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Abstract— In most real world rehabilitation training,
patients are trained to regain motion capabilities with the
aid of functional/epidural electrical stimulation (FES/EES),
under the support of gravity-assist systems to prevent
falls. However, the lack of motion analysis dataset designed
specifically for rehabilitation-related applications largely
limits the conduct of pilot research. We provide an open
access dataset, consisting of multimodal data collected
via 16 electromyography (EMG) sensors, 6 inertial mea-
surement unit (IMU) sensors, and 230 insole pressure
sensors (IPS) per foot, together with a 26-sensor motion
capture system, under different MOVEments and POstures
for Rehabilitation T raining (MovePort). Data were collected
under diverse experimental paradigms. Twenty four partic-
ipants first imitated multiple normal and abnormal body
postures including (1) normal standing still, (2) leaning
forward, (3) leaning back, and (4) half-squat, which in prac-
tical applications, can be detected as feedback to tune
the parameters of FES/EES and gravity-assist systems to
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keep patients in a target body posture. Data under imitated
abnormal gaits, e.g., (1) with legs raised higher under
excessive electrical stimulation, and (2) with dragging legs
under insufficient stimulation, were also collected. Data
under normal gaits with low, medium and high speeds are
also included. Pathological gait data from a subject with
spastic paraplegia further increases the clinical value of
our dataset. We also provide source codes to perform both
intra- and inter-participant motion analyses of our dataset.
We expect our dataset can provide a unique platform to pro-
mote collaboration among neurorehabilitation engineers.

Index Terms— Motion analysis, neurorehabilitation, gait
segmentation, dataset, database.

I. INTRODUCTION

ALMOST 15% of the world’s population live with disabili-
ties. As for motor function disabilities, the most common

causes include stroke, paraplegia, and spinal cord injury (SCI),
etc. For most people with motion disabilities, advanced smart
rehabilitation techniques [1], [2] can greatly improve the effect
of rehabilitation training. In most real world rehabilitation
training, patients are trained to regain motion capabilities with
the aid of functional electrical stimulation (FES) [3]. Recent
breakthrough also demonstrates epidural electrical stimulation
(EES)-based spinal cord neuromodulation can restore trunk
and leg motor functions after complete paralysis [4]. FES/EES-
aided rehabilitation training is usually carried out first in a
specific venue with available gravity-assist systems [5] to
prevent falls, and then in their daily life with robotic wearable
devices [6].

In the whole process of rehabilitation training, modeling on
the motions or body postures is required to provide feedback
to tune the parameters of FES/EES and gravity-assist systems.
For example, at the onset of each rehabilitation training, elec-
trical stimulation of key muscles in the lower limbs could help
patients stand and keep balance. Real time recognition and
monitoring on body postures can contribute to more precise
stimulation and triggering timely fall prevention. During the
walking training, the parameters of electrical stimulation is
essential because excessive or insufficient stimulation can both
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TABLE I
COMPARISON WITH PREVIOUS REPRESENTATIVE DATASETS

lead to abnormal gait patterns. Gait analyses can also help to
regulate the stimulation parameters, so that the correct muscles
can be activated in each phase of a gait cycle. For each patient,
an initial motion analysis model is usually needed at the
beginning of the rehabilitation training, which is challenging
without any training data. Additionally, a better understanding
on abnormal motions in rehabilitation-related scenarios is also
helpful in pilot studies of diverse research directions.

However, the lack of motion analysis dataset designed
specifically for FES/EES-aided rehabilitation applications
largely limits the conduct of pilot research. Most previous
motion analysis and gait segmentation models have been
validated on normal gaits. In rehabilitation training, a pre-
defined motion analyses model is expected to show high
generalizability to abnormal gaits. Moreover, considering FES
and EES have been widely applied in rehabilitation train-
ing, where the two most typical gaits, (1) with legs raised
higher under excessive stimulation, and (2) with dragging legs
under insufficient stimulation, have been neglected in previous
datasets. For example, the OU-ISIR dataset [7] is one of
the most widely used vision-based motion analysis datasets.
Schreiber et al. established a multimodal gait dataset using
motion capture (MoCap) system, electromyography (EMG)
sensors and ground reaction forces (GRF) [8]. Moreira et al.
[9] recently open-sourced a lower-limb kinematic, kinetic, and

