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The SSHVEP Paradigm-Based Brain Controlled
Method for Grasping Robot Using MVMD
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Abstract— In recent years, the steady-state visual
evoked potentials (SSVEP) based brain control method has
been employed to help people with disabilities because
of its advantages of high information transmission rate
and low training time. However, the existing SSVEP brain
control methods cannot adapt to dynamic or unstructured
environments. Moreover, the recognition accuracy from the
conventional decoding algorithm still needs to improve.
To address the above problems, this study proposed a
steady-state hybrid visual evoked potentials (SSHVEP)
paradigm using the grasping targets in their environment
to improve the connection between the subjects’ and their
dynamic environments. Moreover, a novel EEG decoding
method, using the multivariate variational mode decom-
position (MVMD) algorithm for adaptive sub-band division
and convolutional neural network (CNN) for target recogni-
tion, was applied to improve the decoding accuracy of the
SSHVEPs. 18 subjects participated in the offline and online
experiments. The offline accuracy across 18 subjects by
the 9-target SSHVEP paradigm was up to 95.41 ± 2.70%,
which is a 5.80% improvement compared to the conven-
tional algorithm. To further validate the performance of
the proposed method, the brain-controlled grasping robot
system using the SSHVEP paradigm was built. The average
accuracy reached 93.21 ± 10.18% for the online experiment.
All the experimental results demonstrated the effectiveness
of the brain-computer interaction method based on the
SSHVEP paradigm and the MVMD combined CNN algorithm
studied in this paper.
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I. INTRODUCTION

W ITH the number of ageing people growing, it has
become an essential social problem to help disabled

patients, especially those with ageing disabilities to restore
their essential life ability. Brain-computer interface (BCI)
is a new type of human-computer interaction technology
that does not rely on peripheral neuromuscular tissue and
establishes a direct communication channel between the brain
and external devices [1], [2]. This novel technology shows
significant innovative and great application value compared
with traditional human-computer interaction methods (such as
keyboard, joystick). With the development of brain science
and technology, brain-computer fusion technology can control
the robot to complete complicated control by analyzing the
patient’s intention. This technology has been widely used in
various fields, such as disability-assisted robots and rehabil-
itation robots, which can not only help patients restore their
daily life abilities but also enhance the patient’s confidence in
life [3]. Since the non-implantable BCI has the advantages
of low cost, low risk, and easy operation, it become the
mainstream research in brain control systems.

According to the mechanism of EEG, brain control systems
can be divided into spontaneous and evoked systems [4].
Spontaneous brain control systems that could autonomously
regulate EEG rhythms or potentials through specific mental
activities without external stimulation, such as ERD/ERS, slow
cortical potentials, etc. One of the most typical systems is the
motor imagery (MI) based brain control method. A sponta-
neous brain control system’s advantage is that it can naturally
control neural activity without relying on external stimuli.
However, it requires a long training time and few control
commands [5].

In recent years, affective science-based brain-computer
interface system as a new BCI paradigm has received exten-
sive attention. Prof Lu’s team proposed a computational
model of optimal graph-coupled semi-supervised learning
to discriminate different human emotions [6]. Our team
has researched facial expression-based BCI systems since
2018 and successively realized prosthesis control using four
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types of EEG resulting from facial expressions [7], [8]. Unfor-
tunately, the major drawback of this kind of brain control
paradigm is EMG artifact interference.

Other standard modalities used in brain control systems
include SSVEPs and P300-based brain control systems, which
induce the EEG by external physical stimuli [9]. Kim et
al designed a P300-based unmanned aerial vehicle (UAV)
control method which successfully operated UAV up, down,
left, right, and rotation [10]. Although P300 potentials have
the advantage of fast response and high recognition accu-
racy, the responses of these potentials rely on novel stimuli,
which causes the communication rate is not satisfied for
patients [11].

Another evoked BCI system based on SSVEP paradigm
achieved more attention due to the possibility of achieving
higher recognition rates, larger sets of instructions, and shorter
training times [12]. For visually evoked BCI system, designing
a suitable SSVEP paradigm plays an important role in estab-
lishing such a BCI system [13]. Traditional paradigms have
been employed in SSVEP-based brain-controlled systems,
including flashing LED lights, black and white squares, and the
checkerboard grid flipping [9]. Despite these paradigms having
achieved relatively good results, their development is in its
infancy, such as long-term adaptation by paradigm stimulation,
the limitation of usable stimulus frequencies, and difficulty
focusing on attention. Therefore, most research teams focus
on optimizing the design of SSVEP paradigms.

To improve the BCI performance, Prof. Xu and his col-
leagues reported a novel Newton’s ring paradigm with periodic
motion, which enhanced the activation of SSVEPs through
periodic motion stimulation [14]. This group also designed
four novel stimulation paradigms based on motion pattern [15].
To simplify the paradigm layout and alleviate user fatigue, the
group at Zhejiang University designed a new SSVEP paradigm
based on the multi-target overlap, which makes the target
stimulus unit share the exact physical space location with other
stimulus units [16]. Most of the past research on the SSVEP
paradigm focused on reducing user fatigue and enhancing the
number of usable stimuli frequencies. However, the need for
more adaptability to dynamic, unstructured environments for
the SSVEP paradigm was ignored, which caused it only be
used in pre-defined scenarios.

In addition, improving the accuracy of SSVEPs is challeng-
ing because these characteristics were not fully utilized [17],
[18]. Chongqing University reported an SSVEP decoding
algorithm based on a spatial dimensional fusion strategy,
which used the information from all spatial filters in the stan-
dard maximized signal fraction analysis (MSFA) to identify
the frequencies of SSVEP signals [19]. The University of
Macau achieves multi-target SSVEP classification by consider-
ing the characteristics of the target and the adjacent non-target
frequencies [20]. Based on a similar motivation, a new deep
neural network (DNN) architecture was proposed by perform-
ing a commonality training model first and then adjusting the
model parameters according to individual differences [21].
Although most of the past research improved the SSVEPs
accuracy, it remains to explore optimizing the decoding

algorithm by efficiently utilizing the harmonic components of
SSVEP.

Besides the decoding algorithms, combining biological and
machine intelligence is another critical role in SSVEP-based
BCI applications. Up to now, remarkable progress on
brain-controlled systems has been made using the SSVEP
method. One of the pioneering works integrated machine
vision with visual stimuli and used it for robot arm localization
and grasping in dynamic environments [22]. Another report
designed a hybrid brain control system for humanoid robots,
combining the SSVEP mechanism with AR technology to
control the robot walking in a maze through AR glasses [23].

