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Abstract— Pneumatic artificial muscle (PAM) has been
widely used in rehabilitation and other fields as a flexible
and safe actuator. In this paper, a PAM-actuated wearable
exoskeleton robot is developed for upper limb rehabilita-
tion. However, accurate modeling and control of the PAM
are difficult due to complex hysteresis. To solve this prob-
lem, this paper proposes an active neural network method
for hysteresis compensation, where a neural network (NN)
is utilized as the hysteresis compensator and unscented
Kalman filtering is used to estimate the weights and approx-
imation error of the NN in real time. Compared with other
inversion-based methods, the NN is directly used as the
hysteresis compensator without needing inversion. Addi-
tionally, the proposed method does not require pre-training
of the NN since the weights can be dynamically updated.
To verify the effectiveness and robustness of the proposed
method, a series of experiments have been conducted on
the self-built exoskeleton robot. Compared with other pop-
ular control methods, the proposed method can track the
desired trajectory faster, and tracking accuracy is gradually
improved through iterative learning and updating.

Index Terms— Upper limb rehabilitation, pneumatic artifi-
cial muscle, unscented Kalman filter, multilayer feedforward
neural network, hysteresis compensation.

I. INTRODUCTION

ROTATOR cuff injury is a condition characterized by
damage or rupture of the tendons around the shoulder
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joint and associated muscle groups. In the treatment and
recovery process, it is often essential to engage in repetitive
task-oriented movements to activate the affected limb. This
is beneficial to the restoration of muscle strength and joint
function. Generally, the rehabilitation process often demands
the involvement of multiple medical staffs to assist patients
during training. This not only necessitates additional man-
power but may also place a significant economic burden on
both patients and society. Many studies have demonstrated
that rehabilitation robots are effective in treating patients with
muscle injuries. This provides a promising solution to patients
who are unable to complete independent rehabilitation training
due to neurological or motor function disorders [1], [2], [3],
[4], [5].

Currently, motors are commonly employed as actuators
for exoskeleton robots, despite their limitations in terms of
flexibility [6]. As a new type of flexible actuator, pneumatic
artificial muscle (PAM) emulates the structure and functioning
principles of muscles. The inherent flexibility of PAM allows
for superior adaptation to rehabilitation tasks, providing nat-
ural and smooth actuation [7], [8], [9], [10]. However, due
to its special material properties, friction and inertia forces
generate obvious hysteresis during actuation. Moreover, the
hysteresis of PAM is asymmetric and rate-dependent [11],
[12], increasing the complexities and difficulties in modeling
and control.

Researchers have conducted extensive researches on the
modeling and control methods of PAMs, which can be briefly
divided into phenomenon models, physical models, and neural
network (NN) models. Among them, physical models are
based on the principles of aerodynamics and mechanics to
describe the behavior of PAMs, such as the three-element
model and the fluid structure interaction model. Phenomeno-
logical models are usually simple in structure and easy to
use, such as Preisach model, Maxwell model, Bouc Wen
model. NN models use artificial neural networks to learn
and simulate the behavior of PAMs. They can automatically
learn the nonlinear relationships through a large number of
training data and can carry out online adaptive learning
and control. Multilayer feedforward neural network (MFNN)
has shown great applicability in nonlinear system modeling.
W. Liu proposes an inversion-free predictive controller, which
is based on a dynamic linearized MFNN model [13]. Firstly,
it was verified that MFNN has high modeling accuracy at
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different frequencies. Then, trajectory tracking experiments
showed that the proposed method can effectively improve the
tracking accuracy of the system.

Inversion-based hysteresis compensation approaches have
been widely adopted, where the inverse hysteresis model is
obtained and used as the hysteresis compensator. However,
inverting a hysteresis model is always challenging. Further-
more, in some instances, inversion may not even be possible.
As a result, several inversion-free methods have been pro-
posed. For instance, M. Rakotondrabe proposed an inverse
multiplication scheme to avoid inversion calculations [14].
Y. Qin proposed a direct inverse modeling approach to iden-
tify the inverse hysteresis model directly from measurement
data [15].