EMG dataset collected from young healthy humans during
walking at controlled speeds. However, all these datasets
focused on normal gaits. As for motion analysis datasets on
abnormal or pathological gaits, Hausdorff et al. [11] provided a
dataset collected from patients with Parkinson’s disease (PD),
Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS). However, in their raw data, only force-sensitive resis-
tors (with the output roughly proportional to the force under
the foot) were used for signal measurement, which cannot
provide sufficient information for motion analyses. Likewise,
Chatzaki et al. [12] developed a gait dataset on both healthy
subjects and PD patents, but the motion-related data were
collected only from feet with limited overall information on
the full body. Details on representative datasets were shown
in Table I.

To facilitate more studies on motion analysis during reha-
bilitation training, here we provide an open access dataset,
consisting of multimodal data collected via 16 EMG sensors,
6 inertial measurement unit (IMU) sensors, and 230 insole
pressure sensors (IPS) per foot, together with a 26-sensor
MoCap system, under different MOVEments and POstures
for Rehabilitation Training (MovePort dataset). Data were
collected under diverse experimental paradigms. Twenty four
participants first imitated multiple normal and abnormal body
postures including (1) normal standing still, (2) leaning for-
ward, (3) leaning back, and (4) half-squat, which in practical
applications, can be detected as feedback to tune the param-
eters of FES/EES and gravity-assist systems. Data under
imitated abnormal gaits (1) with legs raised higher (to simulate
excessive electrical stimulation), and (2) with dragging legs
(to simulate insufficient stimulation), were also collected. Data
under normal gaits with low, medium and high speeds are also
included in our dataset. One more subject with spastic paraple-
gia also participated in our experiment. We also provide source
codes to perform both intra- and inter-participant motion anal-
yses of our dataset. The gait deviation index (GDI) [13], a mul-
tivariate measure of overall gait pathology, was also imple-
mented to measure distance between each gait pattern and the
normal gait template in our dataset. We expect our dataset can
provide a unique platform to promote a wide range of research
and collaboration among neural rehabilitation engineers.

II. MATERIALS

A. Subjects
24 healthy subjects (aged 21–35 years, 14 males,

10 females) and 1 subject with spastic paraplegia (17 years
old, male) participated in our data collection experiment. The
subject with spastic paraplegia has shown pathological gait
for more than three years, with increased muscle tension in
both lower limbs. All subjects were informed the research
purpose and experimental details, and provided the informed
consent. The experiment was approved by the ethics committee
of Fudan University (approval number: FE23166I). Among
24 healthy subjects, 17 subjects completed the full experiment,
with 7 subjects completing ∼ 90% experiments. We open
source data from all subjects to make the best use of as many
data as possible. The details of missing experiment paradigms
for the 7 subjects can be found in the “Missing Data” section.
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Fig. 1. Sensor Placement. For the notation of each sensor location, “L_” and “R_” denotes the same corresponding location of the left and right
part of human body, respectively.

The storage size of our dataset is 15.5 GB. The directory
structure of our dataset is presented in Fig. 7 in Appendix.

B. Data Collection
EMG, IMU, IPS and MoCap snesors, were used for motion

measurement in our experiment. First, 16 EMG sensors
(Cometa Systems) were placed on the vastus lateralis (Vlat),
rectus femoris (RF), semitendinosus (ST), tibialis anterior
(TA), medial gastrocnemius (MG), lateral gastrocnemius (LG),
soleus muscle (SOL), and iliopsoas muscle (IL) of each
subject, as presented in Fig. 1. Second, 6 IMU sensors (Xsens)
were placed on the head, pelvis, right wrist, left wrist, left foot
and right foot of each subject. Each IMU sensor can measure
3-axis accelerometers, 3-axis gyroscopes, and 3-axis Euler
angles, with a total of 6 sensors × 9-axis per sensor = 54-axis
information measured. Third, 2 IPS arrays (Xsensor) with
230 sensors each array, were placed under two feet. MoCap
system (Qualisys) with 26 sensors were used to capture the
motion of human body. The sensor locations and notations
largely overlap with the previous study (supplementary mate-
rials of [14]). The total force of each foot and the coordinates
of center of pressure (COP) on both feet were saved separately.
The sampling rates of EMG, IMU, IPS and MoCap sensors
are 2000 Hz, 100 Hz, 60 Hz, and 100 Hz, respectively. Data
of above modalities are saved in files with a “.csv” format.
Using our open-sourced codes, the loaded data are n×t matrix,
where n refers to number of channels (EMG and IPS) or axes
(MoCap and IMU), and t refers to the number of samples.