Although the SSVEP-based brain control system has been
significantly enhanced in robotics applications, it is still far
away for clinical applications [24]. Overall, the shortcomings
of SSVEP based control method for robot application can be
summarized as follows:

1). The traditional SSVEP paradigm primarily uses
black-and-white stimuli, poorly connected to the natural
environment.

2). The decoding algorithms of SSVEP fail to combine
harmonic components adaptively, and there is still a need to
find suitable algorithms to improve the utilization of harmonic
components.

3). The traditional SSVEP-based control methods cannot
cope with dynamic, unstructured environments.

To address the above problems, this study proposed a novel
SSHVEP paradigm combining the Yolo algorithm and SSVEP
mechanism to adopt a dynamic, unstructured environment and
a MVMD combined with the CNN model was implemented
to decode SSHVEP. The proposed SSHVEP-based controlled
method precisely controls a seven degree-of-freedom (DOF)
robotic arm to grasp living objects under a dynamic non-
structural environment. From our experimental validation, the
main contributions of this work can be summarized as follows:

First, to address the shortcomings of poor adaptability to
dynamic, unstructured environments for traditional SSVEP
paradigms, a novel SSHVEP stimulus paradigm was designed
by combining targets in dynamic, unstructured environments
with a radial grid. It provides additional options to improve
the applicability of the visually evoked brain control system.

Second, to solve the problem of underutilizing the harmonic
components of EEG, a decoding algorithm combining MVMD
and CNN model is designed to extract the features in the
SSHVEP signals automatically.

Finally, to verify the performance of the proposed method,
a brain-controlled robotic arm system using the SSHVEP
paradigm was built, and the robotic arm achieves autonomous
and precise grasping using the proposed method.

The remainder of this paper is organized as follows.
Section II. Experimental Protocol presents the details of
the proposed paradigm and its experimental design. The
section III. Data Processing Method introduced the selected
MVMD combined CNN for SSHVEP decoding. The exper-
imental results are analyzed and discussed in the IV
and V section, respectively. The final section concludes this
paper.
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II. EXPERIMENTAL PROTOCOL

To better understand the working mechanism of our
proposed method, we described the construction of the
brain-controlled grasping robot system and the design of the
SSHVEP paradigm. Moreover, the experimental setup was also
systematically investigated.

A. Experimental Equipment
Based on previous experiences and the performance criteria

for grasping robot control [25], [26], the brain-controlled
grasping robot system used in this study consisted of four
modules: a visual stimulator, EEG acquisition equipment, EEG
processing equipment, and a seven DOF grasping robot.

A 64-channel wireless NeuSen-W64, manufactured by
Neuracle Technology Co. Ltd, was selected as the EEG
acquisition module (Fig. 1C). All electrode distributions of
the NeuSen-W64 follow the International Standard 10-20
Electrode Location System.

A Lenovo Saver Y9000 microprocessor with AMD Ryzen
9-5900HX with Radeon Graphics CPU and a screen resolution
of 2048∗1080 was employed as EEG visual stimulator and
EEG processing equipment.

The grasping robot module was Risenko’s seven DOF
Sawyer robot. The main components of the grasping robot
include a vision sub-module composed by depth camera and
seven joints with four joints to rotation and the remaining three
to pitch. The details of grasping robot parameters are shown
in Table I.

The overall control strategy of the grasping robot system
is illustrated in Fig. 1A. When the subject has the intention
to grasp, the vision sub-module of the Sawyer robot identifies
the living objects within its range and presents them to the
visual stimulator after processing with different frequency
modulation; the subject was gazing at the stimulus according
to the demand; the EEG acquisition module recorded EEG
simultaneously and transmitted it to the EEG processing
module. Then, the computer processed the EEG data and
recognized one result. The result was translated into a control
command to control the robot arm for grasping according to
the subject’s intention.

B. Subjects and Data Acquisition
Eighteen healthy subjects from 22 to 26 years old (12 males

and 6 females) volunteered to participate in the experiment
and none of them has relevant BCI experiment experience.
All participants were right-handed, had normal or corrected-to-
normal vision, and had no neurological or psychiatric history.
Before participating in the experiment, all subjects signed
an informed consent form and received compensation. The
Ethics Review Committee at Xi’an University of Technology
approved the proposed experiment, and all experiments fol-
lowed the Declaration of Helsinki. More details of sample size
estimation can be found in section III-E Statistical analysis.

EEG data were recorded through NeuSen-W64 EEG ampli-
fier with a sampling rate of 1000Hz. In the experiment, eight
electrodes of POz, PO3, PO4, PO5, PO6, Oz, O1, and O2
from the occipital cortex were selected to record EEG. CPz and

AFz were employed as the reference and grounding electrodes,
respectively. The electrode position of the selected channels
was shown in Fig. 1B. During the experiment, the impedance
of each EEG recording electrode is lower than 5k�.

C. The SSHVEP Paradigm Design
Beyond system construction, several additional factors

affect the full system’s performance. One of the most impor-
tant factors is the SSHVEP paradigm design. Considering the
drawbacks of traditional SSVEP paradigm, in this section,
the SSHVEP paradigm based on a dynamic environment
target and radial checkerboard grid was designed to solve the
problem of un-effective interaction between visually evoked
systems and their natural environments. The detailed paradigm
design procedure is as follows.

• Firstly, You Only Look Once v5 (YOLOv5) recognizes
the target of daily living equipment in the dynamic
environment where the grasping robot is located.

• Secondly, the stimulus combined the graspable target in a
dynamic environment identified by YOLOv5 and a radial
checkerboard grid using a nested format.

• Thirdly, the paradigm is sinusoidally modulated with
different frequencies.

More detailed information about SSHVEP paradigm design
can be found below.

1) Target Recognition Based on YOLOv5 Algorithm: One
critical role in deciding the performance of visually evoked
paradigm is the stimulus unit selection. The traditional stimu-
lus has the severe drawback of needing more relevance to the
application scenario. Considering our previous study of Scene
Graph-SSVEP [25], the stimulus in the SSHVEP paradigm
consists of the graspable daily living equipment in the dynamic
environment where the robot is located. Specifically, the
dynamic environment described in the paper means the current
environment in which the grasping robot is located now. The
stimuli in the SSHVEP paradigm are the possible targets that
can be grasped in the above environment, which the YOLOv5
algorithm can recognize.

The current target detection methods used in dynamic envi-
ronments are mainly divided into traditional machine learning
and deep learning-based methods [27]. A representative deep
learning-based algorithm of YOLOv5 is used in this study for
possible graspable target recognition due to its superiority in
real-time and accuracy in target recognition [28].

