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Using Large-Scale Sensor Data to Test Factors
Predictive of Perseverance in Home Movement

Rehabilitation: Early Exercise Frequency
and Schedule Consistency

Sangjoon J. Kim , Veronica A. Swanson, George H. Collier, Amanda R. Rabinowitz,
Daniel K. Zondervan, and David J. Reinkensmeyer , Senior Member, IEEE

Abstract— Home-based exercises are an important com-
ponent of stroke rehabilitation but are seldom fully com-
pleted. Past studies of exercise perseverance in the general
public have suggested the importance of early exercise fre-
quency and schedule consistency (in terms of which days
of the week exercises are performed) because they encour-
age habit formation. To test whether these observations
apply after a stroke, we leveraged data from 2,583 users
of a sensor-based system (FitMi) developed to motivate
movement exercises at home. We grouped users based
on their early exercise frequency (defined across the ini-
tial 6 weeks of use) and calculated the evolution of habit
score (defined as exercise frequency multiplied by exer-
cise duration) across 6 months. We found that habit score
decayed exponentially over time but with a slower decay
constant for individuals with higher early frequency. Only
the group with an early exercise frequency of 4 days/week
or more had non-zero habit score at six months. Within
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each frequency group, dividing individuals into higher and
lower consistency subgroups revealed that the higher con-
sistency subgroups had significantly higher habit scores.
These results are consistent with previous studies on habit
formation in exercise and may help in designing effective
home rehabilitation programs after stroke.

Index Terms— Home-based rehabilitation, stroke, habit
formation, perseverance.

I. INTRODUCTION

STROKE is a leading cause of serious long-term dis-
ability with approximately 86 million people per year

suffering from a stroke globally [1]. Long-term motor deficits
are present in the majority of patients who experience a
stroke [2], and those left with severe impairment have reduced
independence and quality of life [3], [4]. Fortunately, the
human motor system retains substantial capacity for plasticity,
and it has been shown that impairment can be reduced with
intensive rehabilitation [5], [6], [7], [8], [9], [10], [11], [12].
Rehabilitation exercise for stroke patients involves targeted
physical activities and movements designed to improve motor
skills, strength, and flexibility. However, it is believed that
most individuals do not receive enough movement practice
through in-clinic therapy to recover to their full potential [7],
[13].

Home exercise programs are intended to increase the dose
of exercise individuals receive, but the current standard of
care (i.e. providing printed sheets of exercises), is associated
with poor adherence and outcomes [14], [15], [16], [17],
[18]. One estimate suggested that up to 65% of patients are
non-adherent or only partially adherent to their home exercise
programs [19]. Adherence problems are not unique to people
with stroke. In the general public, the majority of adults
(95%) struggle to meet the recommended physical activity
guideline [20], citing time constraints as a main barrier [21].
Understanding factors to improve long-term engagement in
home-based exercise is important for maximizing recovery in
individuals following stroke and may be assisted by under-
standing exercise adherence in the general public.

A key factor that has been shown to lead to consistent
exercise behavior is forming a habit, defined as acts that
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have become automatic responses to cues [22], [23]. A meta-
analysis of 1,979 participants (7 unique datasets) found that
habits and physical activity were moderately-to-strongly cor-
related [22]. Habits are important for establishing regular
routines that become automatic and require less conscious
effort [24], [25]. This automation reduces the cognitive burden
associated with initiating and maintaining physical activity,
making it easier to stick to a consistent exercise regimen.
A longitudinal study of habit formation emphasized the impor-
tance of behavioral repetition and demonstrated that it took
on average 66 days to develop a health-related habit such as
healthy eating, drinking, and exercise [26].

To determine how weekly exercise time and frequency were
related to habit formation, Kaushal and Rhodes [27] studied
new gym membership in the general public using self-reported
surveys that quantified 1) exercise frequency and 2) exercise
automaticity. They found that the initial weekly exercise
frequency predicted forming a habit of regularly going to the
gym, finding that exercising for at least four bouts per week
during the initial 6 weeks was the minimum requirement to
continue to persevere with exercise over 12 weeks (3 months)
[27]. Furthermore, they analyzed four antecedents - temporal
consistency, reward, environmental cues, and low behavioral
complexity - that are conducive to habit formation [24].
Among the four antecedents, Kaushal and Rhodes suggested
that temporal consistency was the most important predictor
followed by low behavioral complexity, environment, and
affect [27].