C. Experimental Paradigm
1) Body Posture Recognition: In the first session, 24 healthy

subjects were required to complete and maintain the target
body postures on the ground. These body postures consists

of: (1) normal standing still; (2) leaning forward, i.e. imitating
a posture with the center of gravity forward; (3) leaning
back, i.e. the posture with the center of gravity backward and
(4) half-squat, i.e. bending their knees to imitate the posture
when the support force is insufficient. On average, for each
body posture of each subject, 62.1 s ± 12.9 s signals were
recorded.

2) Normal Gaits From Healthy Subjects: In the second ses-
sion, 24 healthy subjects were required to perform normal
gaits on non-tilted treadmill at low (1 km/h), medium (2 km/h)
and high (3-4 km/h, a higher but still relatively comfortable
speed selected by each subject) speeds. Subjects were allowed
to take a break between experiments with different speeds.
On average, for each subject, 94.5 s ± 31.4 s, 80.1 ± 18.2 s,
and 72.9 ± 16.0 s signals were recorded for gaits at low,
medium and high speeds, respectively.

3) Abnormal Gaits From Healthy Subjects: In the third ses-
sion, 24 healthy subjects were required to perform abnormal
gaits on non-tilted treadmill. Two most representative abnor-
mal gaits, namely (1) gaits with legs raised higher, and (2) gaits
with dragging legs, were considered. The gaits with legs
raised higher can simulate the situations when patients receive
excessive electrical stimulation, while the gaits with dragging
legs can simulate the situations when patients have difficulty
lifting his legs or receive insufficient electrical stimulation.
These two abnormal gaits are the most common ones in
FES/EES-aided rehabilitation training. For gaits with legs
raised higher, the speed was set to 2 km/h, and on average,
104.8 s ± 32.0 s signals were recorded from each subject. For
gaits with dragging legs, the speed was set to 1 km/h, and
on average, 85.7 s ± 15.4 s signals were recorded from each
subject.
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TABLE II
NETWORK ARCHITECTURE

4) Data From Subject With Spastic Paraplegia: This subject
performed 4 body postures, the same as the experiment for
healthy subjects. Then the subject was required to walk on
ground, with a self-defined comfortable speed. On average,
for each body posture, 51.6 ± 6.3 s signals were recorded.
Signals with 32.1 s duration was recorded for pathological
gait data.

D. Missing Data
Participants 1–17 fully completed all experiments described

above. For participants 18, 19, 20 and 24, data of the “leaning
forward” body posture are not available. For participant 21,
data of the “leaning forward” body posture and normal gait
at low-speed are not available. For participant 22, data of the
“leaning back” body posture are not available. For participant
23, data of the “leaning forward” and “half-squat” body
postures are not available. we open source all available data.

III. METHODS

A. Feature Extraction
1) Body Posture Recognition: For signals of each modality,

features were extracted via sliding windows. Both the window
width and sliding step were set to 50 ms. For EMG signals,
root mean square (RMS), waveform length (WL), slope sign
changes (SSC), and zero crossing (ZC) were extracted from
signals in each sensor channel within each sliding window. The
extracted four types of features are the most widely used ones
in previous studies on EMG analyses [15]. The overall length
of the EMG feature vector in each window is 64 (16 sensors ×

4 features). For IMU and IPS signals, the mean value of
all samples in each channel within each sliding window was
extracted. The overall length of the IMU and IPS feature vector

in each window is 54 (6 IMU sensors × 9-axis information ×

1 feature) and 460 (230 sensors × 2 feet × 1 feature),
respectively. For the MoCap signals (i.e. the coordinates of
each sensor in three-dimensional space), the MoCap sensor
placed on the head of each subject was used as a new reference
to calculate the new relative coordinates of each sensor, so that
the MoCap data would not relate to subjects’ location in the
room but only depends on the body posture. Then, the mean
value of re-referenced coordinates for each sensor within each
sliding window was extracted as a feature. In addition to the
coordinate features extracted from the re-referenced sensors,
the velocity of each of the original 26 sensors was extracted as
a new feature, by calculating the derivative of the coordinate
signals. The velocity and re-referenced coordinate features
were combined as representations of MoCap signals in gait
analyses. The total length of MoCap feature vector in a sliding
window is 153 ((26 sensors × 3-dimensional velocity) + (25
re-referenced sensors × 3-dimensional coordinates)).