The YOLOv5 model mainly consists of four parts: the input,
the backbone network, the neck network and the output, the
procedure of basic YOLOv5 is shown in Fig. 2 [29]. The
YOLOv5 network model is first trained using the coco dataset,
a large and diverse dataset for object detection and segmenta-
tion that includes daily necessities, fruits, etc [30]. Then the
pre-trained YOLOv5 network model is used to recognize the
actual target to be grasped in the dynamic environment where
the brain-controlled grasping robot is located. After that, the
recognized target is segmented according to the coordinates to
obtain the target picture.

After segmentation, the recognized target image must be
pre-processed and sent to the SSHVEP paradigm presentation.
Fig. 3A shows an example of an experiment scene where the
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Fig. 1. (A) Overall system structure diagram. (B) Electrode arrangement diagram. (C) NeuSen-W64 EEG acquisition device.

TABLE I
SAWYER ROBOT PARAMETERS

Fig. 2. YOLOv5 network structure diagram.

grasping robot is located. After the YOLOv5 model was recog-
nized, nine possible grasping targets were recognized. Fig. 3B
takes the possible grabbing target banana as an example and
thoroughly describes its preprocessing process. In detail, after
the YOLOv5 model recognizes the banana target, it first
performs image segmentation on the banana target. Then,
the banana target image is processed as follows: background
removal, binarization, and edge extraction on the banana

target image. In the above process, the pre-trained Mask
R-CNN network model performs the background removal, the
binarization is done by the OTSU algorithm [31] and edge
processing is implemented by the Roberts operator [32].

2) The SSHVEP Paradigm: In this section, we nested the
target image with a radial motion checkerboard to form the
SSHVEP paradigm. It was developed by MATLAB (Math-
Works) using the Psychophysics Toolbox [33].



2568 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 3. (A) Experiment scene. (B) Target image processing.

Fig. 4. (A) Radial checkerboard grid. (B) Scene target picture (take
the banana target as an example). (C) The interface of SG-SSVEP
paradigm. (D) Mixed checkerboard grid. (E) The interface of SSHVEP
paradigm.

The radial motion checkerboard in Fig. 4A consists of
multiple concentric rings. In detail, each circle is divided into
white and black grids, and the white and black areas are the
same size. The mechanism of visual response is performing
contraction-dilation changes with different frequencies [34].
The formula of the radial motion checkerboard could be
represented as follows:

stim = sign(cos(π ·
r(x, y)

H
+ ϕ(t) ·

S
H

) · cos(ang(x, y) · N ))

(1)

where ϕ( ) is the phase value, sign represents a symbolic
function, r(x, y) and ang(x,y) is the radius and angle of the
radial motion checkerboard, respectively. N is the number of
cells for a single circular division, and S and H denote the
amplitude and the width of the checkerboard grid, respectively.

The formula of phase change can be described as follow:

ϕ(t) =
π

2
· (1 + sin(2π f t −

π

2
)) (2)

where f is the frequency.
In our research, the target images obtained from the current

environment are nested to the radial motion checkerboard,
which consists of the hybrid visual evoked stimulus named
SSHVEP stimulus. In this way, a proposed stimulus was
manipulated to evoke SSHVEPs via sinusoidal stimulation
modulation, which is given by the following equation:

I =


|pic − 255 · ϕ(t)|, r < R1

sign(cos(π ·
r(x, y)

H
+ γ (t) ·

S
H

)·

cos(ang(x, y) · N )), R1 < r < R2

I0, r > R2
(3)

where pic is the processed target images; I0 denotes the
background brightness; R1 and R2 are the inner and outer
diameters of the checkerboard grid, respectively.

In each SSHVEP stimulus, the brightness is modulated
by phase change γ (t), which is computed by the following
formula:

γ (t) =
1
2

· (1 + sin(2 · π · f ·
n
f r

−
π

2
)) (4)

where fr is the screen refresh rate; f is the frequency of
change. When the phase function γ (t) goes from 0 to 1, the
checkerboard grid expands, and the target picture becomes
darker; when the phase function γ (t) goes from 1 to 0, the
checkerboard grid contracts and the target picture becomes
lighter. Taking the banana target as an example, the SSHVEP
paradigm display is shown in Fig. 4D when the phase function
γ (t) = 0 or 1.

The proposed SSHVEP paradigm can be used in vari-
ous scenes and combinations in practical applications. The
SSHVEP paradigm can be adjusted automatically for different
working environments where the grasping robot is positioned.

To evaluate the superiority of the SSHVEP paradigm,
we selected our previous designed SG-SSVEP paradigm as
a comparison paradigm, which is shown in Figure 4C [25].
It realized the stimulus paradigm based on a predefined picture
of the scene, such as the steps for drinking water.

D. Offline and Online Experiments

To verify the feasibility and the practicality of the SSHVEP-
based brain-controlled method, all subjects performed both
offline and online experiments. Each subject conducted the
experiments in a quiet room on two separate days. In the
experiment, the subjects were instructed to sit on a 60-100 cm
chair away from the screen. The purpose of offline experi-
ments was to evaluate the SSHVEP response of the proposed
paradigm, and online experiments verified the performance
of the SSHVEP-based brain-controlled method for grasping
robots.



LI et al.: SSHVEP PARADIGM-BASED BRAIN CONTROLLED METHOD FOR GRASPING ROBOT 2569

Fig. 5. Offline experiment process.

1) Offline Experiment: The offline experiment contained
both the traditional SG-SSVEP paradigm (Fig. 4C) and the
proposed SSHVEP paradigm (Fig. 4E). We set 7Hz, 8Hz,
9Hz, 10Hz, 11Hz, 12Hz, 8.5Hz, 9.5Hz, 10.5Hz frequency
for all stimulus paradigms. The display and procedure of the
traditional SG-SSVEP experiment were identical to those of
the SSHVEP experiment.

Fig. 5 describes the time series of the offline experiment.
During the offline experiment, each subject participated in
4 sessions of each stimulus in each paradigm. There were
9 trials in one session, and one trial lasted 7s with 2s prepara-
tion, 3s visual stimulation and 2s rest. To avoid visual fatigue,
3∼5min rest time between each session and 10∼15min rest
between each paradigm was provided to the subject.

2) Online Experiment: The online experiment will use the
SSHVEP paradigm to control the robot to grasp.

At the beginning of the online experiment, the visual sensors
on the robot perceive the object information of the surrounding
environment. These information is then presented in the visual
stimulus paradigm.

