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fNIRS-Driven Depression Recognition Based on
Cross-Modal Data Augmentation
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Abstract— Early diagnosis and intervention of depres-
sion promote complete recovery, with its traditional clin-
ical assessments depending on the diagnostic scales,
clinical experience of doctors and patient cooperation.
Recent researches indicate that functional near-infrared
spectroscopy (fNIRS) based on deep learning provides
a promising approach to depression diagnosis. How-
ever, collecting large fNIRS datasets within a standard
experimental paradigm remains challenging, limiting the
applications of deep networks that require more data.
To address these challenges, in this paper, we propose
an fNIRS-driven depression recognition architecture based
on cross-modal data augmentation (fCMDA), which con-
verts fNIRS data into pseudo-sequence activation images.
The approach incorporates a time-domain augmentation
mechanism, including time warping and time masking,
to generate diverse data. Additionally, we design a stim-
ulation task-driven data pseudo-sequence method to map
fNIRS data into pseudo-sequence activation images, facil-
itating the extraction of spatial-temporal, contextual and
dynamic characteristics. Ultimately, we construct a depres-
sion recognition model based on deep classification
networks using the imbalance loss function. Extensive
experiments are performed on the two-class depression
diagnosis and five-class depression severity recognition,
which reveal impressive results with accuracy of 0.905 and
0.889, respectively. The fCMDA architecture provides a
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novel solution for effective depression recognition with
limited data.

Index Terms— Depression recognition, functional
near-infrared spectroscopy (fNIRS), cross-modal, data
augmentation, pseudo-sequence.

I. INTRODUCTION

DEPRESSION, characterized by slow thinking, reduced
volitional activities and an enduringly depressed men-

tal state, is a typical mental disorder. Moderate or severe
depression presents serious somatic symptoms, even leading
to suicide, which is one of the leading causes of avoidable
pain and premature death worldwide [1], [2]. A scientific brief
from the World Health Organization (WHO) underscores the
gravity of the situation, revealing a 28% increase in the global
incidence of depression, becoming a challenge to global public
health and medical communities [3], [4]. Traditional diagnostic
methods for depression are primarily based on self-reports
during clinical interviews, behavior reports from relatives or
friends and responses to standardized questionnaires [5], such
as the Patient Health Questionnaire-9 (PHQ9) [6], Hamilton
Depression Scale (HAMD) [7] and Beck Depression Inventory
(BDI-II) [8]. However, these assessment methods are suscepti-
ble to variability in subjective ratings, resulting in inconsistent
outcomes across diverse temporal or environments. As the
number of depression patients increases, the reassessment of
early diagnosis and follow-up treatment effects becomes lim-
ited and time-consuming. Therefore, it is urgent to develop an
effective auxiliary diagnosis approach to enhance the accuracy
and efficiency of depression diagnosis [9].

Brain science-based research is rapidly advancing and
provides important support for the early diagnosis of depres-
sion, through utilizing brain imaging techniques [10], [11].
Currently, functional brain imaging techniques employed
for depression diagnosis mainly include functional mag-
netic resonance imaging (fMRI) [12], electroencephalography
(EEG) [13], [14], [15] and functional near-infrared spec-
troscopy (fNIRS) [16]. Shen et al. [14] proposed a regular-
ization parameter-based improved feature extraction method
to explore the intrinsic characteristics of highly complex and
nonstationary EEG signals. Notably, fNIRS records the reac-
tions of oxygenated hemoglobin (HbO) and deoxyhemoglobin
(HbR), offering high spatial resolution, comfortable equipment
wearing, non-invasive measurement, and low sensitivity to
head and limb shaking. These characteristics make fNIRS suit-
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able for a broader range of applications in auxiliary depression
diagnosis. It is noteworthy that prior researches [17], [18] have
underscored the significance of HbO as a crucial indicator
of cerebral blood flow changes and depressive disorders.
Zhu et al. [17] extracted ten features from HbO signals as
inputs to classification algorithms. However, these approaches
exhibit limitations that heavily rely on the experience of
researchers. Furthermore, the extracted features primarily
focus on a single statistical index, failing to capture the deeper
physiological information contained within fNIRS data.

In recent years, deep learning technology has demonstrated
remarkable achievements across various fields, including data
analysis [19], representation learning [20] and medical-assisted
diagnosis [15]. Automatic feature representation based on
deep learning promotes the development of depression diag-
nosis research. Wang et al. [21] proposed a transformer-based
fNIRS classification network to explore spatial-level and
channel-level representations of fNIRS signals to improve data
utilization and network representation. Liu et al. [22] focused
on stimulation tasks to investigate the advantages of fNIRS in
cognitive activation. fNIRS data has been shown to reliably
reflect cognitive profiles on the brain in different stimulation
tasks [23], [24], and presents signal differences under different
stimulation task time points [25]. Notably, the fNIRS data
during the different stimulation points varies, which is crucial
to consider the different time points of the stimulation task.
When realizing the depression recognition based on fNIRS,
the temporal dynamics characteristics of fNIRS data should
be fully utilized.

