 0.01).

B. Simultaneous EEG
1) EEG Source Imaging: The correlations between the

imaged sources and the SEEG recordings are shown in
Fig. 4(a)-4(c). There are no significant differences between
the three inverse solutions at the voxel, ROI, or region level.
We divided the SEEG contacts into five groups: frontal lobe,
temporal lobe, parietal lobe, occipital lobe, and cingulate
cortex. At the voxel level, the correlation between the imaged
sources and the SEEG signals of the five groups is shown
in Fig. 4(d)-4(f). When sLORETA was used, the correlation
at the frontal lobe was higher than that at the temporal lobe
(p = 0.01), the parietal lobe (p = 0.03), the occipital lobe
(p = 0.44), and the cingulate cortex(p = 0.14). When
wMNE was used, the correlation at the frontal lobe was higher
than that at the temporal lobe (p = 0.01), the parietal lobe
(p = 0.02), the occipital lobe (p = 0.54), and the cingulate
cortex(p = 0.17). When LCMV was used, the correlation at
the parietal lobe was higher than that at the other four groups
but without significance, which differs from the sLORETA and
wMNE.

2) EEG Source Network: The correlation between the EEG
source network and SEEG network using six connectivity
measures is shown in Fig. 5. The wPLI is significantly higher
than the other five connectivity measures (p < 0.01), and
the median values of correlation are shown in Table II. AEC
is higher than DTF (p < 0.01) and PCC (p < 0.01). The
DTF performed similarly to the EEC. Both the correlations of
DTF and EEC are higher than the PDC for all three inverse
solutions. DTF is higher than PCC (p < 0.01). The wPLI
scored the highest similarity between the EEG source network
and the SEEG network; EEC, AEC, and DTF followed. The
PCC scored the lowest similarity.

When we consider the wPLI network only, the correlation
using LCMV is higher than that using sLORETA (p =

0.71) and wMNE (p = 0.64). The wMNE/wPLI and
sLORETA/wPLI at the voxel level performed equally well,

as shown in Table II. While at the ROI and brain level,
LCMV/wPLI is higher than wMNE/wPLI.

3) Scalp EEG Network: We investigated whether the EEG
source network performs better than the scalp EEG network
without using ESI. The above two networks were compared
to the SEEG network to evaluate their performance. Here,
scalp EEG electrodes nearest to the underneath SEEG contacts
were chosen as the nodes of the scalp EEG network. The
correlations between the SEEG network and the network with
or without ESI are shown in Fig. 6. The correlation of the
scalp EEG network without using ESI is lower than that of the
source network by sLORETA (p = 0.02), wMNE (p = 0.06)
or LCMV (p = 0.007).

IV. DISCUSSION

A. Effect of Connectivity Measures
This study uses simultaneous scalp EEG and SEEG to

validate the reconstructed brain network in the source space.
The main difference from the numerical simulation is that
the SEEG signal provides the ground truth for the EEG
imaged sources. In our simultaneous EEG analysis, the wPLI
reconstructs the network with a significantly higher correlation
than DTF, PDC, EEC, PCC, and AEC measures. The wPLI
was proposed as a functional connection measure to solve
source leakage in ESI [45]. The phase of intracranial activities
could be better recovered by ESIs, as suggested by some other
studies [26], [46]. When wPLI was used as a connectivity
measure, there were no significant differences between the
three inverse solutions. However, the correlation of LCMV
was higher than wMNE and sLORETA (Table II).

AEC and PCC are both using time-domain features. The
performance of AEC is better than that of PCC (Table I
and Table II), which suggests that the signal’s envelope is
more robust than the waveform for reconstructing source
connectivity. DTF, PDC and EEC are based on the causality
between nodes. The low performance of these three measures
suggests that volume conduction may severely distort the
causal relation, and ESI methods cannot solve it completely.
The PDC is an optimized version of DTF, but our study
did not demonstrate its advantages in numerical simulation
or simultaneous EEG analysis. The EEC achieved a better
estimation than DTF (p = 0.02) and PDC (p < 0.01), but it
is still lower than the wPLI (Table I and Table II).

Both similarities and differences exist between simultaneous
EEG and numerical simulation analysis. The wPLI achieved
better performance in both cases. The PCC is good in
numerical simulation at the brain regions level but yields poor
results in simultaneous EEG analysis.