The experiment scene is shown in Fig. 6A and the interface
of the SSHVEP paradigm display is shown in Fig. 6B. Each
subject was required to complete 9 experiments. The online
experiment series consisted of 1s preparation, 1s cue, 2s
visual stimulation, 1s feedback and 1s rest. After the visual
stimulation, the EEG decoding algorithm recognizes the EEG
during the visual stimulation, and the grasping robot maintains
the initial position until the recognition result comes out.
At the same time, the recognition result is also fed back to
the SSHVEP interface in the form of the red box in real-time
and will last 1s, which is shown in Fig. 6B. When the subject
receives the feedback, the robot simultaneously grabs the target
object chosen by the subject and moves it to their side.

During the rest time and the period while the robot grasps
the target item, the subject can observe any changes in the
information of the actual surrounding environment.

When the subject receives the item grabbed by the robot,
the next experiment begins. The online experiment continues
until the subject has completed all the experiments.

III. DATA PROCESSING METHOD

The decoding accuracy is determined by the signal quality
of SSHVEP and the performance of the selected decoding
algorithm, which further influences the performance of the

Fig. 6. (A) Online experiment scene. (B) The SSHVEP paradigm
arrangement.

brain-controlled system. Hence, this section describes the
SSHVEP decoding algorithm in detail. Firstly, to reduce
noise contamination, SSHVEP data from online and offline
experiments were extracted using the beginning and ending
markers. Then, a Butterworth bandpass filter was used to filter
EEG data into 4–45 Hz, and the trend of each channel was
isolated. Lastly, the EEG was decoded by the MVMD-CNN
algorithm.

A. Multivariate Variational Modal Decomposition(MVMD)
To fully detect the features from the SSHVEP, we selected

the modal decomposition method of MVMD to divide the
subbands of SSHVEP. MVMD, as a frequency domain sepa-
ration method, has the advantage of adaptively adjusting the
central frequency and bandwidth of each modal component to
decompose a fixed number of sub-bands. Compared with the
traditional filter bank canonical correlation analysis (FBCCA),
MVMD can improve the efficiency of correlated subbands
from visual evoked potentials [22].

MVMD decomposes nonlinear and non-smooth signals into
multiple multivariate modulated oscillatory signals, which
can effectively exploit the different characteristics of each
harmonic [35]. Due to the diversity, complexity, and nonlinear
and nonstationary characteristics of EEG, we selected MVMD
to decompose the SSHVEPs and further analysis.

In the MVMD algorithm of this study, the SSHVEPs
to decompose to k modulation components adaptively. The
algorithm step includes:

1). Suppose the selected channel of SSHVEPs
X (t) =[x1(t), x2(t). . . . . . xc(t)] include k decomposition
result from the MVMD, which is defined as:

x(t) =

K∑
k=1

uk(t) (5)
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where k is the number of multivariate components, in this
study k = 3 [22].

2). The analytic signal uk
+(t) calculated by Hilbert transform

from the uk(t) is:

uk
+(t) =


uk,1

+ (t)
uk,2

+ (t)
. . .

uk,C
+ (t)

 =


(δ(t) +

j
5t ) × uk,1(t)

(δ(t) +
j

5t ) × uk,2(t)
. . .

(δ(t) +
j

5t ) × uk,C (t)

 (6)

where uk,1
+ (t) ∼ uk,c

+ (t) is the analytic signal from the
corresponding SSHVEP channels 1 to C; uk,1(t) ∼ uk,c(t)
is the of multivariate components from channels 1 to C of
uk(t).

3). There is necessary to find the center frequency wk
in multiple channels from the uk(t), the spectrum of the
analyzed signal is shifted to the baseband using a frequency
shift operation:

uk
+(t)e− jwk t

=


[(δ(t) +

j
5t ) × uk,1(t)]e− jwk t

[(δ(t) +
j

5t ) × uk,2(t)]e− jwk t

. . .

[(δ(t) +
j

5t ) × uk,C (t)]e− jwk t

 (7)

4). Constructing constrained variational problems using the
L2-parametrization of gradients:

min
{uk (t)}{wk }

{∑
k

∑
c

∥∥∥∂t u
k,c
+ (t)e− jwk t

∥∥∥2

2

}
s.t

∑
k

uk,c(t) = xc(t), c = 1, 2, 3, . . . , C
(8)

where xc(t) is the data of the cthchannel of the identified EEG.
5). Introducing a quadratic penalty term α and a Lagrange

multiplier λ transformed the stated constrained variational
problem into an unconstrained optimization problem. In this
study, we applied alternate direction method of multipliers
to update the decomposed components obtained by uk . The
update equation of uk is expressed as:

un+1
k,c = xc(w) −

∑
ui ̸=k

ui,c(w) + λc(w)/1 + 2α (w − wk)
2

(9)

6). The update of the central frequency wk is expressed as:

wn+1
k =

∫
∞

0
w

∣∣uk,c(w)
∣∣2 dw/

∫
∞

0

∣∣uk,c(w)
∣∣2 dw (10)

After iterative optimization to obtain the final decomposed
modes, the next step is to detect the target frequeny implicit
in SSHVEP.

B. Convolutional Neural Networks
It is widely known that the accuracy of SSHVEP signifi-

cantly relies on the performance of selected machine learning
algorithms. CNNs are one of representative deep learning algo-
rithms, as they provide faster training, superior information
preservation across hierarchical processes, and a lower risk
of overfitting. These advantages allow the CNN classifier to
automatically learn the appropriate features from the EEG data

while maintaining its translation invariance and data hierarchy
[36]. Therefore, this paper selects CNN model for feature
extraction and classification of SSHVEPs.

In this study, a five-layer CNN model was constructed con-
sidering the characteristics of the multi subbands of SSHVEPs
from MVMD. The architecture of the proposed CNN model
is illustrated in Fig. 7. In our study, the input data fed into the
CNN model was a Cchan × Nt × C , where Cchan corresponds
to the 8 selected EEG channel, Nt indicates the sampling point
of each trail, C is the number of variational modes computed
by MVMD. In this study, the input matrix is 8∗2000∗3. Due
to the CNN model was used to discriminate the 9 objects used
in daily life, the output layer was designed to have 9 outputs.

To avoid overfitting the network, the Dropout layer and
L2 regularization are added to the network to reduce the
complexity and improve the generalization of the network.
The probability of a neuron stopping working in the Dropout
layer is set to 0.5. In the regularization, β1 is set as 0.99, and
β2 set 0.999. The remaining parameters in the CNN model
are as follows: Batch is set to 16, Epoch is set to 64, and
the number of iterations is 200. The number of convolutional
kernels in the convolutional layer and the number of neurons
in the fully connected layer are searched for using a genetic
algorithm. The specific search procedure has been presented
in our previous study [8]. Moreover, the cross-entropy loss
function is used in the training process of the network to
calculate the magnitude of the difference between the training
results and the labels, and the Adam optimizer is used to
update the network parameters to obtain optimal results.