Although scholars have proposed various hysteresis com-
pensation methods for PAM, due to the complex nonlinearity
of PAMs, most models are only approximations of the
real system. The significant modeling errors affect the pre-
cision of hysteresis compensation. Therefore, to further
improve trajectory tracking accuracy, closed-loop control is
generally implemented as it can make real-time correc-
tions to the control variables based on tracking errors. For
instance, Y. Zhang proposed a feedforward and feedback
combined compensation method based on an MFNN inverse
model [16]. This method requires the prior identification of
inverse models from experimental data. This offline iden-
tification might pose another challenge for inexperienced
users.

Kalman filtering, commonly used as a state estimator,
produces more accurate state estimation over time compared
to a single measurement [17]. J. Escareno proposed using
a discrete extended-state linear Kalman filter to estimate
disturbances and velocity [18]. For nonlinear systems, the most
commonly used state estimator is the extended Kalman filter
(EKF). However, the EKF also exhibits obvious shortcomings,
including the requirement for sufficient differentiability of
state dynamics and susceptibility of state estimates to bias
and divergence. On the other hand, the unscented Kalman filter
(UKF) directly uses the nonlinear model instead of linearizing
it, making it more applicable [19], [20], [21].

Based on the above analyses, this paper proposes an active
neural network (ANN) method for hysteresis compensation in
a PAM-actuated exoskeleton robot, where an NN serves as
the hysteresis compensator and its weights and approximation
error are dynamically estimated using UKF. Without loss
of generality, MFNN is adopted. The proposed method is
experimentally verified on a self-built upper limb rehabilitation
exoskeleton robot. For this multi-degree-of-freedom (DOF)
system, the complex dynamic characteristics introduce addi-
tional challenges to system control. Thanks to the nonlinear
approximation ability of MFNN and the estimation accuracy
of UKF, the proposed method efficiently compensates for
hysteresis and improves trajectory tracking performance. The
contributions of the proposed ANN can be summarized as
follows:

1) A neural network is employed to directly formulate the
hysteresis compensator for PAM-actuated systems. Real-time
parameter identification is accomplished via UKF, completely

Fig. 1. The self-built upper limb rehabilitation exoskeleton robot:
(a) 3D model showing the DOFs, (b) photograph of the robot worn on a
participant, and (c) schematic diagram of the control system setup.

eliminating the need for inversion calculation and offline
training of the neural network.

2) In UKF, in addition to the weights of the neural network,
the approximation error of the neural network is also estimated
as an augmented state. The estimated approximation error is
then integrated into the control input. The proposed ANN
achieves rapid convergence within the first two or three
iterations, demonstrating robust iterative learning capability.

3) The developed PAMs actuated exoskeleton robot,
together with the proposed ANN, can provide robust and safe
assistance in completing iterative motions involved in upper
limb rehabilitation trainings.

The rest of the paper is organized as follows: Section II
describes the self-built upper limb rehabilitation exoskeleton
robot system. Section III introduces the architecture of the
proposed active neural network method. Section IV shows
the experimental results in tracking different trajectories.
Section V summarizes this paper.

II. PROTOTYPE DEVELOPMENT OF THE UPPER LIMB
REHABILITATION EXOSKELETON ROBOT

To assist patients with rotator cuff injuries who are unable
to complete rehabilitation training independently, a wearable
upper limb rehabilitation exoskeleton robot prototype is devel-
oped. As shown in Fig. 1, the developed exoskeleton robot
can provide 3-DOF assistances for shoulder joint abduc-
tion, shoulder joint flexion and extension, and elbow joint
flexion and extension, respectively. Three PAMs (DMSP-20
series, Festo) are used to provide flexible and safe actuation.
Three proportional pressure regulator valves (VPPM-6L series,
Festo) are used to regulate the pressure of the PAMs within
0-0.6 MPa. The rotations of the axes are measured using
encoders (OIH48-2500P8-L6, Tamagawa). A real-time target
machine (Performance, Speedgoat) is used to compile and
execute the control algorithm at a sampling rate of 1 kHz.