Knowing the behavioral requirements for forming a habit
can provide a foundation for designing effective interventions,
guiding behavior change, tailoring approaches to individual
needs, and ultimately improving health outcomes for not only
physical activity in the general public but also for home-based
rehabilitation applications. For example, in a recent study [28],
we found that individuals showed the greatest perseverance
with a home-based rehabilitation system (FitMi) if they had
high but not perfect success during the 1st week of completing
the exercise game, highlighting the importance of reward
for perseverance. In addition we showed that steady use,
in contrast to decelerating or accelerating use, was associated
with perseverance. In this study, we were motivated by the
work of Kaushal and Rhodes [27] to examine whether weekly
exercise frequency and schedule consistency predict home
exercise perseverance after stroke.

Towards this goal, we leveraged anonymous usage logs
from a commercial sensorized home rehabilitation technology,
called FitMi that was designed specifically for individuals with
a stroke. FitMi is comprised of two puck-like sensors and
software that visually guides the user through 40 therapeutic
exercises for the hands, arms, legs, and torso in a game-
like setting. Usage data (including the number of exercise
repetitions, time spent exercising, and success rate during
a session) are collected and saved to an online database.
Therefore, an objective analysis of usage behavior is possible.

One thing to note is that FitMi users typically purchase
the system themselves and utilize it independently, without
direct supervision from a rehabilitation therapist. Thus, the
study focuses on individuals who have taken proactive steps to

Fig. 1. Description of the FitMi system. A) FitMi system consists of
2 force and motion-sensing pucks, a charging station, and RehabStudio
(a software application for gamified exercise). B) An example of an arm
exercise (i.e., shoulder flexion exercise) that is shown in RehabStudio.

continue their rehabilitation through the acquisition of a home
rehabilitation technology. Although it is likely that FitMi users
have higher levels of autonomy and self-efficacy indicated
by their self-initiation of therapeutic home exercise programs,
we hypothesize that there will be variations in perseverance
that are predicted by early frequency and schedule consistency,
even within this motivated subpopulation, based on prior habit
formation research.

II. METHODS

A. Description of FitMi
FitMi (Flint Rehab, LLC) is a commercially avail-

able FDA-listed medical device developed to help patients
post-stroke perform various gamified movement exercises. The
FitMi system consists of two sensorized “pucks”, a charging
station, and a tablet or PC running RehabStudio (software for
gamified exercise) as shown in Figure 1. Each FitMi puck
includes an inertia measurement unit (IMU) and a load cell
used to monitor the movement and compression forces applied
to the pucks. Each puck also includes a vibration motor used
to provide haptic feedback when an exercise repetition is suc-
cessfully completed. All sensor data is wirelessly transmitted
to RehabStudio.

Forty different therapist-designed exercise games across
four body regions: arms, hands, core, and legs are provided in
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RehabStudio. Initially, users can interact with three baseline
exercises per body region (the three easiest exercises selected
by an experienced occupational therapist). For each exercise,
users are asked to perform a given number of exercise repeti-
tions within a set time. During an exercise, the allotted time
to achieve the exercise is decreased or increased depending on
the performance (instantaneous rate) of practice. For example,
if a person stops exercising or cannot achieve a repetition
for a particular exercise, time runs out more quickly. If a
person succeeds in achieving repetitions, time is added to
increase the remaining total time to achieve the target number
of repetitions. If a user is able to achieve the target number of
repetitions, the user will “level up”. The difficulty increases
with respect to the level requiring the user to perform more
repetitions in a shorter time window. Once a user reaches
a level of 10 (the maximum level) in an exercise, the user
will go into “Infinite Play” mode and can no longer level
up. The software unlocks additional exercises that were rated
as functionally more difficult if the cumulative levels (of all
currently unlocked exercises in the region) exceed a threshold
(5, then 10, 15, 20, 25, 30, 40, 50). After unlocking an
exercise, users can choose the exercises performed during
the session. All usage data are uploaded to a secure online
database managed by Flint Rehabilitation Devices after each
exercise session.

The clinical efficacy of the FitMi system was recently shown
in a single-blind, randomized controlled trial (N = 27) in
the subacute phase of stroke [29]. Fourteen participants were
assigned to use FitMi while thirteen were assigned to do con-
ventional therapy (i.e., exercise using a paper-based exercise
booklet). Participants were instructed to perform self-guided
movement training at home for at least 3 hours/week for
3 consecutive weeks. Participants who used FitMi improved by
an average of 8.0 ± 4.6 points on the UEFM scale compared
to 3.0 ± 6.1 points for the conventional participants.

