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The Effect of Stimulation Intensity, Sampling
Frequency, and Sample Synchronization in

TMS-EEG on the TMS Pulse Artifact
Amplitude and Duration

Zunaira Jamil , Laura Säisänen , Michal Demjan, Jusa Reijonen, and Petro Julkunen

Abstract— Transcranial magnetic stimulation (TMS) cou-
pled with electroencephalography (EEG) possesses diag-
nostic and therapeutic benefits. However, TMS provokes
a large pulse artifact that momentarily obscures the cor-
tical response, presenting a significant challenge for EEG
data interpretation. We examined how stimulation intensity
(SI), EEG sampling frequency (Fs) and synchronization of
stimulation with EEG sampling influence the amplitude
and duration of the pulse artifact. In eight healthy sub-
jects, single-pulse TMS was administered to the primary
motor cortex, due to its well-documented responsiveness
to TMS. We applied two different SIs (90% and 120% of
resting motor threshold, representing the commonly used
subthreshold and suprathreshold levels) and Fs (conven-
tional 5 kHz and high frequency 20 kHz) both with TMS
synchronized with the EEG sampling and the conven-
tional non-synchronized setting. Aside from removal of the
DC-offset and epoching, no preprocessing was performed
to the data. Using a random forest regression model,
we identified that Fs had the largest impact on both the
amplitude and duration of the pulse artifact, with median
variable importance values of 1.444 and 1.327, respectively,
followed by SI (0.964 and 1.083) and sampling synchro-
nization (0.223 and 0.248). This indicated that Fs and SI
are crucial for minimizing prediction error and thus play a
pivotal role in accurately characterizing the pulse artifact.
The results of this study enable focusing some of the study
design parameters to minimize TMS pulse artifact, which
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is essential for both enhancing the reliability of clinical
TMS-EEG applications and improving the overall integrity
and interpretability of TMS-EEG data.

Index Terms— TMS-EEG, pulse artifact, stimulation
intensity, sampling frequency, synchronization.

I. INTRODUCTION

TRANSCRANIAL magnetic stimulation (TMS) [1] is a
non-invasive brain stimulation technique that employs

electromagnetic pulses to modulate neuronal activity through
the scalp, thereby offering insights into the functioning and
structural integrity of the brain [2]. The integration of TMS
with various neuroimaging techniques is becoming common
for mapping the spatial and temporal properties of the TMS-
elicited responses. TMS has been applied alongside computed
tomography and magnetic resonance imaging (MRI) to study
its connection to the structure of the brain [3]. To inves-
tigate the impact of TMS on blood flow, functional MRI,
functional near-infrared spectroscopy (fNIRS), and positron
emission tomography have proved useful [3], [4]. To assess
the neural effects of TMS, electroencephalography (EEG) and
magnetoencephalography have been utilized [5].

The coupling of TMS with EEG has been recognized as an
important non-invasive modality to investigate the excitability
and connectivity patterns of the human cerebral cortex [6],
[7]. It has potential applications in clinical diagnostics and
neuroscience research [8], [9], [10], [11], [12]. TMS-EEG
combines stimulation and high temporal precision recording
to allow millisecond-level observation of the propagation of
stimulation-evoked neural activity within the brain [13]. TMS-
EEG can be integrated effectively both in real-time and offline,
offering flexibility to explore the immediate and subsequent
effects of brain stimulation [3]. The ability of EEG to capture
the electrical activity of the brain by measuring changes as
potential difference between electrodes placed on the scalp
gives it an edge over other neuroimaging modalities that rely
on much slower hemodynamic responses such as fNIRS [14].
This enables for measurement of the precise timing of neural
events relative to stimuli as event-related potentials (ERPs) [3].