Moreover, collecting fNIRS data poses challenges given
limited medical resources and the prevailing stigma associ-
ated with patients. The employment of data augmentation
methods emerges as a viable strategy to expand fNIRS data.
Several studies have made data augmentation for the fNIRS
features [26], [27]. Nagasawa et al. [28] proposed generative
adversarial networks for fNIRS data augmentation to generate
artificial fNIRS data. Woo et al. [29] used deep convolutional
generative adversarial networks to expand fNIRS data to
improve classification accuracy and training stability. While
this method reduces the level of subjectivity and domain
knowledge required for manual feature extraction, the gen-
erated data still needs to be validated through medical studies.

In this paper, we present an fNIRS-driven depression recog-
nition architecture based on Cross-Modal Data Augmentation
(fCMDA), as shown in Fig. 1. The fNIRS data is collected to
make testers receive verbal fluency task with the designated
stimulation task. Following data collection, we conduct pre-
processing and transform the raw sequence data into the HbO
concentration change data. Then, we propose a time-domain
augmentation (TDA) method acting on the time dimension
to generate more HbO data to support the training of the
deep networks, including time warping and time masking.
Meanwhile, we design a stimulation task-driven data pseudo-
sequence (DPS) cross-modal conversion method to transform
the sequence modal to the pseudo-sequence activation image
modal. The sequence image reflects the degree and the
dynamic characteristics of brain activation during the stim-
ulation task. Finally, considering the class imbalance in the

real collecting situation, we establish a depression recognition
model based on the focal loss function. Benefiting from
these, the experimental results show the proposed fCMDA
achieves high-precision depression recognition. Furthermore,
the fCMDA model can be extended to other physiological data.
Utilizing physiological data acquired under a stimulation task,
features are extracted at key time points of the stimulation
task and pseudo-sequence images are generated based on
channel locations for depression diagnosis. In summary, the
main contributions of this paper include:

• We propose an fNIRS-driven depression recognition
architecture based on cross-modal data augmenta-
tion, converting the fNIRS sequence modal into the
pseudo-sequence activation image modal. It offers a novel
depression recognition approach based on fNIRS to pro-
vide an objective and rapid auxiliary diagnosis.

• We design a time-domain augmentation and stimulation
task-driven pseudo-sequence method to enrich data to
leverage the spatial-temporal and dynamic characteristics
of fNIRS data. It generates diverse and reliable data to
improve the accuracy and robustness of the model.

• Extensive experiments are performed to validate the
effectiveness of the fCMDA on the two-class depression
diagnosis and five-class depression severity recognition.
The results show the superiority of the proposed method
for the advancement of depression recognition.

The remainder of this paper is organized as follows.
Section II gives a concise review of the pertinent literature.
Section III describes the fNIRS data collection and data
preprocessing. We present the depression recognition model in
Section IV. Implementation details, results and discussion of
the depression recognition task are given in Section V. Finally,
Section VI concludes this paper.

II. RELATED WORKS

This section briefly overviews existing fNIRS-driven
depression recognition research and data augmentation for
fNIRS.

A. fNIRS-Based Depression Recognition
A wide variety of machine learning methods are devoted

to improving the performance of depression recognition via
feature learning. Traditional methods usually rely on prior
knowledge to extract hand-crafted feature representation.
Chao et al. [18] extracted four statistic-based features from
HbO signals and four vector-based features extracted from
HbO and HbR, and applied them to depression recognition.
However, feature representation based on statistics is strug-
gling to reflect deep semantic information. In contrast to the
aforementioned research, Wang et al. [21] proposed a deep
learning classification network to explore spatial-level and
channel-level feature representations of fNIRS signals. Sim-
ilarly, Zhang et al. [30] achieved mild cognitive impairment
recognition by exploiting the multidimensional features of
fNIRS data including channel, temporal, and spatial features.
Wang et al. [31] transformed fNIRS signals into 2-D wavelet
feature maps by using wavelet transform and parallel-CNN
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Fig. 1. The overview of the fCMDA architecture. (a) Data generation includes data collection and data preprocessing. (b) Introducing time-domain
augmentation and data pseudo-sequence augmentation methods to generate rich data and map the hemoglobin concentration change data into
sequence cognitive activation images. (c) Constructing the depression recognition architecture based on a classification network to realize the
depression diagnosis and disease severity recognition.

feature fusion to diagnose depressive disorder. Inspired by
the work above, we transform fNIRS signals into activation
images and utilize deep learning methods as the backbone
network to implement depression recognition.