To detect the robustness of the proposed MVMD-CNN
and prevent an over-fitting problem, 5-fold cross-validation
was used to investigate the classification accuracy, and each
subject’s data was used to train his/her own classifier. The
5-fold cross-validation randomly divided the offline SSHVEP
dataset into five equal-sized subsets, four cross-validation were
performed. During each validation, four subsets of data were
used for training, and one was used for testing.

To evaluate the superiority of MVMD-CNN in recognizing
SSHVEPs, the FBCCA and CNN algorithms were selected
as comparison algorithms. FBCCA applied a filter bank
analysis to integrate stimulus and harmonic frequency compo-
nents [37]. The reference signals of FBCCA were associated
with the nine stimulation frequencies, and the number of
sub-band decomposition was set to 3, considering the MVMD
decomposition results. The structure of the comparison CNN
model and its parameter values were consistent with those of
the MVMD-CNN model.

C. The Motion Planning of Grasping Robot
In addition to the above, exploration the motion planning

method of grasping robots is also important. In this study, the
grasping robot reaches the target position through an inverse
kinematics solution. The motion information of each joint was
computed by the Newton-Raphson method [38]. The whole
process of the Sawyer robot in the given task, it consists of
reaching the target position, grasping the target and delivering
the target to the specified location. The whole process for
Sawyer robot grasping is described as follows:
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Fig. 7. CNN network structure diagram.

1). Set the current joint angle as θ0 the target end position
Xd , the error accuracy ε, the damping coefficient λ0, and the
minimum singularity σ0;

2). Positive kinematics calculates the current end position
Xc corresponding to the current joint angle θc;

3). Calculate the difference e between the target end position
Xd and the current position;

4). If ∥ e ∥≤ ε, output the joint angle θc and exit the
program, otherwise, go to step 5;

5). Calculate the singular value σ of the pseudo-inverse
matrix of the robot and select the appropriate damping coeffi-
cient λ by the singular value and the minimum singular value
σ0;

6). Calculate the amount of joint change 1θc according to
J+

= J T (J J T
+ λ I )−1, θc = J+(θc)e;

7). Let θc = θc + dθc update θc according to the amount of
change of the robot arm’s motion joints, return to the second
step, and loop again.

Until the robot delivers the target to the specified position,
the cycle ends.

D. Performance Evaluation
To evaluate the performance of the proposed method, met-

rics of signal-to-noise ratio (SNR) and information transfer
rate (ITR) were calculated. The SNR was used to evaluate
the strength of the SSHVEP responses. For calculating power
values, we normalized the power at a fundamental frequency
fi to the power of the surrounding frequencies in the narrow
band. The SNR can be computed as follows:

SN R( fi ) = 20 log10
m F( fi )

m∑
k=1

[F( fi + k1 f ) + F( fi − k1 f )]

(11)

where fi denotes the response frequency, 1 f is the frequency
resolution and the value is 0.25Hz, k is the number of
surrounding frequencies, defined as 8.

The ITR is used to evaluate the system transmission rate.
In this study, it was calculated as follows:

VI T R =
60
T

[log2 N + p log2 p + (1 − p) log2(
1 − p
N − 1

)] (12)

where T denotes the time interval of each section, N is the
number of targets, and P represents the correct recognition
accuracy.

E. Statistical Analysis
The One-way analysis of variance (ANOVA) was used to

test three different classification accuracy of FBCCA, CNN
and MVMD- CNN. The paired t-test was conducted to assess
the corresponding ITR value differences between the two
paradigms. Moreover, the Greenhouse-Geisser correction was
applied for p-value adjustment. It is well known that the sam-
ple size was determined by three parameters: the significance
level (α), the desired statistical power (1)-β) and the effect
size [39]. In this study, the desired statistical power was set as
0.8 (1-β = 0.8), the level of significance as 0.05 (α = 0.05)
and the desired effect size as ( f = 0.85). Under this given
condition, the estimated sample size was 18 subjects using
the statistical software G∗ Power.

After the experiments, each subject finished a simple ques-
tionnaire about two paradigms. There were three questions as
follows, and each question was scored on a scale of 1-10,
representing disagreement (1 point) to strong agreement (10
points).

1). Is the paradigm easy to focus on?
2). Does the paradigm cause visual fatigue?
3). Are you satisfied with the paradigm?

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, both offline and online experiments were
conducted. The offline experiment was used to evaluate
the feasibility and superiorities of the proposed SSHVEP
paradigm. Moreover, the effectiveness of the MVMD-CNN
method was also observed in the offline section.

During the online experiment, the practicality of the pro-
posed brain-controlled system was used in the grasping robot
system.

A. The Experimental Results of Offline Experimental
1) The Effective of SSHVEP Paradigm: Source localization

plays a crucial role in subject intention mapping. Hence, the
standardized low-resolution brain electromagnetic tomography
(sLORETA) method was firstly utilized to decode the brain
source localization of the SSHVEP paradigm for subject
intention. The EEG of each trail was averaged across, and
the source localization result of 7 Hz from one representa-
tive subject S9 is plotted in Fig. 8. In this figure, the time
stamps were set as 25ms, so there are a total of 8 cortical



2572 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

surface activation sliced temporally. It was observed that the
strong neural activation of SSHVEP detected in both occipital
regions and several frontal-related regions (frontal pole (FP),
pars orbitalis (PORB), lateral orbitofrontal cortex (LOF), and
medial orbitofrontal cortex (MOF)). As time passed, the stable
and obvious SSHVEP existed in occipital regions during the
2s. Other subjects show similar results. Hence, the result of
EEG source localization can be concluded that the effec-
tivity of the proposed novel paradigm can evoke SSHVEP
successfully. During the time period, no obvious response
decreases were found. This performance also confirmed that
the performance of the proposed SSHVEP paradigm can evoke
effective SSHVEP stability. In other words, the results of
the sLORETA analysis proved that the proposed paradigm is
satisfying the visual evoked mechanism.

To reveal the connection patterns among the different neural
regions, the brain network properties under stimulus states
among different frequencies were further analyzed. One of
the crucial parameters of the Pearson correlation coefficient
(PCC) among different regions was computed. The functional
connectivity dynamics of weights between pairs of all channels
from 9Hz was displayed in Fig. 9A, and its Adjacency matrix
from all channels was shown in Fig. 9B.