The accurate interpretation of TMS-EEG data is often
obscured by various characteristic artifacts which can be of
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non-physiological or physiological nature [15], [16]. Non-
physiological artifacts, stemming from electromagnetic or
mechanical sources, can interfere with the accurate mea-
surement of neural responses. Electromagnetic interference,
such as recharge and decay artifacts from capacitor recharg-
ing and electrode polarization, can be managed by utilizing
TMS-compatible EEG systems, adjusting stimulator config-
urations, and selecting non-polarizing materials [17], [18].
Differentiating genuine neural responses from TMS-induced
artifacts in EEG recordings, especially within the first 50 ms
after the TMS pulse, while minimizing the pulse artifact
duration and amplitude, remains a challenge [19], [20]. The
early components of the TMS-EEG response provide local
information of the activated neural population that is at the
focus of TMS and hence provide direct information about the
local cortical excitability [21]. The observable pulse artifact
stems from the application of a time-varying magnetic field
of 2–3 T for ∼200 µs, which induces an electric field
that activates the cortical neurons [22]. This transient, high-
amplitude electromagnetic disturbance results in large spikes
in the surface EEG, which are several magnitudes greater
than typical neural activity, adding further complexity to the
analysis process [23]. Despite great efforts to reliably remove
the pulse artifact using signal processing techniques [24],
[25], [26], [27], it remains an unavoidable consequence of
using TMS with EEG. However, its duration can be mini-
mized effectively by using amplifiers with sufficient dynamic
range, maintaining an adequate sampling frequency (Fs), and
employing a sufficient cut-off frequency for the anti-aliasing
filters [17], [28].

Stimulation and response recording parameters have a crit-
ical role in ensuring the safety and effectiveness of the
TMS-EEG procedure. The stimulation intensity (SI) serves as
a key parameter that significantly impacts both the validity
and interpretability of the experimental results [29]. The motor
threshold is often employed as a benchmark for calibrating SIs
in TMS experiments [30]. Lower SIs often yield subthreshold
neural modulations with higher spatial specificity [31], but
may produce weaker signals that are more difficult to dis-
tinguish from noise in EEG, resulting in a low signal-to-noise
ratio. In contrast, high-intensity stimulation can recruit larger
and deeper brain areas, including connecting pathways and
subcortical structures [32], which may result in more robust
EEG signals at the cost of increased risk of side effects,
such as discomfort [33]. Furthermore, the choice of Fs of the
EEG recording is pivotal for data quality and interpretability.
A high Fs enhances temporal resolution and signal-to-noise
ratio, facilitating advanced signal processing and artifact
removal. It also allows for the capture of high-frequency
neural events [34]. Conversely, a lower Fs may miss rapid
neural dynamics [35] and complicate artifact rejection [17].
The timing of TMS with respect to the sampling of EEG signal
could affect the characteristics of TMS-induced artifacts [36].
This effect could be minimized by synchronizing the TMS
with the EEG sampling. This is accomplished by sending a
trigger signal to the EEG system, which then holds the trigger
until the next EEG sample is collected before forwarding the
trigger to the stimulator to deliver the stimulation. This way,
timing of the TMS is coordinated by the EEG acquisition

system, ensuring that both the delivery of TMS and the
consequent artifacts are in synchrony with the EEG sampling
rate [37]. Furthermore, synchronizing TMS with person’s
individual EEG rhythm has been shown to influence brain
activity and responses, offering a novel approach to modulate
neural dynamics [38], [39].

Despite the existence of numerous strategies to mitigate the
TMS-EEG artifacts [27], [40], [41], [42], [43], it is imper-
ative to have comprehensive understanding of how different
parameters, such as the applied SI and Fs, influence the pulse
artifact. Moreover, the importance of synchronizing the TMS
with EEG sampling is an underexplored domain that could
provide additional benefits. It not only holds potential for pulse
artifact reduction, but also ensures the reliability of EEG data
by minimizing the temporal variability introduced by TMS
pulse artifacts in TMS-EEG studies [37].

This study aims to fill gaps related to some of the parameters
used in designing TMS-EEG studies by exploring the effects of
variations in SI, Fs and TMS pulse synchronization with EEG
sampling on TMS pulse artifact. We hypothesize that these
parameters can significantly affect the amplitude and duration
of the artifact. The findings of the present study will help
minimize the appearance of the raw pulse artifact for assuring
a good quality recording in future TMS-EEG studies and may
also help with the removal of the artifact.