B. Data Augmentation for fNIRS
Data augmentation is an effective method to address the

challenges of difficult access to fNIRS data and limited
data. In recent years, research has mainly utilized genera-
tive adversarial networks to implement data augmentation.
Nagasawa et al. [32] examined an fNIRS data augmentation
method using Wasserstein generative adversarial networks.
Wickramaratne et al. [33], [34] utilized conditional generative
adversarial networks to generate artificial samples of a specific
category to improve the classification accuracy when the sam-
ple size is insufficient. Zhang et al. [35] similarly employed a

convolution-based conditional generative adversarial network
for data augmentation. However, the expansion of fNIRS data
based on the generative adversarial network ignores the data
collection method and the dynamic change of the data with
the stimulation task process. When implementing depression
recognition using classification networks, the model may have
difficulty focusing on the dynamic changes and deep semantic
information of the data. Therefore, based on the fNIRS data
collected with the stimulation task, we designed a cross-modal
data enhancement method to mine the information of spatial-
temporal, dynamic and brain activation semantic features.

III. DATASET GENERATION

The data used in this paper are from the Renmin Hospital
of Wuhan University. The patients and volunteers participated
in the fNIRS data collection under the guidance of doctors,
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Fig. 2. The fNIRS data collection device.

and they also received questionnaires evaluation and profes-
sional diagnosis to obtain the depression recognition results.
This section describes in detail the data collection and data
preprocessing, as shown in Fig. 1 (a).

A. Data Collection
fNIRS has become a widely utilized tool in both brain sci-

ence research and clinical monitoring, facilitating the analysis
of brain neural activity. Through the neurovascular coupling
mechanism, when individuals engage in cognitive activities,
the concentration of HbO in the blood of the active brain area
increases, while the concentration of HbR decreases. fNIRS
relies on the principle of the optical properties of biological
tissues to enable the monitoring of changes in the hemoglobin
concentration in the cerebral cortex [36]. These changes in
hemoglobin concentration result in varying degrees of light
intensity reduction. As hemoglobin concentration increases,
the light intensity decreases more significantly. By examin-
ing changes in light intensity, we can acquire hemodynamic
information related to neural activity [37]. The near-infrared
(NIR) device utilized in this study comprises 16 NIR emitters
and 16 NIR receivers, connecting into 53 channels, as shown in
Fig. 2. These probes emit NIR light at wavelengths of 690 nm
and 830 nm, enabling precise monitoring of neural activity.

During the data collection process, doctors assist partic-
ipants in wearing a NIR device to ensure that the probe
is tightly attached to the scalp until the channel pass rate
exceeds 90%. As shown in Fig. 1 (a), the entire stimulation
task spans a duration of 150s, including a pre-task silence
period (30s), a task period (60s) and a post-task silence
period (60s). During the silence periods, the participants
need to sit up straight in front of the computer, remain
calm and not shake their bodies. The task period involves
participants responding to three questions displayed on the
computer screen, prompting them to name the fruits, furniture
and vegetables that they can associate. Each question has a
15s answer time followed by a 5s silence time. Throughout
the entire test period, the NIR device continuously captures
the intensity of the emitted light at two wavelengths at a
sampling rate of 100hz. The data for each participant consists
of 150 × 100×53 × 2, where 150 is the duration of the test,
100 is the data collection frequency, 53 is the number of
channels and 2 is the number of wavelengths.

Participants comprise both male and female individuals, and
they are enrolled using a non-randomized enrollment method
under the guidance of a medical professional. The inclusion
criteria for patients are: age 18-40 years; both first-onset
and recurrence; previous cranial magnetic resonance imaging
(MRI) within the past year, which ruled out organic brain
lesions; no previous history of psychiatric illness; and right-
handedness. The inclusion criteria for the control group are:
age 18-40 years; cranial MRI with no organic brain lesions;
no previous history of psychosis; and right-handedness. The
common exclusion criteria for both patients and controls
in the sample are: suffering from severe somatic diseases,
including cardiovascular and cerebrovascular diseases, severe
respiratory diseases, severe hepatic, renal, endocrine, and
hematologic diseases, and malignant tumors; previous or exist-
ing psychotic disorders, alcohol or drug dependence, and
definitively diagnosed cognitive impairments; and lactating
and pregnant women. Under the guidance of professional doc-
tors, combined with questionnaire evaluation and diagnostic
results, the PHQ9 score serves as the class standard. For the
depression diagnosis, participants with 0 ≤ PHQ9 ≤ 9 are
considered as non-depression controls, while participants with
10 ≤ PHQ9 ≤ 27 are considered as depression controls.
For the depression severity recognition, participants with
0 ≤ PHQ9 ≤ 4 are considered as normal controls,
5 ≤ PHQ9 ≤ 9 as mild, 10 ≤ PHQ9 ≤ 14 as moderate,
15 ≤ PHQ9 ≤ 19 as moderate-severe (mod-severe), and
20 ≤ PHQ9 ≤ 27 as severe depression. In total, fNIRS data
are obtained for 96 participants as shown in Table I, including
17 with non-depression and 79 with depression. All personal
information in the dataset is desensitized.