Strong hysteretic nonlinearities exist in this exoskeleton
robot. Without loss of generality, the elbow flexion and exten-
sion motion are selected as an example. A 0-5 V sinusoidal
control voltage is applied to the PAM in the axis. The
hysteresis loops at 0.05 Hz, 0.1 Hz and 0.2 Hz are recorded
and shown in Fig. 2. It can be observed that the shape of the
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Fig. 2. Hysteresis loops of the elbow’s flexion and extension module at
different frequencies.

Fig. 3. Schematic diagram of the proposed active neural network
control.

hysteresis loop slightly varies at different frequencies, showing
obvious rate dependence and asymmetry. The hysteresis loops
in the other two axes are similar, and thus they will not be
shown for the conciseness of the paper.

III. ACTIVE NEURAL NETWORK CONTROL USING UKF
As stated in Introduction, the hysteresis nonlinearity of PAM

exhibits strong rate dependence and asymmetry. NN has been
widely used in hysteresis compensation of PAMs. Generally,
for conventional NN-based methods, offline data acquisition
and parameter identification are required to obtain a precise
model. However, for the exoskeleton robot, the dynamic
characteristics of the robot will be mixed with the hysteresis
nonlinearity. In addition, in rehabilitation training, PAMs will
inevitably be affected by unknown external disturbances and
load changes. These uncertainties will degrade the accuracy
of the NN. In this paper, online parameter identification is
achieved with the help of UKF, a powerful state estimator.
Further, UKF is also used to estimate the approximation error
of the NN, which is then integrated into the control signal.
The schematic diagram of the proposed method is illustrated
in Fig. 3. The nonlinear approximation capability of NN and
the powerful estimation capability of UKF help to improve
the hysteresis compensation performance of the exoskeleton
robot.

A. NN-Based Hysteresis Compensator
In each axis, the hysteresis can be regarded as the mapping

from the control input to the rotation angles. In this paper,
NN is adopted to construct the inverse hysteresis model for
each axis. Without loss of generality, MFNN is adopted herein.
MFNN includes an input layer, a hidden layer and an output
layer, as schematically shown in Fig. 4. The hysteresis of
the PAM is not only influenced by the current state of the
system but also the historical states of the system. Therefore,
in addition to the current desired trajectory θd , the input layer
neuron of the MFNN also incorporates the previous desired
trajectory θd_pre, to enhance the local memory of the network.

Fig. 4. MFNN-based feedforward hysteresis compensation.

In addition, 1 in the input layer neuron is used to increase
the generalization ability of the MFNN [22]. The activation
function of the hidden layer is adopted to be:

h(x) = (ex
− e−x )

/
(ex

+ e−x ) (1)

The output of MFNN is defined as follows:

u = fN N (x,A,B) =

∑7

j=1
B j h j (6

3
i=1xi Ai j ) (2)

where x is the input layer state vector defined as x=[x1 x2
x3] =[θd θd_pre 1], A=[a11 a12 . . . a17 a21 a22 . . . a27 a31 a32
. . . a37] is the weight vector from the input layer to the hidden
layer, among them, Ai j is the weight value from the i-th input
layer neuron to the j-th hidden layer neuron. h j (6

3
i=1xi Ai j )

is the output of the j-th hidden layer neuron. B=[b1 b2 . . . b7]
is the weight vector from the hidden layer to the output layer,
and u is the output of the neural network.

B. Active Neural Network Controller for Each Axis
Although the NN has strong nonlinear approximation capa-

bilities, approximation error is inevitable, especially in the very
beginning of motion. In this paper, the UKF is utilized to
dynamically identify the weights of the MFNN, eliminating
the off-line parameter identification. Further, UKF is also used
to estimate the approximation error and add it to the NN’s
output, forming the final control input to the PAM, as shown
in Fig. 4.