II. METHODS

A. Subjects and Data
During the TMS-EEG session, the left primary motor cortex

(M1) was stimulated, and EEG data were collected from
eight healthy subjects (six right-handed, five males, mean
age 31 ± 5 years). The data for each subject were recorded in
a single TMS-EEG session, each lasting for approximately
two hours. The study had an approval from the Research
Ethics Committee of Kuopio University Hospital (permission
number: 59/2012) and was conducted in compliance with the
Declaration of Helsinki. Informed consent was taken from all
volunteers of the study.

B. Experimental Setup
Prior to the study, each participant underwent structural

MRI of the head, which facilitated the use of a navigated
brain stimulation system (Nexstim Plc, Helsinki, Finland).
EEG was recorded with NeurOne DC-amplifier (Bittium Plc,
Kuopio, Finland) with 64 active channels and dynamic range
of ±430 mV. In the beginning of the experiments, the electrode
contacts were prepared to ensure impedances were <5 k�.
The reference and the ground electrodes were positioned on
the forehead. Electro-oculography electrodes were positioned
below the left eye and above the right eyebrow. Motor evoked
potentials (MEPs) were measured from the right hand first
dorsal interosseous (FDI) muscle using the Nexstim elec-
tromyography (EMG) system with sampling rate of 3 kHz.
Following the placement of the EEG cap, participants received
biphasic TMS through a figure-of-eight coil (outer loop diam-
eter of 70 mm). Participants were seated comfortably, asked to
remain relaxed, and to keep their eyes open. The major parts of
experimental setup have been described in earlier study [44].
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TABLE I
SUMMARY OF FINDINGS FOR ELECTRODE C3. THE REPORTED

VALUES ARE BASED ON THE GROUP MEAN AVERAGE

WITH 95% CONFIDENCE INTERVALS

The participants were unaware of the sequences being tested,
and the order of the sequences was randomized.

To locate the ideal stimulation site in the left M1 for
the right FDI, the precentral gyrus along the central sulcus
was stimulated. The orientation of the TMS-induced electric
field was adjusted to be perpendicular to the sulcal wall to
optimize cortical activation. The specific site that consistently
produced the largest and most reliable MEPs in the FDI muscle
was designated as the optimal representation area, i.e., the
stimulation target [45], [46].

The subsequent experimental protocol was set to deliver
150 single pulses in six repeated TMS-EEG sequences con-
sidering the dimensions of SI (either 90% or 120% of resting
motor threshold (rMT)), and Fs (either 5 kHz or 20 kHz). Both
SI and Fs conditions were paired with EEG sampling synchro-
nized with TMS pulse for three sequences and conventionally
under non-synchronized setting for the other three sequences
(Table I). All data analyses were performed identically in a
semiautomatic manner by the corresponding author.

C. Signal Preprocessing
Preprocessing of the EEG signal was conducted in

MATLAB (Version R2022b, MathWorks Inc., Natick, USA)
utilizing functions from both EEGLAB 2022.1 [47] and the

TMS-EEG signal analyser (TESA) toolbox [22]. To under-
stand the inherent characteristics of the pulse artifact, epochs
and channels potentially contaminated with noise were mini-
mally processed. Since EEG data contain trends and drifts that
could distort the appearance of the underlying neural dynamics
and might affect subsequent analysis, linear detrending of the
data was performed within the time window between 0 ms
(marking the moment of TMS) and 100 ms to remove DC
offset within the primary analyzed time window. The data were
then segmented into epochs using a time span between 200 ms
before and 500 ms after the stimulation event. Artifact- and
noise-contaminated data were used in the analysis, assuming
that the pulse artifact was the dominant common component in
the signal, especially in the vicinity of the stimulation target.

D. Artifact Analysis

The amplitude of the pulse artifact was calculated as
peak-to-peak voltage difference where a single peak was
characterized as a local maximum denoted by the greatest
amplitude across the entire epoch and was flanked by two
adjacent minima (Fig.1). This calculation was performed for
all electrodes in each trial and was repeated for all 150 trials
within a sample. The process was then replicated across all six
samples for the subject, providing a comprehensive analysis
of the peak-to-peak amplitudes within the dataset.