B. Data Preprocessing

During the collection of fNIRS data, noise is inevitable,
including physiological information in different frequency
bands such as heart rate, respiration, and typical motion
noise. The band-pass filters are commonly utilized to remove
physiological noise from cerebral oxygen signals and extract
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TABLE I
DATA DISTRIBUTION OF FNIRS DATASET, WHERE NO.

SAMPLE IS THE NUMBER OF SAMPLES

hemoglobin low-frequency oscillatory signals. The prepro-
cessing method of fNIRS has reached relative maturity and
this study is based on near-infrared data analysis tools for
data preprocessing [38]. The preprocessing steps begin with
the elimination of motion artifacts unrelated to the raw data.
Subsequently, the light intensity signal is converted into an
optical density profile, which is then filtered using a band-pass
filter to eliminate noise caused by physiological fluctuations
such as pulse and respiration, as well as baseline drift caused
by environmental and temperature changes. Finally, the optical
density data are converted to concentration change of HbO
and HbR using a modified Beer-Lambert method. Based on
previous research [16], [17], [18], this study also deliberately
focuses on the HbO concentration change data in subsequent
method design, recognizing its relevance in capturing pertinent
cognition variations associated with depression.

IV. AN FNIRS-DRIVEN DEPRESSION
RECOGNITION ARCHITECTURE

The depression recognition architecture includes
cross-modal data augmentation and recognition model
construction, as shown in Fig. 1 (b) and (c). The cross-modal
data augmentation methods include TDA and DPS, where
TDA contains time masking and time warping.

A. Time-Domain Augmentation
Addressing the challenges stemming from limited sample

size and class imbalance, data augmentation stands out as a
viable solution. In particular, the temporal characteristics of
fNIRS data and the spatial information related to detector
placement in the generated activation image have inherent
explanations. We aim to construct an augmentation policy
directly impacting fNIRS data, thereby fostering the acquisi-
tion of more discriminative features by the network. Motivated
by the goal that these features should be robust to deformations
in the time direction, we draw inspiration from the augmenta-
tion methods in [39]. The time masking and time warping data
augmentation methods act on the HbO concentration change
data to enable the network to learn more meaningful and
robust features. The different time points of stimulation tasks
reflect the degree of brain activity. Therefore, according to
the stimulation task of fNIRS data collection, we utilize the
question start time of the task period as a segmentation point.
The stimulation task consists of a pre-task silence period Tpre,
a task period T , and a post-task silence period Ta f t , where
there will be Nq questions in the task period, with a total time

of tq for each question, and a rest time of tr for each question.
The two strategies are as follows.

1) Time Masking: The time step of the time masking method
is [t0, t0 + ttm], where t0 ∈ [0, tq) represents the start position
of each problem period and the masking parameter ttm ∈

(0, λ], λ ≤ tq denotes the time span, introducing an upper
bound that the width of the time masking cannot be larger
than the response time of each question, making the aug-
mentation operation effective and facilitating the subsequent
pseudo-sequence operation. From the change in hemoglobin
concentration after time masking augmentation in Fig. 1 (b),
it can be seen that the use of the time masking method is
masking the data in the masking time step, which appears to
be the unchanged value, and the before and after of the masked
portion is discontinuous.

2) Time Warping: The time step of the time warping method
is [t0, t0 + ttw], where t0 ∈ [0, tq) represents the start position
of each problem period and the warping parameter ttw ∈

(0, λ], λ ≤ tq denotes the time span. From the change in
hemoglobin concentration after time warping augmentation in
Fig. 1 (b), it can be seen that the use of the time warping
method is to lengthen as well as shorten the time scale, and the
data before and after warping are continuous. To ensure that
time masking and time warping processed data have the same
latitude, so each time warping contains both times lengthening
and shortening operations.

In this paper, the stimulation task of fNIRS data collection
is verbal fluency test and its task period contains Nq = 3
questions, with a total time of tq =15s per question. The time
step parameter t0 = {0s, 5s, 10s}, ttm = ttw = 10s in the data
augmentation method. The data augmentation methods all act
on the time dimension. In particular, if the two augmentation
methods act on the same data at the same time, it will cause
a change in the data dimension or the failure of the methods.
To avoid the data augmentation operation being utilized within
the same problem period, time masking and time warping
are applied to different question periods. Therefore, data
augmentation includes three strategies: Time masking, Time
warping, and Time masking with Time warping, and the three
augmentation strategies are randomly applied to all sample
data.