B. Data Acquisition and Cleaning
For this study, we used FitMi usage data from 2,747

individuals collected between June 20th, 2016 and December
15th, 2019. As we were interested in investigating the habit
formation behavior across 24 weeks (6 months), we removed
users who had the FitMi system for less than 24 weeks prior
to the end of our data collection (exclusion of 493 users;
17.9%). We also removed user data who only used the FitMi
system once (exclusion of 378 users; 13.8%). We found that
the total number of repetitions performed by each user during
their first 24 weeks had a lognormal distribution. Thus, we fil-
tered outliers from the data using the log transform of total
repetitions performed, excluding users with log-transformed
data more than two standard deviations from the mean of the
log-transformed data. This filter resulted in the exclusion of
103 (3.7%). A total of 1,773 users remained after filtration and
outlier removal. The study was confirmed by the UC Irvine
Institutional Review Board.

It is important to note that FitMi users typically buy the
system out-of-pocket and use it without direct supervision
from a rehabilitation therapist. Therefore, we are studying a
group of users who have taken direct steps to continue their

Fig. 2. Histogram of users grouped based on their initial exercise
frequency (Freq). The majority of FitMi users (1,487 users) had an Freq
less than 1. There were 161, 69, 31 and 25 users for the consecutive
Freqs.

rehabilitation by acquiring a home rehabilitation technology.
Furthermore, as the data is collected from commercial users,
the data were anonymous without any identifying information
(i.e., demographics, impairment level).

C. Data Analysis
1) Initial Exercise Frequency (Freq): We define initial exer-

cise frequency (Freq) as the minimum number of days a
user exercises per week during an initial 6-week window. For
example, if a user has exercised 3 days/week during the first
4 weeks and exercised 5 days/week during the 5th and 6th
week, the user’s Freq is equal to 3 days/week. We first use
an initial time window of 6 weeks based on the findings of
Kaushal and Rhodes [27]. The histogram of the users grouped
by their Freq is shown in Figure 2.

2) Weekly Habit Score: We adopted the definition of habit
strength (time × frequency) presented in [27]. We calculate
the weekly habit score (H) using:

H(w) = T (w) × F(w),

w = 1, 2 . . . .24 (1)

where T is the weekly exercise duration (the total amount
of time spent exercising in a given week) in hours for week
w, and F is the weekly exercise frequency for week w. This
definition of habit score favors higher weekly exercise fre-
quency. For example, although the total time a user exercises
was identical, a user who did a single 2-hour session during a
week has a habit score of 2, while a user who did two 1-hour
sessions during a week has a habit score of 4 (i.e., 2 hours x
2 sessions = 4 habit score).

We then fit a first-order exponential function to the 24-week
time series habit score data for users grouped by their Freq
using,

H̃(w) = A0 + A1 × e−A2w,

w = 1, 2 . . . .24 (2)

where H̃ is the group median habit score for week w. Here
A0, A1, and A2 are constants. Using the following equation
has the advantage that the constants A, A1, and A2 provide
intuitive and psychologically meaningful results [26]. A0 rep-
resents the asymptote of the exponential curve where the habit
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score reaches a steady state, such that larger values of A0
indicate stronger lasting habits. A1 is the difference between
the asymptote and the modeled initial value of H̃ when w = 0,
and A2 is the decay constant at which the asymptote (plateau)
is reached.

3) Schedule Consistency: To investigate the effects of
schedule consistency on habit formation, we quantified how
consistently individuals exercise the same days of the week
across multiple weeks by calculating the coefficient of varia-
tion (C) between the matrix consisting of weekly binary arrays
of active days. For example, if a user exercised every day
except the last day of a week, the user’s weekly binary array
will be [1 1 1 1 1 1 0]. Here, an active day is defined as
a day a user opened the FitMi software (RehabStudio) and
performed at least one exercise repetition. C is calculated using
the following equation:

C =
σ̄

µ̄
, (3)

where,

X i j =

 x1,1 . . . x1,7
... . . .

...

xN ,1 . . . xN ,7

 (3a)

σ =

√∑
(X − X̄col)2

N − 1
, (3b)

σ̄ =

∑
σ

7
, (3c)

µ̄ =
1
N

∑
µ =

∑
X i j

7N
(3d)

Here X is the matrix consisting of the array of active days
during a given week, X̄ is the mean of the binary arrays across
N weeks, σ is a vector with the standard deviations of active
days for each day of a week (i.e., standard deviation of each
column in X i j ), σ̄ is the mean of σ , µ is a vector with the
mean active days for each day of the week (i.e., mean of each
column in X i j ), and µ̄ is the mean µ. C is calculated starting
from week 2 and a smaller C value denotes higher consistency.
Examples of users with different weekly behavioral patterns
are given in Table I and the corresponding average coefficient
of variation is shown in Figure 3. It is important to note that
a higher number of weekly active days or total active days
does not guarantee a lower coefficient of variation (i.e., higher
consistency).