2) Gait Analyses: For gait analyses, the feature extraction
steps are similar as described above. One difference is that we
used features in the current and previous neighbor windows
together to describe the dynamic gait characteristics. After
extracting features from gait data in each sliding window,
we further stacked feature vectors in previous Q windows (a
total of Q+1 windows) to form a aggregated feature vector.
Q = 5 (equivalent to (Q+1)×50 ms=300 ms duration) was set
for gait analyses. The parameter Q was selected empirically
considering the dynamic gait patterns within previous 300 ms
should be most relevant to the current pattern. Additionally,
considering features in Q = 5 windows were integrated,
we only extracted velocity features for each MoCap sensor
in a window, to avoid an extremely high dimensionality of the
MoCap feature vector.

Previous studies used different criteria to segment a gait
cycle into different phases [16]. The most commonly used
criteria is to segment a gait cycle into: (1) initial contact (the
heel touches the ground first), (2) foot flat (the entire sole
of the foot touches the ground in a flat angle), (3) heel off
(the heel leaves the ground and toes touch the ground), and
(4) toe off (the whole foot leaves the ground). However, most
of these gait phases are designed for normal gaits, and are
not applicable for abnormal gaits. For example, in abnormal
gaits with legs raised higher or with dragging legs, one foot
usually touches the ground directly in a flat angle. In other
words, a cycle of certain abnormal gaits does not include initial
contact and toe off phases. Previous studies have not paid
enough attentions on the gait segmentation criteria applied to
abnormal gaits. Therefore, in our work, we segment a gait
cycle into two phases: (1) the stance phase, when the right
foot is on the ground, and (2) the swing phase, when the right
foot leaves the ground. The stance and swing phases exist in
all gait cycles, both normal and abnormal ones. According to
the definitions, the stance and swing phases can be easily and
accurately segmented by calculating the total force on a foot
(via IPS). In our work, we segmented signals in a window
into the stance phase if the total force on right foot is higher
than a threshold set as 50 N, and into swing phase otherwise.
An additional criteria that each gait phase should last at least
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Fig. 2. Results of body posture recognition (healthy subjects). Symbols “*” and “**” denote 0.005 ≤ p < 0.05 and p < 0.005, respectively. To make
results clear, only significant differences compared with the best modality (or combination) are presented.

200 ms was adopted to filter outlier phases. The insole pressure
is an acceptable modality used as gold standard in wearable
sensing [17]. We also provided RGB videos and MoCap data
which future studies could use to define their own gait cycles
according to different needs in different applications.

B. Decoding Models
To perform baseline analyses and verify the validity of our

data, three models namely linear discriminant analysis (LDA),
linear classification model, and convolutional neural networks
(CNN) were employed.

For LDA and linear models, the model input is a
one-dimensional feature vector. For CNN model, the model
input is a R × C feature matrix, where R = Q + 1 refers
to the number of windows considered in each example
(R = 1 and R = 6 for body posture recognition and gait
segmentation, respectively), C refers to the number of fea-
tures in each window. When integrating multiple modalities,
features of different modalities were concatenated along the
second dimension (increasing the value of C). The architecture
of CNN model is presented in Table II. To train a CNN
model, stochastic gradient descent with momentum (SGDM)
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Fig. 3. Results of normal gait segmentation in intra-participant validations (healthy subjects). Symbols “*” and “**” denote significant differences
with 0.005 ≤ p < 0.05 and p < 0.005, respectively. In each subfigure, all pair-wise comparisons were performed, and significant differences were
not observed for all group pairs without symbols “*” or “**”. IMU data of subject 15 is relatively more noisy but here we present results on all subjects
as an overall baseline (the same for other results).

optimizer [18] was applied with a batch size of 16. The
parameter optimization stopped after 10000 iteration steps or
30 epochs (whichever is lower, depending on the sample size
in different validations). 10% data from the training set was
allocated as the validation set. The network with the best
validation performance was saved. For gait segmentation using
all models, once a switch between two phases was detected,
a cold down mechanism was adopted to keep the gait phase
unchanged for 200 ms. Key functions of our open-sourced
codes are presented in Table VI in Appendix.