B. Data Pseudo-Sequence
In terms of data types, the generated HbO concentration

change data emerges as multi-channel time series data. Tradi-
tional machine learning methods usually extract time-domain
features such as kurtosis and skewness, or frequency-domain
features represented by wavelet transform. Time-frequency
features can only measure the overall characteristics of the
data, making it challenging to extract deep information from
physiological signals. Additionally, such methods lose the
dynamic characteristics of fNIRS signals under task stimula-
tion. Therefore, to exploit the feature learning capabilities of
neural networks, we convert HbO concentration change data
into cognitive activation images for depression recognition.

The size of the fNIRS data varies depending on the experi-
mental paradigm of the stimulation task. To ensure uniformity
in data analysis, we split the data into fixed-length time series
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Fig. 3. Visualization of channel activation images based on the fCMDA. (a), (b) and (c) represent channel activation images generated without the
pseudo-sequence method. (d), (e) and (f) show pseudo-sequence activation images, where (e) and (f) represent the application of time masking
and time warping data augmentation methods, respectively. The activation image reflects the degree of activation of the brain region.

utilizing the time point of the stimulation task as the demar-
cation. This segmentation approach guarantees consistency in
data analysis, with each time series encapsulating the pertinent
aspects of the task. During the pre-task silence period and the
post-task silence period, the continuous data of tq duration
at both ends of the task are selected to ensure that each
segment of the segmented data has both temporal continuity
and dynamic differences. The last tq period of the pre-task
silence period is denoted as tbe f ore, and the first tq period
of the post-task silence period is denoted as ta f ter , then the
first segment of the sequence data is the tbe f ore duration
data and the tq duration data of the first question. The last
segment of sequence data is the tq duration data of the last
problem and the ta f ter duration data, that is the data segments
are DM = D1(tbe f ore, tq1), D2(tq1, tq2), . . . , DM (tq N , ta f ter ),
where M = Nq + 1 and the number of sequence data sets
is one more than the number of stimulation task questions.
There are three problems in our stimulation task experi-
mental paradigm, which will generate four sequence data
segments. Pseudo-sequence is realized by this segmenta-
tion method incorporating the overlapping selection strategy.
This strategy serves to retain more time series information,
enabling the model to capture more time series patterns and
dynamic changes effectively. Moreover, the overlapping selec-
tion enhances the model’s adaptability to noise and outliers in
the data, ensuring a more robust representation of cognitive
activities within the brain during stimulation tasks.

Based on the HbO concentration change data generated
by the DPS method, the general linear model is utilized for
individual-level analysis to test task-related neural activation:

X = Gβ + ε, (1)

where X is the HbO concentration change data, G is the matrix
generated by the convolution of the neural signal impulse and
hemodynamic response functions function, and ε is the error
matrix. β is the parameter to be estimated, indicating the
activation value of each channel. Finally, based on the channel
settings depicted in Fig. 2, the channel pseudo-sequence acti-
vation images are generated using the interpolation function.

To demonstrate the effectiveness of the fCMDA method,
Fig. 3 displays the channel activation images. Fig. 3(a) shows
the channel activation image without the pseudo-sequence
method, and the red represents that the region has a large
activation value. The exclusion of the influence of abnormal
data indicates that the corresponding brain region has a
large degree of activation. Notably, a red area in the lower
right corner indicates a higher activation of the brain region
corresponding to this channel. This channel is placed near
the Brocas area of the brain which is a region of linguistic
information processing and discourse production. Since the
stimulation task we employed is a verbal fluency task in which
participants are required to speak to answer, the activation
value of this region is high. Fig. 3 (b) and (c) illustrate that
the channel activation images employ the TDA method. The
channel activation images exhibit greater differences among
channels compared to the original image, which indicates
that the TDA method does not change the semantic infor-
mation of the data and expands the feature representations.
Importantly, data augmentation methods influence activation
values without changing the activation regions. Fig. 3 (d), (e)
and (f) show the pseudo-sequence activation images utilizing
the pseudo-sequence method. Each row displays four distinct
activation images, highlighting varying activation levels for
the same channels across different stimulation task problems.
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Particularly, the middle and upper regions of the images are
turning red in Fig. 3 (e), indicating an increase in activation
values as the stimulation task progresses. This region of the
image corresponds to the frontal lobe of the brain, which is
the brain region that works with memory, attention, and emo-
tional expression. In summary, the generated pseudo-sequence
activation images contain both spatial-temporal and dynamic
features of the channel, simultaneously reflecting differences
in brain region activation levels corresponding to the channel
under stimulation tasks.