UKF uses the nonlinear model directly through the
unscented transform (UT). UT approximates the state dis-
tribution with a limited set of points, i.e., the sigma points
calculated from the prior mean and covariance. In this paper,
the extended state is defined as the weights and approximation
error of the MFNN, as illustrated below:

X = [A B ξ ]T

= [a11 a12 · · · a17 a21 a22 · · · a37 b1 b2 · · · b7 ξ ]
T (3)

where ξ is the approximation error of the MFNN.
Subsequently, the UKF is employed to predict and update

the extended state. UKF consists of the following two steps:
The first step is to calculate the sampling points based

on the estimated mean and covariance:

9k−1 =
[
Xk−1 · · · Xk−1

]
n×(2n+1)

−

[
0n×1 −

√
(n + κ)Pk−1|k−1

√
(n + κ)Pk−1|k−1

]
= [9k−1(1) · · · 9k−1(2n + 1)]1×(2n+1) (4)
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where n is the state dimension, κ is a constant, 9k−1 is the
matrix after sampling expansion, calculated from the estimated
mean and covariance calculated on the state vector Xk−1.
9k−1(m), m = 1,2. . . 2n + 1, is the m-th column vector of
matrix 9k−1, and 9k−1(m) = [Ak−1(m) Bk−1(m) ξ(m)]T.

The second step is the prediction:

9k|k−1 = F(9k−1)

PX (k|k−1)=
2n+1
6

i=1

[
Wc(i)

(
9k|k−1(i)−

2n+1
6
j=1

Wm( j)9k|k−1( j)
)

(
9k|k−1(i)−

2n+1
6
j=1

Wm( j)9k|k−1( j)
)T

]
+ Qk

(5)

where 9k|k−1 is obtained by nonlinear conversion of sampling
points 9k−1, Qk is the covariance matrix of process noise, the
process noise is considered in this step to obtain the weighted
covariance matrix in the state space PX (k|k−1). The state update
function F can be set to 1. In this case, the previous state
observation ŵk−1 is directed inherited in the prediction of ŵk .

The third step is the update:

ϒψ(k|k−1) = [ fN N (xk−1,Ak|k−1(1),Bk|k−1(1))+ ξ(1)
· · · fN N (xk−1,Ak|k−1(2n + 1),Bk|k−1(2n + 1))
+ ξ(2n + 1)]

Pϒ(k|k−1) =

2n∑
i=0

[
Wc(i)(ϒψ(k|k−1)(i)

−

2n∑
j=0

Wm( j)ϒψ(k|k−1)( j))

(ϒψ(k|k−1)(i)−

2n∑
j=0

Wm( j)ϒχ(k|k−1)( j))T

+Rk

PXϒ(k|k−1) =

2n∑
i=0

Wc(i)(9k|k−1(i)−

2n∑
j=0

Wm( j)9k|k−1( j))

(ϒχ(k|k−1)(i)−

2n∑
j=0

Wm( j)ϒχ(k|k−1)( j))T


Kk = PXϒ(k|k−1)P−1

ϒ(k|k−1)

Xk|k = Wm9k|k−1 + Kk2

Pk|k = PX (k|k−1) − KkPT
Xϒ(k|k−1) (6)

where Rk is the covariance matrix of the measurement noise,
ϒψ(k|k−1) is the measurement prediction of 9k−1 from time
k-1 to time k, Kk is the Kalman gain, 2 is the innovation,
Xk|k is the estimation of state vector based on confidence
field 9k|k−1, Pk|k is the update of confidence matrix Pk−1|k−1.
In this paper, the measurement function fN N employs the
MFNN structure described in (2), xk−1 is the sampling value
of x at the k-1 moment. It is worthing noting that, xk−1 can be
obtained from the desired trajectory, A, B and ξ are update
at each sample time.

