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Abstract— In recent years, there has been a surge
in interest regarding the intricate physiological interplay
between the brain and the heart, particularly during emo-
tional processing. This has led to the development of
various signal processing techniques aimed at investi-
gating Brain-Heart Interactions (BHI), reflecting a growing
appreciation for their bidirectional communication and
influence on each other. Our study contributes to this bur-
geoning field by adopting a network physiology approach,
employing time-delay stability as a quantifiable metric to
discern and measure the coupling strength between the
brain and the heart, specifically during visual emotional
elicitation. We extract and transform features from EEG and
ECG signals into a 1 Hz format, facilitating the calcula-
tion of BHI coupling strength through stability analysis on
their maximal cross-correlation. Notably, our investigation
sheds light on the critical role played by low-frequency
components in EEG, particularly in the δ, θ , and α bands,
as essential mediators of information transmission dur-
ing the complex processing of emotion-related stimuli by
the brain. Furthermore, our analysis highlights the pivotal
involvement of frontal pole regions, emphasizing the signif-
icance of δ-θ coupling in mediating emotional responses.
Additionally, we observe significant arousal-dependent
changes in the θ frequency band across different emo-
tional states, particularly evident in the prefrontal cortex.
By offering novel insights into the synchronized dynamics
of cortical and heartbeat activities during emotional elicita-
tion, our research enriches the expanding knowledge base
in the field of neurophysiology and emotion research.
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I. INTRODUCTION

EMOTION is a reflection of human subjective feelings
and emotional experiences, typically triggered by external

stimuli. Emotions are pivotal in daily life, influencing our
learning efficiency, decision-making processes, social relation-
ships, and overall happiness. However, our understanding of
emotions still needs further depth to effectively manage and
regulate emotions, ultimately enhancing our quality of life and
psychological well-being.

The human brain’s neural networks are crucial for pro-
cessing emotions, with the amygdala evaluating stimuli’s
emotional significance and the insular cortex regulating emo-
tions. Electroencephalography (EEG) helps explore emotional
processing through different frequency bands and brain regions
[1], [2], [3]. Studies have reported hemispheric θ power asym-
metry reflects emotional valence [4], and distraction doesn’t
affect θ power initially but reduces later activity [5]. Moderate
exercise improves negative emotions, reflected in β power
changes [6]. In addition, variability in frontal and parietal
EEG activity, including α, β, θ /β, and σ /β ratios, relates
to individual differences in emotion regulation [7]. Moreover,
EEG γ band activity correlates closely with emotional sta-
tus [8], higher in generalized anxiety disorder patients during
worry [9]. Positive emotions activate β and γ bands in the
lateral temporal region, neutral emotions elicit higher α in
parietal and occipital areas, while negative emotions show
elevated δ in parietal and occipital regions and increased γ

in prefrontal regions [10].
Emotional changes impact the autonomic nervous system,

influencing heart rhythm and ECG features as indicators
of emotional status [11]. Heart rate fluctuations correlate
positively with empathy, particularly in individuals with con-
sistent response patterns [12]. Heart rate variability (HRV)
can reflect emotional responses: high-frequency oscillations
are vagally regulated, while low-frequency involve both vagal
and sympathetic activities [13]. Maternal emotional status
during pregnancy influences fetal HRV, suggesting effects on
fetal nervous system development [14]. Furthermore, elevated
HRV enhances emotional well-being, likely due to high-
amplitude oscillations impacting brain network dynamics [15].
Heart rate responses differ across emotions: fear induces
pronounced heart rate fluctuations, sadness increases signal
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complexity, and happiness alters sympathetic-parasympathetic
balance [16].

Over the past decade, scholarly interest has surged in
exploring the dynamic interactions between the central ner-
vous system and the peripheral cardiovascular system. The
brain’s autonomic nervous system, including the amygdala and
insular cortex, regulates heartbeat rhythm during emotional
processing [17]. Conversely, cardiac afferent input shapes
brain functions related to perception, cognition, and emotions,
involving regions like the amygdala and hypothalamus [18].
Insular cortex damage post-stroke can lead to cardiovascular
instability and autonomic nervous system alterations [19].
Moreover, psychological stress impacts the prefrontal cortex,
contributing to severe arrhythmias [20]. Unpleasant music
reduces heart rate with increased frontal midline θ power [21].
Negative emotions correlate EEG θ activity with the right
prefrontal cortex, aligning with sympathetic response [22].
Meditation shows a positive correlation between HRV high-
frequency power and EEG frontal midline θ power [23].
band power correlates with HRV complexity during relaxation,
while β band power links with HRV powers during affective
picture viewing and physical stress [13], [24]. While existing
studies have probed the impact of emotions and emotional
responses on the brain-heart connection, a comprehensive
understanding of emotions’ neural mechanisms necessitates
further exploration of brain regions and their interconnections.