C. Recognition Model Construction
The convolutional neural network (CNN) enables the cap-

ture of relationships of each channel at different time points
and expands the receptive field with increasing convolutional
layers. The learned features contain both the spatial-temporal
and dynamic features of the entire sequence. In this paper,
we establish the classification network based on CNN for
depression recognition, with input comprising a set of activa-
tion images generated by the fCMDA method. The sequence
images are mapped into a feature matrix through four
2D-CNN layers with a convolution kernel size of 3 and
stride of 1. These feature matrices are then stitched together
using a concatenation operation. Because different classifi-
cation networks are constructed with different dimensions
of their inputs, the transform reshape operation performs
dimension adjustment. The resulting feature matrix is fed into
the classification network for depression diagnosis and disease
severity recognition. However, collecting medical data in a
real environment often faces the problem of class imbalance,
we utilize focal loss to construct the classification network.
This strategy helps diminish the impact of class imbalance on
classification accuracy and avoids undue bias towards a larger
number of classes, ensuring a more robust model. The main
idea of focal loss is to adjust the weights of the samples to pay
more attention to the samples that are difficult to classify, thus
mitigating the contribution of the easily classified samples to
the loss, which is defined as follows:

F L(P) = −α(1 − P)γ log(P), (2)

where P denotes the predictive probability of the model,
α is the weighting factor to balance the positive and negative
samples, and γ is the adjustable parameter. The adjustment
factor (1 − P)γ can be adjusted adaptively according to
the difficulty of the sample. In instances where samples are
inherently easier to classify, the parameter P is larger, causing
the adjustment factor tends to be zero. Consequently, this
results in a reduced impact on the loss function, prompting the
model to focus more on samples that are difficult to classify.

V. EXPERIMENTS AND RESULTS

We conduct extensive experiments on depression diagnosis
and disease severity recognition to validate our network.
In this section, we first introduce the experiment details and
then present the experimental results and comparisons with
previous methods.

A. Experimental Setting
The data collection section comprehensively details the

dataset and stimulation task settings. To evaluate the effec-
tiveness of our method, we select ten baseline methods:
Logistic Regression (LR), K-Nearest Neighbor (KNN), Sup-
port Vector Machine (SVM) [40], AlexNet [41], Residual
Network (ResNet) [42], Random Forest (RF) [17], XGB [17],
and the previous work of our group Corr-AlexNet [43],
GCN [44] and Diffpool [44]. For the evaluation of depres-
sion diagnosis, the macro Accuracy, Precision, Recall and
F1-score are used as evaluation indexes for the performance
of the model. Then, we divided the data according to the
depression severity and conducted experiments using the
fCMDA method. For the evaluation of depression severity
recognition, the Accuracy, Macro-Precision, Macro-Recall,
Macro-F1-scoreand Weighted-F1-score are used as evaluation
indexes for the performance of the model.

To evaluate the effectiveness of the fCMDA method,
we select LeNet [45], ResNet18 [42], CNN-GRU and vision
transformer (ViT) [46] as backbone networks to conduct
ablation experiments. LeNet stands as a classic convolutional
neural network with a total of seven layers, comprising
convolutional, pooling and fully connected layers. ResNet18,
a variant with 18 layers, employs 16 convolutional layers
organized into four residual blocks. GRU, an improved model
of the long short-term memory model, combines its forget
gates and input gates into a single update gate. CNN-GRU
incorporates two convolutional units which mainly consist of
a convolution layer and pooling layer at the front of the two
GRU basic units and can capture both spatial and temporal
characteristics of data. Vision transformer (ViT) processes the
input by dividing it into multiple patches, converting them
into feature vectors using linear transformations, and adding
position embedding vectors. The encoder block of ViT com-
prises multi-head self-attention (MSA) and MLP (two layers
of fully connected neural network using GELU activation
function). This paper adopts two transformer encoder blocks
within the ViT architecture. For the training of deep network
models, the Dropout layer, appropriate learning rate and focal
loss function are adopted to ensure network convergence.
The Adam optimizer is used to adaptively adjust different
learning rates according to different parameters to complete
the parameter updates.