C. Validation Methodologies

We employed both intra- and inter-participant validations.
For intra-participant validations, 70% of the data from each
participant were allocated into the training set with the remain-
ing 30% allocated into the testing set. For inter-participant
validations, data from each participant were used as testing
data separately, with data from all other participants as the
training set.

For body posture recognition, classification accuracy was
used as evaluation metric. For gait segmentation, F1 score of
each event was used as the evaluation metric [19]. The events
of switch from stance to swing and switch from swing to
stance were demoted as Stance2swing and Swing2stance,
respectively. F1 is defined as the harmonic mean of Precision
P and Recall R, i.e. F1 =

2P R
P+R , where P =

T P
T P+F P ,

R =
T P

T P+F N , T P , F P , and F N refer to true positives, false
positives, and false negatives. Specifically, T P are the first
correctly detected event lying within a ±T ol ms window near
each ground truth event, where T ol is a tolerance parameter
that equals to 0.2× the median period of a gait cycle. Accord-
ingly, the T ol parameter varies with gaits of different speeds.
Most of the T ol parameters are about 200 ms for gaits with
speed within 3–4 km/h, which is the same as the previous study
with a similar speed [19]. F P are the detected events lying
outside the tolerance window, or additional detected events
within the tolerance window after the first correctly detected
event. F N are those ground truth events that are not detected
within the tolerance window.
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Fig. 4. Results of normal gait segmentation in inter-participant validations (healthy subjects). Symbols “*” and “**” denote significant differences
with 0.005 ≤ p < 0.05 and p < 0.005, respectively. In each subfigure, all pair-wise comparisons were performed, and significant differences were
not observed for all group pairs without symbols “*” or “**”.

D. Gait Deviation Index
To evaluate the similarity between the abnormal gaits and

the normal ones, GDI was calculated for each gait mode.
GDI is a multivariate measure of the pathology of gaits. The
GDI was calculated based on 9 Plug-in gait kinematic vari-
ables extracted from MoCap data. These variables are: pelvic
tilt, pelvic obliquity, pelvic rotation, hip flexion/extension,
hip ab/adduction, hip rotation, Knee flexion/extension, ankle
dorsi/plantar flexion, and foot progression. The details of GDI
can be found in [13]. To normalize the effect of speed,
before calculating these variables, data in each gait cycle
were resampled to 51 samples (2% increments for each new
sample in a cycle, the same as [13]). Leave-one-participant out
GDI evaluation was applied. For each evaluation participant,
we first allocated data of normal gaits from other participants
as the modelling set. Then GDI of the normal gaits, gaits
with dragging legs, and gaits with legs raised higher from
the evaluation participant were measured by comparing to the
modelling set separately.

E. Statistical Analyses
To compare the performance of different modalities (with ≥

3 groups), the Friedman test was applied to verify the overall
inter-group significance. If the overall inter-group significance
was detected, the Nemenyi post-hoc test, a multi-comparison
test, was applied to identify pair-wise group differences.
Significance was claimed if p < 0.05 was obtained.

IV. RESULTS

A. Body Posture Recognition
Fig. 2 presents the results of body posture recognition

on healthy subjects using different models and modalities
in different validation methods. In intra-participant vali-
dations, all models achieved excellent performances with
accuracy of ∼ 100% achieved using almost all modalities
(and modality combinations), except IMU. The accuracy in
inter-participant validations dropped for all models and all
modalities. In inter-participant validations, EMG achieved
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Fig. 5. Results of abnormal gait segmentation in intra-participant validations (healthy subjects). Symbols “*” and “**” denote significant differences
with 0.005 ≤ p < 0.05 and p < 0.005, respectively. In each subfigure, all pair-wise comparisons were performed, and significant differences were
not observed for all group pairs without symbols “*” or “**”.

Fig. 6. Results of abnormal gait segmentation in inter-participant validations (healthy subjects). Symbols “*” and “**” denote significant differences
with 0.005 ≤ p < 0.05 and p < 0.005, respectively. In each subfigure, all pair-wise comparisons were performed, and significant differences were
not observed for all group pairs without symbols “*” or “**”.