D. Statistical Methods
We tested three main factors on long-term habit score in

this study: the effect of initial exercise frequency (Freq), the
window size of Freq, and schedule consistency (C). To test
these factors, we investigated the following analyses: (1) the
effect of different Freqs on the 24-week time series data of
habit score, (2) the effect of the initial window size of Freq
on the 24-week time series data of habit score, (II-C.3) the
percentage of users from each Freq group who exercise more
than 150 minutes per week (i.e., a dose that has been found
previously to be sufficient to induce significant improvements
in motor function after stroke [30]; this translates to at least a

TABLE I
EXAMPLE OF USERS WITH DIFFERENT ACTIVE DAYS

DURING 4 WEEKS. AN ACTIVE DAY IS REPRESENTED

WITH A“1” AND A NON-ACTIVE DAY WITH A“0” IN

THE BINARY ARRAY FOR EACH WEEK

Fig. 3. Example of users with different weekly exercise consistencies.
Smaller values of the consistency metric indicate more consistent
weekly exercise patterns. The weekly active days for each user are
summarized in Table I. A greater total number of active days does not
guarantee higher weekly consistency.

habit score of 2.5) across 24 weeks, (4) the effect of scheduled
consistency within Freq groups, and (5) the number of total
exercise repetitions performed after forming a habit (exercise
repetitions performed between week 7 and week 24) for each
Freq group.

To test whether there were significant differences between
groups with different Freqs in analysis (1), (2), and
(II-C.3), we used a non-parametric Kruskal-Wallis test on the
24-week median distribution to examine the statistical sig-
nificance across Freq groups. Then we carried out post hoc
pairwise comparisons between the median distributions using
Tukey’s Honest Significant Difference (HSD) test among Freq
groups. For (4), we divided users within each Freq group
into a high- and low-consistency subgroup using the median
value of the coefficient of variation as the threshold for each
Freq group. Then we compared the average habit score of the
subgroups using a two-sampled t-test between groups. Finally,
for (5), to compare the total exercise repetitions between
groups with different Freqs, we used non-parametric Kruskal-
Wallis and Tukey’s HSD test. All analyses were conducted in
Matlab 2021b [31].

III. RESULTS

A. Initial Exercise Frequency Predicts the Steadiness of
Habit Score

We first analyzed how the 24-week group habit scores
trajectories (defined as weekly exercise duration × frequency)
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Fig. 4. Twenty-four week (i.e., 6 months) habit score of A) users with an Freq < 1 day/week (N = 1,487), B) users who with a 1 ≤ Freq <
2 days/week (N = 161), and C) users who had an Freq ≥ 4 days/week (N = 25). Boxplots include the group median, the 25th percentile, 75th
percentile, and outliers. In this figure, trends of groups with Freq < 1 days/week, 1 ≤ Freq < 2 days/week, and Freq ≥ 4 days/week are only shown
as they are the most representative groups with distinct characteristics. Groups with 2 ≤ Freq < 3 days/week and 3 ≤ Freq < 4 days/week showed
similar characteristics with group 1 ≤ Freq < 2 days/week but had a slower exponential decay rate (Supplementary Material).

varied for users with different initial frequencies (i.e., Freq)
(Figure 4). The median habit score of the group with Freq <

1 days/week converged to zero starting from week 4, while
the group with 1 ≤ Freq < 2 days/week converged to
approximately zero starting from week 10. Similarly, the
group with 2 ≤ Freq < 3 days/week and 3 ≤ Freq <

4 days/week also converged to zero starting from week 11 and
week 15, respectively. The twenty-four-week habit score for
all frequency groups including the group with 2 ≤ Freq <

3 days/week and 3 ≤ Freq < 4 are shown in the Supplementary
Material, Figure S1. The median habit score of the group with
Freq ≥ 4 days/week did not converge to 0 during the 24-week
period (6 months). Exponential curves well fit the 24-week
median habit scores for all Freq groups (Figure 5, R2 >