B. Baseline Comparison
Extensive experiments are conducted to demonstrate the

performance of the fCMDA method. We initially conduct a
holdout cross-validation on a two-class depression diagnosis
experiment, dividing the dataset into training, validation, and
testing sets. Moreover, for different severity of depression,
doctors will take different treatment options. We conduct a
five-class depression severity recognition experiment to assist
doctors in completing the diagnosis of the disease. However,
since there are only 5 subjects in the Mild class, there is only
1 validation and 1 test data each if holdout cross-validation
is utilized. Under such circumstances, the selection and eval-
uation of models would be subject to significant randomness,
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TABLE II
EXPERIMENT RESULTS WITH THE BASELINE METHOD

TABLE III
ABLATION EXPERIMENT RESULTS USING TIME-DOMAIN

AUGMENTATION (TDA) AND DATA PSEUDO-
SEQUENCE (DPS) METHODS

potentially leading to inconclusive and unconvincing results.
Therefore, for the depression severity recognition experiment,
we adopt a 5-fold cross-validation strategy. This method
divides the data into five equal subsets, each serving as
the testing set once, while the remaining four subsets are
collectively utilized as the training set.

1) Experiment on Depression Diagnosis: Our experimental
results utilize the fCMDA method with the ResNet18 classi-
fication network as the backbone network, incorporating the
focal loss function. As shown in Table II, the color scheme
emphasizes the outcomes, with red denoting the best result and
blue indicating the second-best. Our proposed method achieves
satisfactory results in terms of accuracy, precision, recall and
F1-score. The accuracy of machine learning methods such as
LR, KNN and SVM is relatively low, highlighting the superior
performance of deep learning classification algorithms. While

TABLE IV
EXPERIMENTAL RESULTS ON DEPRESSION SEVERITY RECOGNITION

the Corr-AlexNet method achieves higher precision, it relies
on hand-extracted features for network learning, lacking a pro-
found exploration of dynamic features. Patients experiencing
depression often manifest low mood and slow thinking. During
performing stimulation tasks, the degree of brain activation
in depressed individuals differs from that of non-depression
controls. The activation image reflects the brain activation of
the subjects in the stimulation task stage and the dynamic
changes of activation, which can be used to distinguish
patients with depression from the control group. According
to the stimulation point of the stimulation task, we utilize
the fCMDA method to generate pseudo-sequence activation
images, enabling the network to learn spatial-temporal features
and pay attention to the degree of activation at different stim-
ulation time points. Moreover, our proposed fCMDA method
proves effective even with small-scale datasets. Considering
the challenge of class imbalance in the real diagnosis and
treatment environment, we employ the focal loss function to
construct the classification network, enhancing the robustness
of the network to achieve higher recognition accuracy.

2) Experiment on Depression Severity Recognition: As
shown in Table IV, the four networks all utilize fCMDA
methods and focal loss, and the selection of LeNet and
ResNet18 as backbone networks achieves an accuracy of
0.889. Evaluation indicators reveal that LeNet exhibits the
best classification results. Similarly, the performance of LeNet
and ResNet18 surpasses that of CNN-GRU and ViT. In the
depression severity recognition task, given the limited data in
the five classes, shallow networks such as LeNet and ResNet
prove more adept at learning the differential characteristics
of the data. Fig. 4 shows the confidence scores for one set
of test data in the 5-fold cross-validation experiment of the
four networks. The composition of the test data for depression
severity recognition is {Normal, Mild, Moderate, Mod-Severe,
Severe}={2, 1, 5, 5, 6}. The purple dots represent the con-
fidence scores distribution, where the mild depression class
is a horizontal line because the test data is only one. It can
be seen that the models based on LeNet and ResNet18 show
satisfactory results, with most confidence scores exceeding
0.8 and recognition accuracy surpassing 0.8 as well. We utilize
the focal loss to avoid the network focusing on data-rich
classes, addressing the challenge of class imbalance. It is
noteworthy that the cognitive and brain activity of individuals
with mild depression are not significantly different from those
of the normal control group. Despite the low confidence scores
of all networks for the normal and mild classes, the model
is still capable of distinguishing between these two classes.



2696 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 4. Confidence score distribution of the four networks on depression
severity recognition experiment. The purple dots represent the test data.

Overall, depression severity recognition can assist doctors in
completing accurate diagnoses.

C. Ablation Analysis
We validate the proposed fCMDA method as shown in

Table III, where T D A means the utilization of the TDA
method, D P S denotes the utilization of the DPS method and
T D A with D P S represents the results using the fCMDA
method. When applied to the ResNet18 network, our proposed
method achieves the best scores, with accuracy, precision,
recall and F1-score reaching 0.905, 0.889, 0.929 and 0.941,
respectively. Initially, when a single activation image is fed
into four networks, the accuracy of ResNet18 reaches 0.762,
verifying the utility of the activation image in distinguishing
between non-depression controls and patients with depression.
Only relying on a single activation image for depression diag-
nosis, the recognition accuracy of the four networks is limited
due to the small amount of data and fewer useful features.
Using only the TDA method, a single activation image is
also fed into the network. When using the TDA or DPS
method, the classification performance of the network and the
evaluation index exhibit improvement. The fCMDA method,
incorporating both augmentation methods, demonstrates opti-
mal performance across all four networks. Furthermore, the
fCMDA method has different degrees of improvement in clas-
sification performance for the four networks. The classification
accuracy of LeNet and ResNet18 is improved by 20%. For
convolutional neural networks such as LeNet and ResNet18,
the TDA method helps the network learn the channel and
temporal features of fNIRS data. The implementation of the
DPS method takes into account the differences in data at