In the UKF, the difference between the estimated and actual
states needs to be used as the innovation to update the state
at the next moment. In this paper, the difference between the

Fig. 5. Schematic diagram of the closed-loop controller.

desired joint angle θd and the actual measured joint angle θ is
directly used as the innovation, as expressed below:

2 = θd − θ (7)

Further, if the input and output are on different orders of
magnitudes, in order to map the difference in the joint angle
to the difference in the input voltage, the innovation is scaled
by a constant coefficient of η = umax /θmax , where umax and
θmax are the maximum input voltage and output angle of the
system, respectively. Because η is only used to align the orders
of magnitude, exact values of umax and θmax are not required.
Status updates are redefined as:

Xk|k = Wm9k|k−1 + Kk · η · (θd − θ) (8)

Finally, the control voltage of the proposed controller can be
obtained as:

Uk = fN N (xk−1,Ak|k,Bk|k)+ ξk|k (9)

C. Closed-Loop Control of the Overall System
For the exoskeleton robot, in addition to the trajectory

tracking accuracy in joint space, the accuracy of trajectory
tracking in task space is also crucial. The forward kinemat-
ics of the exoskeleton robot was derived in our previous
work [23]. In this paper, for a given 3-DOF trajectory in the
workspace, the inverse kinematics is employed to obtain the
desired trajectories of each axis, as illustrated in Fig. 5.

IV. EXPERIMENTAL VERIFICATIONS

Experiments are firstly conducted on a human phantom to
evaluate the performance of the exoskeleton robot. In this
case, the repeatability of the human phantom establishes an
equitable foundation for comparing the performance of the
proposed control method to other widely-used controllers.
Moreover, the exoskeleton robot is worn by a healthy par-
ticipant to assess its real-world performance in practical
implementations. Detailed experimental results and video
recordings are provided in this section and in the supplemented
video, respectively.

A. Trajectory Tracking Performance in the Joint Space
The trajectory tracking performance is firstly tested in

the joint space of the exoskeleton robot. Parameters of the
proposed method are set as follows: The number of neurons
in the hidden layer is set to seven, and the weights of MFNN
are initialized to 0. The parameters in the UKF are set to:
Q=0.001×diag(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10
10 10 10 10 10 10 100) and R=1, umax is set to 10 V, and
θmax is set to 80 ◦, i.e., η = 0.125.
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Remark 1: A careful trial-and-error process is suggested to
fine tune the parameters of MFNN and UKF. For MFNN,
too few neurons in the hidden layer will cause inability to
fit complex nonlinearities, and decrease the tracking accuracy.
Conversely, too many neurons in the hidden layer will lead to
overfitting and significantly increase the computational load of
the algorithm. Balancing between trajectory tracking accuracy
and complexity, we ultimately set the number of neurons in the
hidden layer to seven. Successful tuning of Q and R matrices
in UKF requires some prior knowledge of the system dynamics
and measurement characteristics. Initially, these parameters
can be roughly adjusted, and fine-tuning can be performed
once the system stabilizes.

Proportional-integral-derivative (PID) controller is chosen
as a comparative method, with the following parameters set:
kp = 0.01, ki = 0.2, and kd = 0. In addition, the adaptive
projection (AP) algorithm is also chosen as the second com-
parative method. Detailed information on this AP algorithm
can be found in our previous work [23]. In this paper, the
parameter γ of the AP algorithm is tuned to 0.0016.

Remark 2: In comparison, when determining the param-
eters of the PID controller, we first use low-frequency
trajectories for tuning, balancing its transient control perfor-
mance and steady-state tracking error. We determine the final
parameters through iterative trial and error, and then apply
this set of parameters to other trajectory tracking experiments.
The AP algorithm requires simpler parameter tuning, involving
only one parameter, γ . A larger γ leads to an increase in
the steady-state error, while a smaller γ may lead to greater
overshoot and oscillation. The algorithm’s performance under
different parameter settings can be found in [23].

Group 1: Tracking of Slow Trajectories: First, the desired
trajectories are set to be 0.05 Hz sinusoidal and triangular
trajectories for all axes, corresponding to the slow motions in
the beginning of rehabilitation trainings. The amplitude and
offset of the sinusoidal trajectory are set to be 12.5◦ and 17.5◦,
respectively. For the triangular trajectory, the amplitude and
offset are set to be 10◦ and 15◦.