In the duration analysis of the epoched EEG data,
the pre-stimulus waveform was extracted. This waveform
was based on specific time indices corresponding to the
period preceding the stimulation event, where no significant
stimulus-coupled neural activity was expected. Full-wave rec-
tification of the baseline-corrected pre-stimulus waveform was
performed uniformly across all electrodes for each individual
trial, in order to isolate neural responses from confounding fac-
tors. Concurrently, the post-stimulus waveform was extracted
corresponding to the related time interval, and the pre-stimulus
baseline was subtracted from it. This facilitated the extraction
of significant pulse artifact data, commencing from 0 ms
onward.

After the preprocessing of the epoched EEG data, the
moving window peak-to-peak amplitude method [48] was
employed to determine the onset and offset of the pulse arti-
fact. A 1-ms window was defined and placed at the beginning
of the post-stimulus signal. The window size provided an
optimal balance between reliable detection of artifact and
avoiding the incorrect marking of background EEG as an
artifact. To identify significant deviations, a threshold was
defined based on the interquartile range (IQR) of the pre-
stimulus signal. The IQR, representing the middle 50% of
data, was chosen due to its robustness against outliers in
comparison to other range measures such as standard devia-
tion [49], ensuring that the threshold is not unduly influenced
by extreme values [50]. This threshold was set as three times
the IQR based on Empirical Rule – a.k.a. 68-95-99.7 rule [51].
Following this rule, in a normally distributed set of data (such
as baseline noise), about 68% of the data falls within one
standard deviation (SD) of the mean, about 95% falls within
two SD, and about 99.7% falls within three SD. The defined
window was systematically slid through the data, scanning for
peaks that exceeded the predefined threshold.
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Fig. 1. A) TMS-EEG pulse artifact, with peak-to-peak amplitude denoted by A1 and A2, and duration denoted by T1 and T2. Stimulus is given at
time 0 ms. B) The onset and offset times of the pulse artifact. The artifact initiates concurrently with the stimulation represented by T1 and dissipates
∼2 ms post-stimulus represented by T2. C) Non-synchronized TMS-EEG trials. D) Synchronized TMS-EEG trials. The TMS pulse is synchronized
with the sampling frequency of the EEG acquisition device, which serves as the basis for trial synchronization.

For each individual trial, the onset of the pulse artifact was
identified by detecting the first 1-ms window where the signal
amplitude value surpassed the threshold. Upon satisfying this
condition, the onset time was documented, and the search
proceeded to find the offset of the artifact. The offset of the
artifact was documented where the signal amplitude value
descended below the threshold. This process continued until
the whole post-stimulus epoch had been tested. The duration
of each artifact was obtained by subtracting the offset time
from the onset for every electrode and trial. Finally, the median
artifact duration was calculated for each electrode, considering
the artifact durations across all trials for that particular elec-
trode. In Fig.1, we illustrate the methodology used to define
the temporal boundaries of the pulse artifact employing the
moving window peak-to-peak amplitude method.

E. Statistical Analysis
To analyze the central tendency of the data, statistical

measures including the median, variance, and percentiles (from
2.5th to 97.5th) were computed for the 64 EEG electrodes
(excluding the electro-oculogram and electrocardiogram elec-
trodes), for both peak-to-peak amplitude and artifact duration
in each sample.

The distributions of peak-to-peak amplitude and dura-
tion of the pulse artifact were examined employing both
visual inspection techniques, such as histograms and quantile-
quantile (Q-Q) plots, and Kolmogorov-Smirnov test. The
results indicated a non-normal, bimodal distribution for the
peak-to-peak amplitude and a non-normal distribution for
the artifact duration. The paired Wilcoxon signed-rank tests
were conducted to examine the effects of specific exper-
imental conditions, defined by SI and Fs: [SI = 90%
rMT & Fs = 20 kHz], [SI = 120% rMT & Fs = 5 kHz],

and [SI = 120% rMT & Fs = 20 kHz]. For each condition,
median values for both artifact peak-to-peak amplitude and
duration were analyzed to determine whether synchronized
and non-synchronized settings yielded statistically different
outcomes.