B. Effect of Inverse Solutions
The sLORETA, wMNE, and LCMV have different math-

ematical or physical constraints. The wMNE is the solution
with minimum power determined [16], LCMV assumes only
one dipole at a time [17]. sLORETA is subject to biophysical
constraints. The imaged sources by the above methods were
compared with the SEEG recordings in the simultaneous EEG
analysis. At the voxel level, there is no significant difference
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Fig. 3. Numerical simulation on the effect of inverse solutions, connectivity measures, and node sizes. (a) Brain regions candidate for nodes.
(b) Simulated source signals and connectivity diagram for nine nodes. (c)-(e) Pearson correlation between the source imaging signals and the
simulated signals using (c) sLORETA, (d) wMNE, and (e) LCMV, respectively. The * represents a significant difference (p < 0.01). (f)-(h) Pearson
correlation between the source imaging network and the simulated networks using different network measures with the inverse solution of
(f) sLORETA, (g) wMNE, and (h) LCMV, respectively.

between the three ESI methods (Fig. 4(a)), even as the size
of the node increased to ROI (Fig. 4(b)) and brain region

level (Fig. 4(c)). But in the numerical simulation, we found
a significant difference between them (Fig. 3(d) and 3(e)).
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TABLE I
CORRELATION BETWEEN THE NETWORK OF THE SIMULATED SOURCES AND THE NETWORK OF IMAGED SOURCES IN NUMERICAL SIMULATION

Fig. 4. Correlation between the imaged sources and SEEG in simultaneous EEG analysis. (a)-(c) Correlation between the SEEG and the imaged
sources at (a) voxel, (b) ROI, and (c) region levels. (d)-(f) Correlation between the SEEG and the imaged sources using (d) sLORETA, (e) wMNE,
and (f) LCMV in frontal, temporal, parietal, occipital, and cingulate cortex.

TABLE II
CORRELATION BETWEEN THE EEG SOURCE NETWORK AND THE SEEG NETWORK IN SIMULTANEOUS EEG ANALYSIS

We think it is mainly due to the simulated clean background
activity in the numerical simulation.

When compared at the voxel level, the correlation in
the frontal lobe was higher than other lobes for sLORETA
(Fig. 3(d)) and wMNE (Fig. 3(e)). When LCMV was used,
the correlation in the parietal lobe was higher than that in
other lobes. The deep sources in the cingulate cortex scored
the lowest correlation in all three inverse methods, which is
consistent with other studies [47], [48].

Our results suggest that the ESI measures are essential for
analyzing the network using scalp EEG (Fig. 6). In certain

cases, wMNE/DTF and sLORETA/PDC, our preliminary
results did not show their advantages over the scalp EEG
network, and extreme caution should be taken when using
them.

C. Effect of Node Sizes
We investigated source signals and source networks at

three levels, i.e., voxel, ROI, and brain region. Neu-
romodulation is an effective solution to treat network
diseases. Different neuromodulation methods have targets
with different sizes; for example, tDCS affects large brain
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Fig. 5. Pearson correlation using inverse solutions, network measures, and node sizes in simultaneous EEG analysis. (a) Network correlation
when sLORETA is used. (b) Network correlation when wMNE is used. (c) Network correlation when LCMV is used.

Fig. 6. The correlations between the SEEG network and the network with or without ESI. Pearson correlation between the SEEG network and the
scalp EEG network (green boxes) or the source networks by sLORETA, wMNE, and LCMV.

regions, TMS targets ROIs, and tFUS focuses on smaller
targets such as a voxel. When ROIs or brain regions

are used as the network nodes, LCMV/wPLI is a good
choice. When the voxels are used as the network nodes,
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the wMNE/wPLI and sLORETA/wPLI are both preferred
choices.

D. Limitations
We used evoked simultaneous recording for source imaging

studies. The amplitude and rhythm of the evoked signal
are stronger than normal brain activity. The connectivity
between nodes depends on external stimulation strength and
the stimulation site. In addition, we performed superposition
averaging processing on the evoked recording, which amplified
the prompted information and may reduce some physiological
information. The techniques for solving source leakage and
extracting connections for brain regions still need further
investigation. The use of subcortical signals presents even
more significant challenges. The accuracy of the reconstructed
signal decreases as the depth increases. So, reconstructing
the deep source network is more challenging, which will be
addressed in the future study.

V. CONCLUSION

We explore three factors influencing the source imaging
network and study them separately from simulated data
and simultaneous EEG. There are no significant differences
between the three inverse solutions in the correlation of imaged
sources and the SEEG. The wPLI measure provides a more
accurate reconstruction of intracranial brain networks than
others.
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