The sinusoidal trajectory tracking results are shown in
Fig. 6. From the experimental results, it can be seen that the
proposed ANN can quickly follow the desired trajectories,
and after the second iteration, the tracking error gradually
converges. After the third iteration, the steady-state error of
ANN stays close to zero. In contrast, the PID controller
converges slower without iterative learning capability, and the
steady-state error is larger. The AP controller can converge to
the desired trajectory fast, whereas the transient performance
is poor. The steady-state error is between ANN and PID.
Taking the elbow flexion-extension module as an example,
Fig. 6 (d) displays the hysteresis compensation effects of three
methods. It can be observed that the proposed method can
better compensate for the asymmetry of the system hysteresis,
and the hysteresis loop is closest to the 45◦ line, indicating a
good hysteresis compensation performance.

The tracking results for the triangular trajectory are
shown in Fig. 7. Similarly, ANN can quickly converge the
steady-state error towards 0 after one iteration, showing a
strong learning ability. In order to quantitatively compare the

Fig. 6. 0.05 Hz sinusoidal trajectory tracking: (a)-(c) axis 1-3,
(d) hysteresis plot.

TABLE I
RMSES OF THE TRACKING ERRORS OF 0.05 HZ

SLOW TRAJECTORIES

tracking errors, the following root-mean-square error (RMSE)
is used:

RM SE =

√√√√ 1
N

N∑
k=1

[θ(k)− θd(k)]2 (10)

The statistics on the tracking errors are listed in TABLE I.
It can be seen that ANN achieves the minimum RMSE values
among the three methods when tracking slow sinusoidal and
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Fig. 7. 0.05 Hz triangular wave trajectory tracking: (a)-(c) axis 1-3.

triangular trajectories. According to the above results, the
proposed ANN achieved better tracking performance.

Group 2: Tracking of Fast Trajectories: The hysteresis of the
PAM is rate-dependent, i.e., the hysteresis loop widens as the
frequency increases. Therefore, it is necessary to evaluate
the tracking performance on fast trajectories. In this section,
the frequency of the sinusoidal trajectory is increased to
0.1 Hz. The experimental results are shown in Fig. 8. For
this faster trajectory, the proposed ANN converges faster
than the other two comparative methods, and the steady-state
error gradually converges towards zero. On the contrary, the
PID controller exhibits periodic oscillations in the steady-
state error. The performance of the AP controller degrades
for faster trajectories. Although the tracking error decreases
iteratively, the tracking performance is still not comparable
to ANN. The RMSE values of the tracking errors are also
calculated and listed in TABLE II. Statistics show that when
tracking a faster trajectory, ANN continue to demonstrate good
tracking performance, whereas AP and PID require more time
to converge.

Further, three different trajectories are adopted as the desired
trajectories to the axes of the exoskeleton robot to eval-
uate the performance of the proposed ANN in generating
more complex rehabilitation motions. The desired trajectories
include a 0.05 Hz sinusoidal trajectory for shoulder abduction,
a 0.05-0.1 Hz swept sinusoidal trajectory for shoulder flex-
ion and extension, and a 0.05 Hz sinusoidal trajectory with

Fig. 8. 0.1 Hz sinusoidal trajectory tracking: (a)-(c) axis 1-3.

TABLE II
RMSES OF THE TRACKING ERRORS FOR FAST

AND VARYING TRAJECTORIES

descending amplitude for elbow flexion and extension. The
experimental results are shown in Fig. 9, and the statistics
on the tracking errors are listed in TABLE II. It can be
observed that the proposed method still exhibits good transient
and steady-state performances when tracking such complex
trajectories. Specifically, when tracking the swept sinusoidal
trajectory, the tracking errors of both AP and PID controllers
increase with the increment of frequency and can go beyond
±1.5◦. In contrast, the tracking errors of ANN gradually
decreasing and ensuring they remain within ±1◦, showing
better learning capabilities.