Since the data did not align with any specific conventional
distribution, machine learning techniques were employed
avoiding any assumption on the underlying data distribution.
A random forest regression model was trained on the pro-
cessed data to predict the response variables, which were
the median values of the peak-to-peak amplitudes and the
durations of the pulse artifact. The random forest, charac-
terized by its non-parametric and ensemble-based approach,
was less prone to overfitting due to its robust predictive
capability especially when dealing with small sample size
and in the presence of outliers [52], [53]. The median values
for the response variables were calculated for each electrode
individually, thereby eliminating biases introduced by pooling
data across multiple electrodes.

The model employed SI, Fs, and synchronization as pre-
dictor variables. For each split in each tree, a random subset
of the predictor variables was chosen to find the best split.
Predictions from individual trees were averaged for regression
to create the final prediction. The model was created using
a forest comprised of 500 individual decision trees. The
hyperparameter tuning of the trees was done using the grid
search method by iterating over a predefined set of values for
the number of trees, fitting the model, and selecting the number
of trees that results in the smallest out-of-bag (OOB) permuted
variable delta error. This measure reflects each variable’s
contribution to the model’s predictive accuracy.

Bootstrap Sampling was performed additionally for more
robust and nuanced understanding of variable importance.
Variable importance quantified the contribution of each



2616 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 2. Topographical distribution of TMS pulse artifact amplitude across different experimental conditions, including (first row) stimulation intensity
(90% rMT and 120% rMT) at sampling frequency of 20 kHz, (second row) sampling frequency (5 kHz and 20 kHz) at stimulation intensity of 120%
rMT, and (third row) synchronization between stimulation and EEG sampling (No/Yes). The row within each condition displays the mean artifact
amplitude, measured in millivolts (mV). The ‘Difference’ column highlights the difference (B-A) in artifact amplitude between the conditions, with the
color intensity denoting the magnitude of the difference. The yellow stars indicate significant differences (p< 0.05) in the corresponding location
derived from the Wilcoxon rank sum test.

predictor variable to the predictive accuracy of the model.
It measured how much the model’s prediction error increased
when the data for that variable was permuted randomly while
all other variables were held constant. 1000 bootstrap samples
were drawn (with replacement) from the original data and
a new random forest regression model was trained on each
sample. The variable importance was recalculated for each
model, allowing to assess the stability of importance scores
across different samples from the same population. The 2.5th
and 97.5th percentiles of the bootstrapped importance values
were calculated to form 95% confidence interval (CI) for each
variable’s importance.

Topological visualizations of data distribution for peak-to-
peak amplitudes and artifact durations were generated using
nearest neighbor interpolation. For each unique electrode,
data were segregated based on specific stimulation parameter
conditions. Average values were determined for each electrode
under each condition and topographical plots were generated.
The p-values were obtained using the Wilcoxon rank sum test
and were adjusted for multiple comparisons utilizing the false
discovery rate. To control the increased risk of type I errors
due to multiple comparisons across the large number of elec-
trodes, p-values were adjusted using the Benjamini-Hochberg
False Discovery Rate (FDR) method. This adjustment was
applied spatially across all electrodes for each set of
conditions.

III. RESULTS

Topographical plots that summarize the effect of the investi-
gated parameters, i.e., SI, Fs and synchronization, on the pulse

artifact amplitude and duration are shown in Figs. 2 and 3,
respectively. Neither the amplitude nor the duration data
were normally distributed (p < 0.001, Kolmogorov-Smirnov
test). The paired Wilcoxon signed-rank tests indicated that
for most conditions, both peak-to-peak amplitude and artifact
duration showed significant differences between synchronized
and non-synchronized conditions, i.e. with SI=90% rMT and
Fs=20 kHz, as well as SI=120% rMT and Fs=20 kHz
(p < 0.001). The analysis revealed a significant difference
in the peak-to-peak amplitudes between synchronized and
non-synchronized condition, with amplitudes being 3% lower
in synchronized settings as determined by specific relative
percentage differences (p = 0.0125). There were no significant
differences in artifact durations (p = 0.2832) (Fig. 3).