Fig. 5. The area under the curve results in a depression diagnosis
experiment.

different time points and the dynamic changes on the time
scale. Therefore, the fCMDA method enhances the network’s
ability to extract more effective features. Overall, complex
networks such as CNN-GRU and ViT are not conducive to
learning the features of the data for relatively simple and
small-scale data compared to natural images, dispelling the
notion that deeper and more complex networks inherently yield
better results. In conclusion, our proposed fCMDA method can
be applied to fNIRS-like data. Moreover, excellent algorithms
from the visual field can be introduced into the study of
depression recognition.

In this study, we calculate the area under the curve (AUC)
based on the classification results of LeNet, ResNet18, CNN-
GRU and ViT utilizing the fCMDA method, as shown in
Fig. 5. All algorithms show satisfactory classification perfor-
mance, among which ResNet18 performs the best experiment
results with an AUC of 0.97. Notably, the AUC values for
all methods surpass 0.8, which indicates that the fCMDA
method combined with the classification network has excellent
classification ability. The AUC value is influenced by the
prediction results of the network on the test data. Fig. 6
shows the confidence scores distribution of test data of the
four networks, where the purple dots represent the test data.
It can be seen that ResNet18 has high confidence scores
for all test data compared to other networks. However, all
networks exhibit relatively low confidence scores for the non-
depression class. Despite the incorporation of focal loss to
mitigate the impact of class imbalance during training, the sub-
stantial difference in data volume between non-depression and
depression classes affects the confidence scores. ViT, while
not achieving high confidence scores, demonstrates a more
concentrated score distribution, indicative of a more stable
model. Overall, the data augmentation approach serves as an
expansion of the data volume dimension, which facilitates the
network to learn the differences between different data and the
similarity of similar data. The pseudo-sequence method, on the
other hand, fully utilizes the data feature, enabling the network
to learn a characteristic particularly beneficial for ResNet18.
In short, our proposed fCMDA method significantly improves
the recognition ability of the network.

D. Parameter Analysis
To investigate the fCMDA model further, we analyze in

detail the impact of the time step parameter of the data
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Fig. 6. Confidence score distribution of the four networks on depression
diagnosis experiment. The purple dots represent the test data.

Fig. 7. Performance of fCMDA model with the different number
of ttm/ttw. The shadow part represents the superior performance.

augmentation method on performance in this section. To avoid
the data augmentation operation crossing the two problems
period of the stimulation task, we set the time step parameter
t0 = {0, 5}, ttm = ttw = {2, 5, 8, 10, 12, 15} and ResNet18

as the backbone network, and the experimental results are
shown in Fig. 7. Setting ttm = ttw ensures that the data
dimension is consistent with the raw data when implementing
TDA. With ttm/ttw set small, the classification ability of the
fCMDA model is about the same as when utilizing only
the DPS method. When the ttm/ttw is large or even across
the problem period, it may cause the data to lose important
information. When t0 = 5 and ttm = ttw = 15, the TDA
method operates on one problem period, while the entire
stimulation task has only three problem periods. This results in
a classification accuracy of 0.810. As shown in Fig. 7, the time
step parameters represented by the shadow part will promote
the model to achieve optimal performance.

VI. CONCLUSION

By observation of fNIRS data, it is found that depres-
sion patients exhibit diminished brain function and reduced
brain function activation during cognitive stimulation tasks.
In this paper, we propose a novel fNIRS-based depression
recognition architecture fCMDA. We devise a cross-modal
strategy that transforms fNIRS data into cognitive activa-
tion images corresponding to the stimulation task, thereby
reflecting the degree of brain function activation in partic-
ipants. First, we introduce time masking and time warping
data augmentation methods to enrich the data. Subse-
quently, we develop a stimulation task-driven pseudo-sequence
approach that focuses on the activation level of the brain
at distinct stimulation points. The resulting pseudo-sequence
data undergoes mapping to pseudo-sequence activation images
through individual-level analysis, comprehensively consider-
ing spatial-temporal features. Finally, a neural network model
for depression recognition is established, incorporating a class
imbalance loss function to effectively address the challenges
of imbalanced class distribution. Experimental results indi-
cate that the depression diagnosis model based on ResNet18
demonstrates high accuracy. This research and the resultant
recognition model hold significant implications for clinical aid
in depression diagnosis.
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