This study set the sparsity value as 0.65 to reduce the
spurious edges of all averaged networks before computing the
topological properties. The sparsity value was generated based
on all original networks of two frequencies across 18 sub-
jects. It was found that the enhanced connection link mostly
appeared among the parietal-occipital and frontal regions in
the stimulus-evoked state. Conversely, the weak connections
link among other regions. That is the reason why only the
occipital region can cause strong SSHVEP. It also demon-
strated that the PCC could be supposed a result of the enhanced
synchronous neural activity of SSHVEP among brain regions.
The analyzed result of brain network performance further
demonstrated that the SSHVEP paradigm could induce the
response from the occipital regions. That’s the reason why
eight channels of POz, PO3, PO4, PO5, PO6, Oz, O1, O2 were
selected for further study. All the above results confirmed the
feasibility of the proposed SSHVEP paradigm and gave the
basis for selecting the optimal channel for a brain-controlled
robot system.

To further compare the performance between SSHVEP and
the conventional paradigm, the time-frequency and frequency
spectrogram from two paradigms of S9 were shown in Fig. 10.
Eight selected channels were fused to single channel data,
which further used to a frequency domain and time-frequency
domain analysis. The experiment results show the FFT power
spectrum for 9 stimulus frequencies were significant at fun-
damental frequency and its harmonic components. It is worth
noting that each time-frequency spectrogram observed remark-
able and robust power increases in its fundamental frequency
and harmonic frequencies during the whole period. Only
a few interference peaks could be found in SSHVEP; the
amplitude of background EEG activities also decreased when
the frequency response increased. This performance indicated
that the subjects with strong SSHVEP will show good accuracy
within a short window. It also indicated that the designed

new paradigm could effectively elicit SSHVEPs and satisfy
the mechanism of visually evoked potentials.

The averaged SNRs of SSVEP and SSHVEPs are shown
in Fig. 11. Although no apparent differences were found
between the two paradigms, the SSHVEP paradigm still had
some notable merits. It is found that the harmonics exhibited
precise peak frequencies of SNR. The mean SNR value of
the fundamental frequency was 8.87±0.83dB of SSHVEP
and 7.27±1.16dB of SSVEP, respectively. The averaged SNR
value of the second harmonic frequency was 7.73±1.41dB and
5.49±0.77 dB, respectively. There were significant differences
between the SG-SSVEP paradigm and the proposed SSHVEP
paradigm in the SNR values (p < 0.05, paired sample t-test).
Overall, the SNR from the fundamental frequency and its
harmonic components was improved 22.01% by SSHVEP.
Since the SNRs were significantly positively correlated with
classification accuracy, which means the SSHVEP components
can be detected more easily. In other words, classification
performance highly correlates with the SNR. The SSHVEP
contains richer and more robust information that benefits
different target recognitions. Overall, all the above results
confirmed the proposed SSHVEP paradigm’s feasibility and
superiority.

2) The Recognition Performance of the Proposed MVMD-
CNN: Fig. 12A and Fig. 12B are the visualization of the
sub-band decomposition result from one representative subject
S7, which uses Filter Banks and MVMD, respectively. The
1st subband from the two methods are close to each other.
However, the other two sub-bands show obvious differences
between the two methods. In detail, the frequency peak in
the second subband from Filter Banks is 14Hz, 21HZ com-
pared with 7Hz, 21Hz, 28Hz, 35 Hz, 42Hz by MVMD. The
frequency and magnitude distributions of the second subband
of MVMD and the filter bank are significantly different. The
magnitude of the filter bank is significantly higher than that of
MVMD. The higher harmonics have a larger magnitude than
the lower harmonics, which is consistent with the mechanism
of visual evoked potentials. To further demonstrate the advan-
tages of MVMD, we also calculated the SNR of the subbands
spectrum divided by the filter bank and MVMD [40], the
results were shown in Fig. 13. Combining Fig. 12 and Fig. 13,
it can be observed that the subbands decomposed by MVMD
contain more efficient information from the harmonics, and
it also limits the noises in background EEG. This finding
also implied that the overlap of the frequency range in the
sub-bands has yet to be fully solved by FBCCA, which will
cause an insignificant improvement to the overall classification
performance for visual evoked. The advantage of adaptively
adjusting the central frequency and bandwidth of each modal
component MVMD is that it will further improve the accuracy
detection of SSHVEPs.

In more detail, it is evident that the subbands decom-
posed by MVMD enhanced the SSHVEP responses effect and
reduced the influence of background EEG activities. More
effective information embedded in the harmonic components
can be helpful for target identification. Hence, the subbands
extracted by MVMD are more suitable in the proposed system.
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Fig. 8. The brain source localization analysis of one representative subject S9.

Fig. 9. Brain network analysis. (A) Brain network structure diagram.
(B) Adjacency matrix.

TABLE II
ACCURACY COEFFICIENT OF MVMD-CNN, FBCCA AND CNN

Table II lists the offline classification accuracies of all
subjects of the three algorithms MVMD-CNN, FBCCA and
CNN. The time window was set as 3s. The global accuracy
of the MVMD-CNN was 95.41±2.70%, with an average
accuracy of 89.61±5.48% for conventional FBCCA and an
average accuracy of 88.44±2.85% for CNN. Compared with
the conventional algorithm, the performance of the pro-
posed MVMD-CNN has improved by 5.80%(FBCCA) and
6.97%(CNN). The One-way ANOVA analysis was conducted,
and its result revealed a significant difference exists among
the three algorithms (p < 0.05).

In more detail, the results from S6 and S8 were significantly
improved using the proposed algorithm, which is 21.36% and
19.81%, respectively. To be noted, the MVMD-CNN methods
can also reduce individual differences in the BCI system. In a
word, the algorithm analysis suggested that the performance
was significantly improved in terms of the accuracy when the
proposed MVMD-CNN method was applied. It can be applied
more effectively than FBCCA as well as CNN.

To further study the performance of the online experiment,
the accuracy and corresponding ITR with time changes under
the MVMD- CNN algorithm was summarized in Table III.
As time increased, the accuracy rate also continued to increase.
The averaged accuracy from 4-time windows is 80.62±7.53%,
88.80±3.78%, 90.39±3.60% and 95.41±2.70%, respectively.
The corresponding averaged ITR of 4-time windows are also
calculated using the proposed algorithm. The averaged ITR
under different time windows are 45.71±9.15, 46.76±4.55%,
41.75±3.83% and 41.63±3.03, respectively. The best result
was reached at 2s. Considering the practicality of the online
experiment, the optimal window lines were set as 2s for online
experiment.