The pulse artifact amplitudes at SI 90% of rMT were on
average 21 mV lower than those at 120% of rMT (relative
percentage difference: 6%). Also, the amplitude values at Fs
of 20 kHz were on average 250 mV higher than those at
5 kHz (relative percentage difference: 86%). The synchronized
condition showed pulse artifact amplitude lower on average
by 7 mV than that in the non-synchronized condition (relative
percentage difference: 3%) (Fig. 2).

The artifacts induced at SI of 120% rMT had an average
duration longer by 0.9 ms than at 90% of rMT (relative
percentage difference: 30%). The Fs of 20 kHz demonstrated
a reduced artifact duration in contrast to the lower Fs of
5 kHz by 2.0 ms (relative percentage difference: 57%). The
synchronized condition showed pulse artifact duration longer
by 0.2 ms than in the non-synchronized condition (rela-
tive percentage difference: 6%), without reaching statistical
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Fig. 3. Topographical distribution of TMS-EEG pulse artifact duration across different experimental conditions, including (first row) stimulation
intensity (90% rMT and 120% rMT) at sampling frequency of 20 kHz, (second row) sampling frequency (5 kHz and 20 kHz) at stimulation intensity
of 120% rMT and (third row) synchronization between stimulation and EEG sampling (No/Yes). The row within each condition displays the mean
artifact duration, measured in milliseconds (ms). The ‘Difference’ column highlights the difference (B-A) in artifact duration between the conditions,
with the color intensity denoting the magnitude of the difference. The yellow stars indicate significant differences (p< 0.05) in the corresponding
location derived from the Wilcoxon rank sum test.

significance (Fig. 3). Descriptive statistics for one electrode
(C3) are given in Table I.

The within-subject variations in artifact amplitude indi-
cated consistent artifact amplitudes especially with sample
synchronization (Table I). The lowest within-subject variations
were observed with the low SI and high Fs; the use of
synchronization did not affect the consistency of the artifact
duration (Table I).

A. Predictor Variable Importance
Bootstrap sampling provided an understanding of the

variable importance. The importance of predictor variables
SI, Fs and synchronization on the peak-to-peak amplitude
(response variable) as derived from the random forest model,
is presented in Fig 4. Fs was found to be the most important
predictor with absolute median importance value of 1.444
(relative percentage: 56%) along with the 95% CI of [1.329,
1.572]. SI followed with absolute median importance value
of 0.964 (relative percentage: 38%) along with the 95% CI
of [0.887, 1.050]. Synchronization had the least impact with
absolute median importance value of 0.223 (relative percent-
age: 6%) along with the 95% CI of [0.061, 0.525].

The importance of predictor variables SI, Fs and syn-
chronization on the artifact duration (response variable) as
derived from the random forest regression model, is presented
in Fig 5. Fs was found to be the most influential predictor
with absolute median importance value of 1.327 (relative
percentage: 49%) along with the 95% CI of [1.226, 1.445].
SI followed with absolute median importance value of 1.083

Fig. 4. The relative importance of stimulation intensity (SI), frequency
(Fs), and synchronization as predictor variables affecting the amplitude
of the pulse artifact. The heights of the bars represent the computed
importance, quantified through bootstrapping, with corresponding rela-
tive percentages indicated above each bar. The error bars in red indicate
confidence intervals.

(relative percentage: 41%) along with the 95% CI of [0.996,
1.176]. Synchronization had the least impact with absolute
median importance value of 0.248 (relative percentage: 9%)
along with the 95% CI of [0.080, 0.465].

IV. DISCUSSION

The present study investigated the effects of various stim-
ulation parameters on TMS pulse artifact observable in the
concurrently recorded EEG. Our results demonstrate that Fs
and SI significantly affect the amplitude and duration of pulse
artifact. Intriguingly, the level of synchronization between
TMS and EEG had only a small effect on the amplitude and
duration of the pulse artifact.
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Fig. 5. The relative importance of stimulation intensity (SI), frequency
(Fs), and synchronization as predictor variables affecting the duration
of the pulse artifact. The heights of the bars represent the computed
importance, quantified through bootstrapping, with corresponding rela-
tive percentages indicated above each bar. The error bars in red indicate
confidence intervals.