B. Robustness Against External Disturbances
During rehabilitation trainings, the exoskeleton robot will

encounter external disturbances, such the unknown distur-
bances from the patient. For this reason, it is necessary to
test the robustness of the exoskeleton robot against external
disturbances. To be concise, robustness is tested during elbow
flexion and extension motions. The desired trajectory is set to
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Fig. 9. Tracking results for varying trajectories: (a)-(c) axis 1-3.

Fig. 10. Robustness against external disturbances.

be a 0.05 Hz sinusoidal trajectory with an amplitude of 12.5◦

and an offset of 17.5◦, and an external disturbance is applied
around the 55th s.

The control performances of the controllers before and after
the disturbances are recorded and shown in Fig. 10. For the
proposed ANN, it can be seen that a small oscillation of about
0.99◦ occur after the disturbance. For the AP controller, the
amplitude of oscillation reaches 1.62◦. For the PID controller,
more oscillations are observed and the oscillation amplitude
can increase to 2.21◦. This demonstrates that the proposed
ANN is able to quickly converge after the disturbance, exhibit-
ing high robustness against external disturbances.

Remark 3: To assess the time-efficiency of the proposed
method, the computation time is recorded on the real-time
target machine. The mean and maximum values of the com-
putation time are measured to be 0.113 ms and 0.117 ms,

Fig. 11. Trajectory tracking performance of ANNs with and without
approximation error compensation.

respectively, which are well below the sampling period of the
closed-loop system, i.e., 1 ms. Therefore, the execution of the
neural networks and UKF is fast within the current system
step.

C. Approximation Error and Algorithm Convergence
Verification

In section III, the approximation error of the neural network,
defined as an extended state, is estimated and compensated in
real-time. Typically, the training and convergence process of
neural network weights often lead to a decline in transient
tracking performance. However, the real-time estimation and
compensation of the approximation error effectively address
this limitation. To validate the role of neural network approx-
imation error, the shoulder joint flexion and extension module
is selected as an example to compare the performance of
algorithms with and without approximation error. The desired
trajectory is set to be a 0.05 Hz sinusoidal trajectory with an
amplitude of 12.5◦ and an offset of 17.5◦, The experimental
results are shown in Fig. 11. From these results, it can be
observed that the proposed method is able to respond rapidly
during trajectory tracking transients. However, without approx-
imation error compensation, the relatively slow convergence
of neural network weights during the transient leads to a
decline in tracking performance. In addition, it can be observed
that without approximation error compensation, significant
overshoot and oscillations can be observed. In upper limb
rehabilitation trainings, such oscillations are dangerous and
unacceptable. This further verifies the necessity of neural
network approximation error compensation.

In order to show the stability of the proposed method, the
convergence of the estimated weights and approximation error
of the MFNN are analyzed. Because theses parameters are
on different magnitudes, without loss of generality, only a11,
a31, b1 and ξ in Fig. 11(a) are selected and presented in
Fig. 12. After the first iteration, the weights gradually converge
and show a trend of small periodic oscillations around the
steady-state values. Simultaneously, in the initial iteration
when the weights of the MFNN don’t converge, the estimated
approximation error of the MFNN incrlaweases to compensate
for the modeling error. As the weights gradually converge,
the estimated approximation error gradually decreases and
oscillate around 0.5.

Finally, to further illustrate the convergence of the UKF
in the proposed method, we observed the convergence of the
Kalman gains, as depicted in Fig. 13. The figure displays
the Kalman gains corresponding to weights a11, a31, b1 and
ξ . Similar to the convergence of weights, the Kalman gains
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Fig. 12. Weights convergence of the UKF.

Fig. 13. Kalman gains of UKF.

Fig. 14. Tracking of a 3-DOF spatial trajectory: (a1)∼(a3) the 3D
plot of the trajectory of the robot using ANN, AP, and PID controllers,
respectively, and (b) the tracking errors.

gradually converge to around zero after a brief adjustment
period, displaying periodic oscillations, which further demon-
strates the convergence of the UKF.