0.95 for all groups except the group with Freq ≥ 4 days/week
which had R2

= 0.75)
The decay constant (i.e., A2 from equation 2) which relates

to the inverse of time the time it takes to reach the steady
state was smaller for groups with higher Freqs (Table II).
For instance, the decay constant was 4.1 times larger for the
group with 1 ≤ Freq < 2 days/week compared to the group
with Freq ≥ 4 days/week, indicating that low Freq decay was
4.1 times faster than high Freq decay. The decay constant
was also 80 % larger when compared between the group
with Freq ≥ 4 and 3 ≤ Freq < 4. Also, the asymptotes
(i.e., A0 from equation 2) of all groups except the group
with Freq ≥ 4 days/week were approximately 0 (Table II).
The Kruskal-Wallis test yielded statistical significance (p <

0.001) indicating overall group difference between habit score
trends. Subsequent, pairwise comparison indicated that the
habit scores between all groups were statistically highly dif-
ferent (Tukey’s HSD, p <0.001) except between the group
with Freq < 1 days/week and the group with 1 ≤ Freq <

2 days/week (Tukey’s HSD, p = 0.0265) and between the
group with 3 ≤ Freq < 4 days/week and Freq < 4 (Tukey’s
HSD, p = 0.0423). There were no statistical differences
between groups with 1 ≤ Freq < 2 days/week and the group

Fig. 5. The 24-week median habit score of groups with different Freqs
and the first order exponential fitting function (shaded areas represent
the 95 % confidence interval of the fit).

with 2 ≤ Freq < 3 days/week (Tukey’s HSD, p = 0.9273)
and between 2 ≤ Freq < 3 days/week and the group with 3 ≤

Freq < 4 days/week (Tukey’s HSD, p = 0.1681).

B. The Window Size of the Initial Exercise Frequency
Matters

Based on the study of [27], we initially used a window size
of 6 weeks as our estimate of time required to form a habit.
To investigate the impact of the window size, we compare the
24-week habit score for users with an Freq ≥ 4 days/week
for different window sizes. We varied the window size from
2 weeks through 8 weeks (Figure 6). For example, the ‘2wk’
group includes users who had an Freq ≥ 4 days/week for only
the initial 2 weeks while the ‘3wk’ group includes users who
had an Freq ≥ 4 days/week for the initial 3 weeks. Results
showed that the habit score of users with a window size of
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TABLE II
FIRST-ORDER EXPONENTIAL FITTING PARAMETERS FOR THE HABIT

SCORE OF GROUPS WITH DIFFERENT Freq. 95% CONFIDENCE

INTERVALS ARE SHOWN IN BRACKETS

Fig. 6. Habit score of users with an Freq ≥ 4 for different window sizes.

less than 4 weeks converged to 0 and users with a window
size of 5 weeks converged to 0.59 at week 24. On the other
hand, users with a window size of 6, 7, and 8 converged to
approximately 2.3. The Kruskal-Wallis test yielded statistical
significance (p < 0.001) indicating overall group difference
between habit score trends. Subsequent, pairwise comparisons
are shown in (Table III). Having an initial window size of
5 weeks was marginally significant compared to a window size
of 6 and 7 (p = 0.0765 and p = 0.0667, respectively). Having
a window size of 6, 7, and 8 were not significantly different.
We only tested the effect of window size for the group with
Freq ≥ 4 as it is the only group that was able to form a
long-term habit across 24 weeks. Note that we only included
the group with Freq ≥ 4 days/week as this was the only
group that was able to achieve long-term perseverance across
the 24 week window of observation. The same analysis for
other Freq groups are shown in the Supplementary Material,
Figure S2.

C. Percentage of Users Who Did More Than the
Recommended Exercise Standard

The percentage of users in each Freq group who did more
than 150 minutes/week of exercise (i.e., a dose that has been
found previously to be sufficient to induce significant improve-
ments in motor function after stroke [30]; this translates to at
least a habit score of 2.5) is shown in Figure 7. All groups
except the users with an Freq ≥ 4 days/week converged to

TABLE III
PAIRWISE TUKEY’S HONEST SIGNIFICANT DIFFERENCE (HSD) TEST

BETWEEN DIFFERENT WINDOW SIZES OF Freq

Fig. 7. Percentage of users who had a habit score larger or equal to
2.5 for each Freq group.

less than or equal to 10% at week 15. Approximately 37%
of the users who had an Freq ≥ 4 days/week maintained a
weekly dose that has been found previously to be sufficient
to induce significant improvements in motor function [30]
during 22 weeks. The Kruskal-Wallis test yielded statistical
significance (p < 0.001) between the survival graphs for
groups with different Freq. Subsequent, pairwise comparison
indicated that all groups were statistically highly different
(Tukey’s HSD, p <0.001) except between the group with 1 ≤

Freq < 2 days/week and 2 ≤ Freq < 3 days/week (Tukey’s
HSD, p = 0.840), between the group with 1 ≤ Freq <

2 days/week and 3 ≤ Freq < 4 days/week (Tukey’s HSD, p
= 0.1242), between the group with 2 ≤ Freq < 3 days/week
and 3 ≤ Freq < 4 days/week (Tukey’s HSD, p = 0.670)
and between the group with 3 ≤ Freq < 4 days/week and
Freq < 4 days/week (Tukey’s HSD, p = 0.093).