A. Sampling Frequency
Expectedly, Fs of 20 kHz exhibited higher peak-to-peak

artifact amplitude values compared to the Fs of 5 kHz. This
is because some of the high-frequency components of the
artifacts were not filtered out by hardware filtering when
using the higher Fs. Higher Fs was more adept to capture
high-frequency noise or other high-frequency transients. Also,
a higher Fs yielded more data points in the same time
window and allowed capturing transient peaks or troughs more
effectively, leading to larger amplitude values. This impact
might have further repercussions on downstream analyses,
including signal filtering and identification of event-related
potentials [54].

Consistent with previous findings [17], the Fs of 20 kHz
demonstrated reduced artifact duration in contrast to Fs of
5 kHz. The present study did not include software filtering
which would alter the amplitude characteristics of a signal.
If a low-pass filter is applied to data sampled at 20 kHz,
the outcome could appear quite similar to the data sampled
at 5 kHz.

B. Stimulation Intensity
The pulse artifact amplitudes at SI 90% of rMT were lower

than those at 120% of rMT. One of the critical observations
in our study was the trade-off between signal clarity and
confounding factors in the form of noise, with noise in this
context being referred to as random variations in the signal
that were devoid of useful information specific to the pulse
artifact, particularly when using higher SIs. It is more likely
that higher SI may produce a clear, strong signal but it will be
at the cost of more artifacts or direct muscle responses [43].

The higher SI induced artifacts of longer durations as
compared to lower SI as can be seen in Fig 3 and Table I.
An extended artifact duration at higher SI is suggested due
to stronger TMS-induced electric field that generates longer
interference in the EEG. At higher SIs, there is also the poten-
tial for increased discomfort and muscle contractions [21] that
might influence the duration of the observed artifact.

C. Synchronization
Synchronization between EEG sampling and TMS appeared

to have only a small effect on the amplitude and duration

of the artifact when compared to SI and Fs. This suggests
that the effects of synchronization are minor. However, the
within-subject variation in the TMS-induced artifacts appeared
lower (Table I). At this point, we did not test how synchro-
nization might affect the offline removal of the artifact, when
it could potentially be more effectively removed due to higher
repeatability of the artifact in the time domain. A previous
study explored how varying synchronization settings at multi-
ple sampling frequencies (5 kHz, 10 kHz and 20 kHz) affect
trial-to-trial variability of the pulse artifact in both phantom
and scalp recordings [37]. Our study proceeded further by
quantifying how synchronization can affect artifact amplitude
and duration along with other experimental conditions (SI and
Fs). The previous study aimed to create an artifact template
for offline filtering to recover physiological responses, empha-
sizing the practical application of artifact reduction [37]. Our
study quantified the impact of various stimulation parame-
ters using statistical modeling in the form of random forest
regression model supported through bootstrapping, providing
an empirical basis for understanding the dynamics of pulse
artifact.

D. Limitations and Future Directions
One of the limitations of this study was the lack of full

factorial design in order to limit the duration of the experiment,
and hence fractional design was chosen. Additionally, we did
not test the impact of using an AC-coupled amplifier setting
on the artifact as generally, DC-coupling is recommended
for TMS-EEG experiments [17]. Furthermore, the Fs values
used in our study are relatively high compared to those in
conventional EEG measurements and they are expected to
yield a higher-quality signal than conventional EEG systems.
This has allowed enhanced identification of pulse artifact,
leading to more detailed and precise artifact analysis. The
validity and reliability of the study findings were controlled
by bootstrapping tests. Hence, the statistical validity with
the present data and the used instrumentation was tested.
While the results may be somewhat dependent on the used
instrumentation as well as the study population, the general
outcome, i.e. the importance of the parameters to the raw pulse
artifact characteristics are unlikely to be significantly different,
because the agreement between individuals was high (Table I).
The reproducibility of the results, e.g. with different systems
and study populations, will eventually need to be verified.