TABLE III
ACCURACY (%) OF BODY POSTURE RECOGNITION FOR THE PATIENT WITH SPASTIC PARAPLEGIA
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TABLE IV
F1 SCORE (%) OF GAIT SEGMENTATION FOR THE PATIENT WITH SPASTIC PARAPLEGIA

TABLE V
GDI OF DIFFERENT GAITS

the highest unimodal recognition accuracy, demonstrating the
reliability and robustness of EMG in real world body posture
recognition applications.

B. Segmentation of Normal Gaits
Fig. 3 presents the results of normal gait segmentation on

healthy subjects using different models and modalities in
intra-participant validations. In intra-participant validations,
the F1 score of LDA tended to decrease with multimodal
fusion compared with unimodal methods. For linear and CNN
models, F1 scores keep in a relatively stable level with dif-
ferent modalities. The gait segmentation performances on low
speed gaits are relatively lower compared with the counterparts
of medium and high speeds.

Fig. 4 presents the results of normal gait segmen-
tation on healthy subjects in inter-participant valida-
tions. In inter-participant validations, LDA did not show
degraded performance with multimodal data fusion, compared
with intra-participant validations. The high inter-participant
F1 scores of > 96%, > 98%, and > 98% achieved by CNN in
segmenting gaits with low, medium and high speeds, respec-
tively, demonstrated the high transferability of the learned gait
pattern on new participants.

C. Segmentation of Abnormal Gaits
Fig. 5 presents the results of abnormal gait segmentation

on healthy subjects using different models and modalities
in intra-participant validations. In intra-participant validations,
LDA achieved significantly lower F1 scores using multimodal
segmentation compared with the unimodal method, showing
similar characteristics as intra-participant normal gait seg-
mentation. For linear and CNN models, multimodal fusion
achieved relatively high F1 scores compared with LDA.

Fig. 6 presents the results of abnormal gait segmentation
on healthy subjects in inter-participant validations. In inter-
participant validations, multimodal fusion would not lead to
performance degradation of LDA, demonstrating that LDA
could learn to find complex inter-participant multimodal pat-
terns. Using CNN models, F1 scores as high as 99.6% and
99.3% can be achieved on segmenting gaits with legs raised
higher and gaits with dragging legs, respectively, without
using any training data from the target participant. The high

F1 scores of inter-participant segmentation of abnormal gaits
demonstrate the high potentials of using our data to develop a
pre-trained but highly generalizable model in new application
scenarios.

D. Results on the Subject With Spastic Paraplegia
Table III presents the accuracy of posture recognition on

the spastic paraplegia patient. IPS and MoCap performed the
best with 100% accuracy achieved using all models, while
unimodal IMU contributed to the lowest accuracy, demon-
strating that IMU could not provide enough information in
a still body state. Table IV presents the results of pathological
gait segmentation. Overall, CNN model achieved the highest
F1 score in most cases.

E. Results on GDI of Different Types of Gait
Table V presents the GDI of different types of gait. The

normal gait from healthy subjects are with the highest DGI
of 100.12. According to [13], a GDI value of ∼100 can be
viewed as normal gaits. Lower GDI values refer to deviation
of the gait away from the normal gait. Overall, for imitated
abnormal gaits, both gait with dragging legs and gait with legs
raised higher lead to lower GDI compared with the noraml
gait (both with significant differences). The pathological gait
from the spastic paraplegia patient leads to the lowest GDI
of 72.14.

V. DISCUSSION

In our analyses, we presented results in both body posture
recognition and normal/abnormal gait segmentation, using
LDA, linear and CNN models via both unimodal and mul-
timodal data. The achieved high accuracy and F1 score both
verified the validity of our collected data and the excellent
performances of our developed models.