D. Higher Scheduled Consistency Predicts Higher Habit
Score

Average scheduled consistency and habit score over the
lifetime of FitMi usage were moderate to strongly correlated
(Pearson correlation, r = 0.67, p-value < 0.001). We compared
the average habit scores of users within Freq groups in
order to see the effect of consistency (Figure 8). Each Freq
group was divided into a “low-consistency subgroup” and a
“high-consistency subgroup” using the median value of the
coefficient of variation as the threshold. The “high-consistency
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Fig. 8. Average habit score of users with low- and high-consistency
within Freq groups. A two-sampled t-test showed significance between
low- and high-consistency groups for users with an Freq less than 3.
(∗∗∗∗) represents a p-value ≤ 0.0001 and (∗∗) represents a p-value ≤

0.01.

subgroup” showed higher average habit scores across all
Freq groups (Figure 8). The high-consistency subgroup had
a significantly larger habit score (t-test, p-value < 0.01) for
the three groups with an Freq < 3 days/week. There was no
significant difference in the habit score for users with 3 ≤

Freq < 4 (t-test, p-value = 0.06) and for the Freq ≤ 4 group
(t-test, p-value = 0.17).

E. Higher Habit Scores Predict Higher Total Exercise
Repetitions

The number of total exercise repetitions a user performed
after the putative habit formation window (i.e., between week
7 and week 24) was moderately correlated with habit score
(Pearson correlation, r = 0.53, p-value < 0.001) across users
with Freq ≥ 1 day/week. The total number of exercise rep-
etitions performed after the putative habit formation window
was greater for groups with higher initial exercise frequencies
(Figure 9). The group with Freq < 1 day/week had a median
of zero where there were 233 outliers, which means that the
majority of users within this Freq group did not exercise with
the FitMi system between week 7 and week 24. The median
repetitions (25th and 75th percentile) were 5,663 (1,666,
16,236), 5,854 (3,470, 16,954), 15,768 (9,754, 36,189), and
36,941 (14,089, 68,944) repetitions with respect to the groups
with Freq between 1 and 2, 2 and 3, 3 and 4, and greater
than 4 days/week (Figure 9). The total number of exercise
repetitions that the group with Freq < 1 day/week performed
was significantly less than that performed by all other groups
(Tukey’s HSD, p < 0.001). There was no significant difference
between the total exercise repetitions for groups with 1 ≤

Freq < 2 and 2 ≤ Freq < 3. Groups with an Freq ≥

3 did significantly more exercise repetitions compared to those
with Freq ≤ 3 (Tukey’s HSD, p = 0.029). There was no
significant difference between the total repetitions performed
for groups 3 ≤ Freq < 4 and Freq ≥ 4.

Fig. 9. Comparing the number of total exercise repetitions performed
after forming a habit (i.e., between week 7 and week 24) for groups
with different Freqs. The boxplots include the group median, the 25th
percentile and the 75th percentile.

IV. DISCUSSION

Weekly exercise frequency and scheduled consistency dur-
ing an initial period of exercise predicted exercise perseverance
with a home-based rehabilitation system after stroke. Users
with high initial exercise frequency measured during the initial
6 weeks of use (i.e., the variable we named“Freq”) showed
steadier habit score profiles across 6 months. The rate at
which habit score decayed toward a steady state decreased
with higher Freq, meaning these users persevered longer
with the system. Only the frequent user group that had a
Freq ≥ 4 days/week had a non-zero habit score asymptote,
setting to a median habit score of 2.3 hours × days/week
at 6 months (which corresponds to approximately a single
138-minute exercise per week or two 35-minute exercise
sessions per week). This is important as it has been previously
found that doing at least 150 minutes of exercise per week
was sufficient to induce significant improvements in motor
function after stroke [30]. As a result of having steadier
habit scores, users with higher Freq did significantly more
exercise repetitions after the putative habit formation window
(i.e., during week 7 through 24). Within groups with different
Freq, dividing individuals into higher and lower consistency
subgroups revealed that the higher consistency subgroup had
significantly higher habit score. We discuss these results in
light of prior habit formation literature, as well as limitations
and directions of future research.