D. Trajectory Tracking Performance in the Workspace
The above experiments illustrate the effectiveness of the

proposed method by observing the rotation angles of each
axis. Furthermore, with the help of the kinematics of the robot,
3-DOF spatial trajectory tracking can be implemented within
the robot’s workspace. In this section, a spatial circu-
lar trajectory is adopted as the desired trajectory for the
robot. The trajectory tracking performance is depicted in
Fig. 14(a1) ∼(a3).

In order to quantitively compare the performances of the
controllers, the following tracking error is adopted:

Error =

√
(x − xd)2 + (y − yd)2 + (z − zd)2 (11)

Fig. 15. Human participant trial result: (a) snapshots of the experiment,
and (b) the trajectory tracking performance.

where, x , y, and z are the coordinates of the actual trajectories
on the X , Y , and Z axes, respectively, and xd , yd , and zd are
the coordinates of the desired trajectories on the X , Y , and Z
axes, respectively.

The tracking errors of the controllers are shown in
Fig. 14(b). It can be found that the proposed method achieves
the fastest convergence and smallest tracking error among the
controllers.

E. Human Participant Trial
After validating the trajectory tracking performance and

robustness of the proposed method, it is important to assess the
real-world performance of the exoskeleton robot when worn
by subjects. In this section, a healthy participant wears the
exoskeleton robot, with the subject’s left arm secured using
elastic straps and the exoskeleton robot fixed to the base,
as shown in Fig. 15(a). Prior to the execution of the exper-
imental protocol, the subject received detailed explanations
about the potential risks of the experiment and signed informed
consent forms before participating in this study. Additionally,
the subject has authorized us to use her personal information
and experimental results.

We use the proposed method to drive three axes to track a
0.05 Hz sinusoidal trajectory. The amplitude and offset of the
sinusoidal trajectory are set at 12.5◦ and 17.5◦, respectively.
The experimental results are shown in Fig. 15(b), and a
video showcasing the actual performance of the rehabilitation
exoskeleton worn by healthy participants is included in sup-
plementary Movie 1. Compared with the experimental results
on human phantom, it is observed that during the motion of
the subject’s arm driven by the exoskeleton robot, the tracking
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error is slightly larger in the first 10 seconds. No overshooting
phenomenon is observed, ensuring the safety of the startup
process. This is reasonable because the uncertainties of the
subject introduce extra disturbances to the system. After 1 iter-
ation, the error of the proposed method gradually decreases,
showing excellent iterative learning capability and steady-state
performance. This experimental result further demonstrates the
effectiveness and applicability of the exoskeleton robot.

V. CONCLUSION

In this paper, a PAM-actuated upper limb rehabilitation
exoskeleton robot is developed to assist patients with rotator
cuff injuries. An active neural network hysteresis compensa-
tion method is proposed for the exoskeleton robot. In this
method, a NN is utilized to compensate for the hysteresis
nonlinearity of the system, and the weights of the NN are
estimated and updated in real time using UKF. Additionally,
the approximation error of the NN is considered and jointly
estimated as an extended state in UKF, which significantly
improves compensation accuracy. The output of the NN and
the estimated approximation error are integrated as the con-
trol voltage applied to the exoskeleton robot. This approach
completely eliminates the need for model inversion and offline
parameter identification, thus enhancing ease of use.

Different sets of experiments have been carried out on
the exoskeleton robot. Experimental results show that the
proposed method can effectively compensate for the PAM’s
hysteresis and improve tracking performance on both slow and
fast trajectories. Regarding external disturbances, the proposed
method achieves the best robustness among the comparative
methods. Spatial 3D trajectory tracking was also conducted
to verify the capability of the developed exoskeleton robot in
providing complex rehabilitation motions. In all the aforemen-
tioned experimental verifications, the tracking accuracy of the
proposed method can be gradually improved through iterative
learning and updating. This capability is particularly valuable
for the iterative motions involved in rehabilitation training.
Future work will focus on the clinical applications and testing
of the developed exoskeleton robot.
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