To preserve the characteristics of the pulse artifact, includ-
ing amplitude, shape, and temporal dynamics, only limited
preprocessing was applied to the data. Conventional signal
preprocessing techniques, such as filtering, might distort or
alter the characteristics of the signal. This approach ensured
that the raw characteristics of the pulse artifact were main-
tained, providing a more accurate representation of the artifact.
Potential biases in the study include the homogeneity of the
subject sample (healthy adults) and repeated measures design
where each participant served as their own control. This was
done to reduce the variability caused by inter-subject differ-
ences and was compensated by replicating samples through
bootstrapping.

Despite these limitations, the purpose of our study was
to offer optimization suggestions and provide meaningful
insights for future TMS-EEG experiment design and artifact
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management. Given the observation that a higher Fs produced
significantly higher artifact amplitude and reduced artifact
duration compared to a lower Fs, future studies could test
a wider range of sampling frequencies to determine the
optimal Fs that minimizes artifacts while capturing high-
quality signals. While the used Fs values were higher than
in conventional EEG measurements, it would be valuable to
compare results across a spectrum of Fs values to ensure a
more general understanding of artifact behavior.

Our findings about the effects of Fs and SI on pulse
artifact could inform the design of multi-center studies. One
of the significant challenges in neuroscience research is
the reproducibility of results. By standardizing how artifacts
are managed and how TMS and EEG parameters are set,
multi-center studies, each potentially using slightly different
equipment and settings, can improve their statistical power
and the reproducibility of their findings. Given that individual
anatomical differences and TMS coil positioning can introduce
variability, using computational models can be instrumental
in better understanding of individual brain anatomy and its
impact on the pulse artifact. While the present study identified
only small effects of synchronization between TMS and EEG
sampling on artifact dynamics, it may prove to be a crucial
parameter for pulse artifact removal. Future work might go
deeper into its potential significance, especially concerning
the offline artifact removal processes. There is a need for
developing advanced real-time artifact rejection or correc-
tion algorithms that leverage machine learning techniques
to improve data cleanliness without substantial loss of the
neurological signal integrity. Future studies should explore the
integration of adaptive filtering techniques based on the study’s
findings, where filter parameters are dynamically adjusted
according to the stimulation intensity and frequency settings.

Given the findings of this study, several recommendations
can be made for future TMS-EEG experiment design and
artifact management. This study highlighted the role of a
higher Fs in capturing more information from the artifact,
facilitating more effective removal and recovery. This finding
also suggests that conventional EEG systems, which typi-
cally operate at lower Fs, might underestimate certain artifact
components, thereby skewing data interpretation. Since higher
SIs produced clearer responses [55], future studies might
investigate a broader range of SIs to identify an optimal value
that yields the best signal-to-noise ratio while considering
comfort.

E. Conclusion
This study has systematically explored the influence of var-

ious stimulation parameters (Fs, SI, and synchronization) on
TMS pulse artifact observable in the EEG during TMS-EEG
experiments. Our findings reveal that Fs and SI substan-
tially affect both the amplitude and duration of the pulse
artifact, highlighting the critical role these parameters play
in optimizing TMS-EEG data integrity. The small impact of
synchronization suggests that while precise timing between
TMS pulses and EEG recordings is beneficial, it is not as
critical as the correct setting of Fs and SI for pulse artifact
management. Such insights are instrumental in advancing the
design and interpretation of future TMS-EEG studies for more
standardized and effective experimental frameworks. The path

is clear for future research to explore wider parameter ranges
and to incorporate adaptive filtering techniques that could
dynamically compensate for artifact. Moreover, incorporating
consideration of different brain states during experiments
might have the potential to provide deeper insights into the
optimal conditions for stimulation and recording. This could
lead to more personalized and effective therapeutic interven-
tions, tailored to the specific neurophysiological profiles of
individuals, thereby expanding the spectrum of possibilities in
neuromodulation and TMS-EEG research.

F. Data Availability Statement
The data that support the findings of this study are available

on request from the corresponding author. The data are not
publicly available.
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