A. Perseverance With Home Rehabilitation After Stroke
and Habit Formation

We were motivated by the work of Kaushal and Rhodes [27]
on factors associated with habit formation to try to under-
stand predictors of perseverance with home rehabilitation after
stroke. Consistent with their study, we found that exercising
at least 4 days/week during the initial 6 weeks appears to be
a minimum requirement to establish long-term perseverance
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with exercise [27]. Kaushal and Rhodes attributed a portion
of this perseverance to the mechanism of habit formation (i.e.,
an act that has become an automatic response to a stimulus),
based on modeling of the time-history of survey responses to
the Self-Reported Behavior Automaticity Index (SRBAI) [32].
Although we did not quantify automaticity with the SRBAI in
our population, the features and time of exercise perseverance
were similar. For example, we found a non-zero habit score
at 6 months only for the group with the highest Freq (i.e., ≥

4 days/week), which was also the minimum Freq identified
by Kaushal and Rhodes. The results in the present study also
depended on the initial window that we used to calculate Freq,
with a 6-week window being required to predict a habit score
that did not decay to zero at six months. Although having a
5-week window was not significantly different from having a
6-week initial window size (p = 0.0765), a 5-week window
converged to 0.59 at week 24 while users with a window size
of 6, 7, and 8 converged to approximately 2.3. This again is
consistent with the observations by Kaushal and Rhodes that
a minimum duration of 6 weeks is needed for habit formation.

Finally, exercise consistency also predicted higher habit
scores, again consistent with Kaushal and Rhodes observation
that consistency was a key antecedent of habit formation. The
average habit scores of the high-consistency subgroup were
higher in all Freq groups and the effect was larger in groups
with lower Freq (i.e., Freq < 3), resulting in approximately
double the average habit score for the high consistency sub-
group. Thus, overall, these results are consistent with the habit
literature for physical activity in the general public [26], [27]
and suggest that habit formation may play a key role in home
exercise following stroke, an interesting possibility that should
be explored in future work.

B. Limitations
The present study has limitations that are important to

consider. The findings are consistent with the idea that initial
exercise frequency and consistency causally contribute to
perseverance via a mechanism of habit formation, but do not
prove a causal link or that the perseverance mechanism is
habit formation alone. Dual Process theory suggests that both
conscious intention and unconscious habit formation processes
operate in parallel to determine exercise behavior [33]. Ran-
domizing FitMi users to different target exercise frequency and
consistency groups could help establish causality. Obtaining
measures of automaticity from FitMi users, such as by using
the SRBAI survey, could help confirm the habit mechanism.
Further, despite the use of a large dataset (N = 2,581), the
majority of the users (84%) had a Freq ≤ 1 day/week while the
groups with 3 ≤ Freq < 4 days/week and Freq ≥ 4 days/week
were only 1.7% users and 1.4% of users, respectively (corre-
sponding to 10.8 % and 9.1% of the users who were apparently
able to form a habit excluding those with Freq < 1). The
results should therefore be understood as applying to a select
group of people and should be confirmed with an even larger
sample of users. Further, we were unable to investigate users
with Freq greater than 4 days/week because there were too
few of them (9 individuals had a 5 ≤ Freq < 6 and there
were no individuals with Freq ≥ 6 for the initial 6 weeks).

Another limitation of this study is that the demographics or
clinical characteristics of the FitMi users were not collected
and considered in the analysis. Although we assume most
users are individuals recovering from a stroke as FitMi is
marketed for stroke rehabilitation, other types of users could
have used the system which may have introduced variability.
There may be high variability in the users’ motor impairment
levels not captured in the dataset, and their exercise behavior
is likely strongly related to their motor impairment levels.
Indeed, in a previous study, we observed that there was a
downward trend in the probability of achieving more total
repetitions, minutes of use, and active days of exercise with
higher impairment levels [28]. Therefore, it will be impor-
tant to further investigate impairment level may affect the
behavioral requirements in forming a habit. To address this
limitation, Flint Rehabilitation is planning to add a survey to
collect basic demographic and clinical information when a user
initiates the first FitMi session.