For intra-participant body posture recognition, IMU data
contributed to the lower accuracy, probably due to the fact that
the inertial information in a still state cannot provide useful
information. While in inter-participant validations, EMG data
could contribute to the highest unimodal body posture recogni-
tion accuracy using all of LDA, linear and CNN models. The
excellent performance using EMG is probably due to that,
EMG data describe different functions/activations of several
key muscles in different postures. MoCap data which only
describe the shape of human body might not be discriminant
between the two similar body postures. However, the activated
muscles might change largely with slightly different postures.
Additionally, the inter-subject differences of EMG are mainly
reflected in the different local anatomical structures of the
body. In the macroscopic level, e.g. EMG collected from
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TABLE VI
IMPORTANT FUNCTIONS IN OUR CODES

Fig. 7. File structure of our dataset. Number 1–25 refers to the
index of a subject. Folders “back”, “forward”, “halfsquat” and “still”
save data under 4 body postures. Folder “treadmill_normal” saves
data of normal gait from healthy subjects. Folders “treadmill_leghigh”
and “treadmill_dragging” save data of imitated abnormal gait. Folder
“ground_gait” saved data of pathological gait on ground (only available
for the subject with spastic paraplegia).

the full body, the overall EMG patterns among different
individuals tend to be similar. However, the pattern of EMG
may be largely different for those participants with signifi-
cantly lower/higher muscle activation levels. We expect future
follow-up studies could provide more insights using our data.

For gaits segmentation, LDA tended to achieve degraded
performances in intra-participant validations using multimodal

data compared with unimodal data. This finding is likely
due to that fact in intra-participant validations, the size of
training data from only one participant is small. Additionally,
LDA-based methods to find an effective feature subspace
via matrix singular value decomposition are highly likely
to be affected by the “dimension disaster” problem with a
small number of training examples but a high-dimensional
feature vector. This problem of LDA models can be solved
in inter-participant gait segmentation with more training data
from more participants. Moreover, CNN models achieved
relatively better performances compared with LDA and linear
in segmenting both normal and abnormal gaits, mainly due to
the fact the gait data showed highly dynamic patterns, with the
high-dimensional data distributed on a manifold in the feature
space. Neural networks are known to better handle highly
non-linear complex data by flattening the manifold-shaped
data in deeper layers [20]. A standard CNN model without
extensively searching the optimal architecture could contribute
to an excellent performance, showing the promising prospects
of neural networks and deep learning models in future
studies.

Abnormal motion analyses are neglected by most previous
studies, but are essential in applications related to rehabili-
tation training. Establishing a dataset for research purposes
is extremely time-consuming. Our dataset can save a huge
amount of time for researchers, especially in pilot stud-
ies. To the best of our knowledge, the provided dataset is
the first one to facilitate pilot studies in motion analyses
within neural rehabilitation areas. Here we also summarized
all possible research directions that can benefit from our
dataset:

1) Abnormal body posture recognition/monitoring for fall
prevention [21], applied in both rehabilitation training and
health monitoring of elderly/isolated people [22], [23].

2) Biomechanical modelling of body balance and postures
in both still and moving states [24].

3) Abnormal gait segmentation in rehabilitation train-
ing, which can provide feedback to tune the parameters of
FES/EES systems in different gait phases.

4) Normal gait segmentation using data from different
speeds to develop speed-robust models.
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5) Multimodal gait biometric identification [25]. In addition
to rehabilitation training, gaits are also important biometrics
that can be used for human identification. The provided dataset
can facilitate gait biometric identification using wearable sen-
sors which are more user-centric compared with vision-based
methods.

6) Inter-modality signal correlation/transfer. Since we
provided multimodal motion signals, future studies could
investigate the correlation between different modalities. Pre-
vious study also employed data disentanglement to transfer
signals in one modality into another [26], based on the inherent
correlation and variance between different modalities.

VI. CONCLUSION

In this work, we provide the MovePort dataset, con-
sisting of multimodal data collected via EMG, IMU, IPS
and MoCap sensors. Data were collected under diverse
experimental paradigms. The provided open access dataset
facilitates future studies in diverse research directions, includ-
ing body posture recognition, normal/abnormal gait analyses
in rehabilitation, and more. The high inter-participant per-
formances demonstrate both the high signal quality and
the high potentials of developing a model on our data
and then applying to new participant in new research.
The MovePort dataset and source codes in our analy-
ses are available online. Please fetch our data at figshare
(https://doi.org/10.6084/m9.figshare.25202183.v1) and codes
at github (https://github.com/Open-EMG/MovePortToolbox).

APPENDIX
SUPPLEMENTARY FIGURES AND TABLES

See Table VI and Fig. 7.
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