3) Subjective Reports: As one might anticipate, the per-
formance of comfort from SSHVEP is better than the
traditional paradigm. The Statistical results are shown in
Fig. 14. The averaged statistical results from the proposed
paradigm were 7.50±2.07, 4.78±2.16, 7.28±1.60 and the
corresponding results from the conventional paradigm were
4.89±1.28, 5.56±1.98, 5.83±1.76. Most subjects reported
that the SSHVEP paradigm was more comfortable and eas-
ily acceptable than the traditional SSVEP paradigm. The
paired t-test revealed a significant difference between the two
paradigms (p <0.05).

It will know that the performance of SSVEP-based BCI is
predominantly affected by stimulation paradigm designs and
recognition methods. All the above results further demon-
strated the superiority of the proposed SSHVEP paradigm and
its decoding algorithm of MVMD-CNN.

B. The Experimental Results of Online Experimental
Offline experiments verify the effectiveness of the proposed

paradigm and its corresponding algorithm, and the practicality
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Fig. 10. Spectrograms at different stimulation frequencies and time-frequency graphs.

Fig. 11. The averaged SNRs of SSVEP and SSHVEPs.

TABLE III
CORRECT RATE AND INFORMATION TRANSMISSION RATE UNDER DIFFERENT TIME WINDOWS

of the constructed brain-controlled robot grasping system is
analyzed by online experiments. To verify the feasibility of the
constructed robot grasping system, the simulation environment
was built in Gazebo under Robot Operating System (ROS),
and the autonomous grasping code was written to realize

the robot’s autonomous grasping and placing. The simulation
experiment provided the foundation for the real environment.
Fig. 15 describes an example of grasping banana. Fig. 15A
is the robot arm in the initial state, Fig. 15B is to grasp the
target object, Fig. 15C is to place the object at the specified
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Fig. 12. (A) Spectrogram of subbands divided by the Filter Banks.
(B) Spectrogram of subbands divided by the MVMD.

Fig. 13. (A) SNR of the subbands spectrogram divided by the Filter
Banks. (B) SNR of the subbands spectrogram divided by the MVMD.

position, Fig. 15D is the robot arm back to the initial state,
and the remaining steps are the transition state of the grasping
process.

All the subjects performed grasping experiments on nine
targets, and the experimental results are shown in Table IV.
The correct average rate was 93.21 ± 10.18%, and the highest
correct rate reached 100% from 11 subjects, which proved
the feasibility of the proposed method and the practicality of
the constructed brain-controlled robot grasping system. This
performance further demonstrated the generalization ability of
the SSHVEP paradigm and its corresponding MVMD-CNN
algorithm. All the results of the online experiment demon-
strated the effectiveness and feasibility of the SSHVEP-based
BCI system.

Fig. 14. Statistical results of the questionnaire survey.

Fig. 15. Diagram of robot grasping process under simulation environ-
ment. (A) The robot arm in the initial state. (B) The robot arm grasping
the target object. (C) The robot arm placing the object at the specified
position. (D) The robot arm backing to the initial state.

V. DISCUSSION

The result in this work demonstrated the effectiveness
of a novel SSHVEP brain-controlled method for grasping
robots. Three crucial factors of the SSHVEP paradigm, cor-
responding decoding algorithm and its control strategy for
grasping robot were studied. The proposed paradigm can
improve the relationship between natural sense and its visual
paradigm. To fully use the characteristic from SSHVEPs,
a modified algorithm combining MVMD and CNN model was
designed. For robot grasping, we use inverse kinematics solu-
tion control mode to increase efficiency. Both the offline and
online experiments verified the effectiveness of our proposed
SSHVEP-based system.

A. The Significance of Proposed SSHVEP Paradigm
Recent studies have paid more attention to augmenting

the number of targets and improving its ITR value for the
visually evoked paradigm. Previous studies have reported some
novel paradigms for evoking SSVEP. The study of the SSVEP
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TABLE IV
SUBJECTS GRASP CORRECT ACCURACY

paradigm in reported a novel motion-based Newton’s Circle
to evoke SSVEP [15]. Another novel SSVEP paradigm in
uses a visual stimulus paradigm based on the multi-target
overlap [16]. The traditional stimulus mode of SSVEP is light
flashing or graphic flipping [41], using luminance as a stimulus
paradigm. The advantage of these existing researches is that
they can induce SSVEP successfully by different stimulus
paradigms. However, this type of stimulation is prone to visual
fatigue and even has the risk of inducing seizures in the
user, which ultimately affects the performance of the BCI
system [42]. One major drawback of the traditional visually
evoked paradigm is that ignores the relationship between the
paradigm and the natural environment. In other words, the
human visual system is sensitive not only to the color of an
object but also to its shape and other features.

To address the weak connection between the current visually
evoked paradigm and its dynamic environment, our previous
study suggested that the visually evoked paradigm regard-
ing the Scene Graph of a subject’s intention decreased the
degradation of SSVEP and reduced the visual fatigue in com-
parison with the traditional SSVEP-BCI system [25]. In our
study, we further optimized the design of a visually evoked
paradigm SSHVEP regarding a subject’s intention. In detail,
a hybrid visually evoked paradigm based on a combination of
target pictures from the dynamic environment and the radial
checkerboard grid was designed. The analysis result of the
responses property in Fig. 10 and corresponding functional
brain networks in Fig. 9 demonstrated the effectiveness of
the proposed paradigm. According to the comparison results
of SNR recognition accuracy, the improved paradigm further
optimizes the system’s performance regarding the subject’s
intention. There is no denying that increasing the interaction
between the BCI paradigm and the environments for the
brain-controlled method is the main objective for BCI applica-
tion. Moreover, most subjects reported that they experienced
less visual fatigue and minor annoyance compared with the
SG-SSVEP paradigm because it was easier to focus their
attention on the stimulus target.

These advantages are expected to improve usability
and practicality in SSVEP-based BCI systems, such as
brain-controlled robots or wheels.

B. The Effectively of the Proposed MVMD-CNN
Algorithm

Another essential factor that influences the performance
of a brain-controlled system is its decoding accuracy. The
performance of EEG processing algorithms can influence the
accuracy and robustness of decoding. Most SSVEP decoding
methods use the power spectrum features by their experience,
such as minimum energy combination or Extended-CCA [18].