As the importance of high-volume movement practice has
been widely emphasized in motor recovery [7], [8], [9], [10],
[34], we expected users with higher habit scores to perform
more exercise repetitions after forming a habit. Indeed, the
number of total exercise repetitions a user performed after
forming a habit (i.e., between week 7 and week 24) was
moderately correlated with the average habit score (r = 0.53).
However, the total exercise repetitions between weeks 7 and
24 for users with 3 ≤ Freq < 4 days/week and Freq ≥ 4 were
not significantly different due to the high variability in the
results. This high variability may have been driven by different
motor impairment levels between groups or due to the smaller
group size for groups with higher Freqs. We believe this will
become clearer by collecting more users in higher Freq groups.

Finally, it is important to understand to what extent will
the results generalize to other home exercise technologies.
We note that the motivation for the analysis presented here
came from a study of gym-based exercise from the general
population [27]. The results of the current study were strik-
ingly similar to Kaushal and Rhodes [27] - both found a
distinct increase in perseverance when individuals exercised
for at least four days/week for the first four weeks. This
is despite differing exercise contexts (gym vs. home) and
differing populations (unimpaired versus impaired, and, likely,
younger versus older). This suggests that there may be a
general psychological principle of habit formation at work,
which may apply to other home exercise technologies as well.
However, the current results should ultimately be compared
to analyses performed with other home exercise technologies
used by adults recovering from stroke, to determine the extent
to which the results generalize, and the factors that may limit
generalization.

C. Future Work
For this study, we focused on the ability of initial exercise

frequency and scheduled consistency to predict long-term per-
severance with a home-based rehabilitation system. It has been
shown in the literature that there are also other antecedents
such as behavioral complexity and reward that play an impor-
tant role in habit formation [24], [35]. Behaviors that are
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perceived as more complex or have not been sufficiently
practiced likely require conscious processes which would con-
sequently prevent automaticity [24], [27], [36]. In a previous
study that also studied usage patterns of FitMi [28], we found
that users who experienced lower levels of success in the
1st week of FitMi use exhibited decreased probabilities of
achieving long-term perseverance during an 8-week window,
as did people who experienced 100% success. Here, “success”
was defined as leveling up on each exercise game. Therefore,
there seems to be an optimal range of success (which is
presumably associated with reward) associated with long-term
perseverance, and the behavioral complexity of the presented
task relative to the user’s impairment presumably affects
the range of success. Examining interactions between initial
exercise frequency, consistency, and success in habit formation
is an important direction for future research. Additionally,
RehabStudio was designed to unlock exercises in a sequence
of increasing difficulty for each body region. Initially, the
three simplest exercises for each body region were accessible.
Upon completion of all levels of these three exercises, the
next exercise in the sequence is unlocked (The percentage
distribution of all exercises performed is illustrated in Supple-
mentary Material, Figure S3). We hypothesize that the variety
of exercises may influence long-term adherence. Therefore,
we plan to investigate the correlation between exercise types
and changes in habit scores.

When forming an exercise habit, it has been suggested
that environmental cues play a critical role that can prompt
automatic behavior [35], [37], [38]. We believe conversa-
tional agents (i.e., chatbots) have potential to provide cues
to the user to promote exercise habit formation at home.
Recently, chatbots have become increasingly common in
healthcare to support users in developing healthy behavior
habits, thanks to their ability to provide personalized and inter-
active content [39]. Studies have shown the positive effects of
conversational agents in multiple healthcare domains such as
physical activity [40], [41], [42], [43], [44], weight loss [45],
[46], and management of mental health conditions [47], [48].
These chatbots frequently offer cues and reminders to users
that can help promote habit formation. While conversational
agents have been developed and tested for a wide variety of
medical applications [49], little work has been done for people
with stroke in the context of home exercise [50], [51]. Further
research is needed to fully evaluate the efficacy and feasibility,
but, based on the present results, we hypothesize that a chatbot
that is designed to encourage high initial exercise frequency
and schedule consistency could promote habit formation for
home-based stroke rehabilitation.

V. CONCLUSION

Understanding factors that contribute to the persistence of
home-based exercise is vital for optimizing the recovery pro-
cess of stroke survivors. This study found that individuals who
engaged in exercise at least four times per week during the
initial six weeks were more likely to persevere with exercise
over a 24-week period. Additionally, when comparing users in
the same Freq group, those who displayed greater consistency
showed higher levels of habit score. These findings align

with previous research on the formation of exercise habits
among the general population. While further investigation is
necessary, the behavioral insights gained from this study can
serve as a basis for designing effective interventions, guiding
behavior change, and ultimately enhancing health outcomes in
the context of home-based rehabilitation programs.
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