However, EEG is highly complex, non-stationary and non-
linear signals. The existing traditional methods need the
assumption of signal stationarity and predefined basis func-
tions. It is more difficult to identify each target correctly
with the limited information. One effective way to improve
detection accuracy is enhancing the feature quality of EEG.
From the experimental results in Fig. 12 and Fig. 13. it is
seen that the subbands decomposed by MVMD contain more
efficient information from the harmonics, and it also limits
the noises in background EEG. The SSHVEP decomposition
analysis on amplitude and SNR (Fig. 10, Fig. 11) also shows
that it contains rich and robust information in its harmonics.

For the automatic extract more valuable features, deep
learning-based algorithms can effectively improve the clas-
sification accuracy of SSVEP. A conventional CNN model
designed is used to address the SSVEP target identifica-
tion [43]. Unfortunately, only using the CNN model can
not comprehensively select the harmonic characteristic of
the target frequency. Hence, learning more hidden features
and eliminating redundant information from SSHVEP could
enhance the overall capability of the BCI system. MVMD,
as a frequency domain separation method, has the advantage
of adaptively adjusting the center frequency and bandwidth of
each mode component. Meanwhile, CNN can automatically
extract valuable features and eliminate redundant informa-
tion in each subband from SSHVEPs, which can effectively
improve the recognition accuracy of the response EEG. The
selected feature associated closely with the task will improve
the performance of classification. Hence, to fully extract the
effective feature information from the SSHVEP, this study
chose a decoding algorithm that combined the MVMD and
CNN model. The decoding results showed that the MVMD
combined CNN model had a higher average classification
accuracy compared with the traditional model. One of the
important reasons is that MVMD extracts more deep fre-
quencies characteristic of SSHVEP. The analyzed result may
also provide possible evidence to demonstrate the whole
performance of the SSHVEP-based brain-controlled system.

Even though our study achieved higher accuracy than previ-
ous work, only a basic CNN model was used for classification.
To optimize system performance and reduce individual dif-
ferences, future work should consider more efficient EEG
decoding methods, such as Transformer, EEGNet, and Deep-
ConvNet models, which will further improve the system’s
generalization capability and performance [44].

With recent advances in computer vision, it is possible
to employ computer vision mechanisms to process EEG
signals. After realizing the visual representation of EEG,
we employed a multi-head self-attention mechanism to detect
hidden characteristics in EEG data [45]. By incorporating
graph convolutional modules, attention modules, and residual
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modules into the CNN model, we can create a hybrid decoding
method that combines SSHVEP with computer vision. This
may be an effective way to extract high-quality features
from raw EEG and further improve accuracy. However, this
approach will increase the complexity of the entire system.

C. Applications

The main application for SSVEP-based brain-controlled
system is the rehabilitation of people with disabilities.
Quiles E reported a low-cost robotic arm control system
using by conventional SSVEP paradigm. SSVEP paradigm
not only controls the robot arm but also controls the
prosthesis hand [26]. The group from Prof Zhang devel-
oped a brain-controlled prosthesis using the scene graph
paradigm [25]. However, these applications ignore the robot’s
intelligence and have a low connection with their intention,
resulting in low execution efficiency and weak fault tolerance
in actual operation. This paper’s ultimate objective is not
only to help people with disabilities but also to expand to
a broader user base on the SSHVEP-based brain-controlled
method. One efficient brain-computer lies at the core of
the research and development of BCI technology. And we
combine human calculations with machine intelligence, using
task-level control, where the user makes target selection and
the gripping robot performs precision motion planning as well
as gripping and delivery work, which can greatly improve
work efficiency. In addition to its application in rehabilitation,
our approach can be further used for the control of complex
environments that are not suitable for humans.

D. The Potential Discrepancies of Proposed System

Although our proposed brain-controlled system demon-
strated superiority compared to the previous system, potential
discrepancies remain in conceptual, methodological and prac-
tical aspects.

In this study, the main target subjects for the proposed
system are disabled people. However, with the number of
elderly people growing, caring for the elderly is becoming
a serious social problem [46]. Hence, it may be expected that
our system can also be applied to some elderly people with
reduced motor function. Moreover, the system could further
evaluate the fatigue caused by the proposed system. These
reasons may cause a discrepancy among conceptual aspects.

In the methodological aspects, the proposed system neglects
the cognitive workload during EEG recording. Previous studies
reported that increased workload and mental fatigue will cause
degradation of EEG quality [47]. This may cause a poten-
tial discrepancy in our proposed methodology. Investigating
the quality of EEG before its recording should be further
considered.

In practice, the BCI performance might be affected by envi-
ronmental factors. Moreover, the usability and user acceptance
among disabled patients may promote the system utilization
in practical scenarios. Hence, there is another potential factor
causing discrepancies in the practical aspects of the proposed
system.

E. The Limitations of the Study and Further Work
Even though our study improved the performance of the

SSVEP-based brain-controlled system, some challenges still
need to be solved in the future. Firstly, we need more subjects
to further improve our paradigm, especially the disabled and
older people. The proposed system needs a large sample size
and a balance of male and female subjects to be thoroughly
evaluated.

Although SSHVEP is an evoked potential highly dependent
on stimulus performance and less susceptible to individual
differences and noise contamination, the SSHVEP decoding
CNN algorithm is nonlinear and still requires multiple samples
for comprehensive training. Increasing the training sample size
of the CNN can further optimize its performance. Additionally,
individual differences in SSHVEP potentials, such as cognitive
ability and attention level, should be further explored.

Since this experiment was conducted in a quiet indoor
environment, it differs from real application scenarios. Future
research should explore the impact of environmental factors
such as noise, interference, light intensity, and task design on
the stability and reliability of BCI systems.

A better system that allows for different numbers of stimuli
should be constructed, and the improvement of the correspond-
ing decoding algorithm should also be expected to further
study. Meanwhile, more presentation ways of the SSHVEP
paradigm should be considered, such as placing these sym-
bolic images alongside the targets. Furthermore, it remains
a significant challenge to establish a closed-loop system for
real-time interaction between the subject and external devices.

VI. CONCLUSION

This paper proposes a novel brain-controlled method for
grasping robots using the SSHVEP paradigm and a decod-
ing algorithm combined with the MVMD and CNN model.
To verify the effectiveness of the proposed method, 18 subjects
participated in both offline and online experiments. The aver-
age accuracy of the proposed method is up to 95.41 ± 2.70%,
which is 5.80% higher than that of the traditional method.
The feasibility of the proposed system in online applications
was also verified through a robot grasping task. The proposed
system obtained a mean accuracy of 93.21±10.18%; the
highest accuracy was achieved at 100%. All experimental
results proved the practicality of the proposed SSHVEP-based
controlled method and further provided a basis for the practical
application of brain control technology. Future work aims
to introduce shared control strategies to improve the control
performance of brain-controlled grasping systems.
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