The quantification of functional BHI presents methodologi-
cal challenges due to its intrinsic multimodal and multivariate
nature, diffuse distribution over the central nervous system,
and directionality issues. Additionally, the non-stationarity,
nonlinearity, complexity, and multi-scaling of BHI need to be
considered when applying classical signal processing tools.
To date, various techniques have been developed to measure
or model these interactions, such as correlation coefficients,
maximum information coefficients (MIC), phase-locking val-
ues (PLV) or phase lags indexes (PLI), Granger Causality
(GC), transfer entropy (TE) and time-delay stability (TDS)
[13], [25]. The Pearson correlation coefficient is an undirected
measure to describe the degree of association between two
continuous variables. It has been used extensively in studies
exploring the heart-brain coupling relationship, because of
its simplicity of calculation and ease of manipulation [26].
MIC can measure both linear and nonlinear coupling between
two dynamical systems based on the calculation of mutual
information [13]. As another undirected measure, TDS is
a network-based approach used to study the dynamics of
multiple interconnected systems as they transition from one
physiological status to another [27]. GC is a directed measure
for determining whether one signal can be used to predict the
value of another signal, with the statistical assumption that the
data has a normal distribution with uniform variance, but it
is less efficient in detecting specific nonlinear causal relation-
ships [28]. TE is a non-parametric measure of how information
is transferred between two signals. It is particularly useful
when evaluating nonlinear couplings without the need for
a priori information [29]. CCM is a time-invariant method to
quantify directional nonlinear interactions between dynamical

systems, and has been successfully exploited to characterize
temporal lobe epilepsy [30] and schizophrenia [25].

Despite comprehensive descriptions of psycho-
physiological changes from both single-system and cross-
system perspectives, the mechanisms governing transitions
between emotional status and their impact on the strength of
physiological interactions and the topology of physiological
networks are still under investigation.

In this paper, a network-based strategy involving TDS was
adopted to measure the coupling strength among physiological
systems, and the alterations in physiologic network topology
were investigated to signify transitions between different emo-
tional statuses. The interactions among brain rhythms across
and within cortical locations were investigated. In addition,
the dynamic interactions between the brain and heart during
emotion elicitation were quantified. Furthermore, we tested the
statistical significance of the results using various surrogates
that build on different null hypotheses.

II. METHOD

A. Data
The DEAP database is a multi-modal database designed for

studying human emotions. It includes physiological signals
collected from 32 participants (50% male, 50% female) with
an average age of 26.9 years. The experiment started with
a 2-minute base recording, then participants watched 40 dif-
ferent 1-minute videos, with each video eliciting emotions
recorded through 32-channel EEG and 8-channel peripheral
physiological signals. The data were segmented into 63-second
intervals, with the first 3 seconds serving as a pre-trial base.
In this study, to prevent data contamination by varying emo-
tional status, particularly with longer video stimuli, only the
physiological recordings from the final 60 seconds of each
film clip were selected for subsequent analysis.

The 32-channel EEG were recorded using a Biosemi
ActiveTwo system according to the international 10-20 sys-
tem, along with 8-channel peripheral physiological signals:
2 ophthalmic signals, 1 skin electrical signal, 2 EMG signals,
1 respiratory record, 1 plethysmography, and 1 temperature
record. All the signals were measured at 512 Hz sampling
frequency. In this study, only 14 EEG channels (AF3, F7,
F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4)
were used, and all the signals were resampled to 1 kHz to
ensure the accuracy of HRV calculations. The decision to
exclude 18 channels and focus on 14 electrodes was based
on prior studies [31], [32], which emphasized the importance
of selecting specific channels relevant to emotional activity
to improve classification accuracy. Practical considerations,
including equipment limitations and the use of devices like
the Emotive Epoc headset with its 14 channels, also influenced
this choice. After each experiment, participants were instructed
to rate their emotional experiences using the Self-Assessment
Manikin (SAM) scale, providing arousal, valence, liking, and
dominance ratings on a scale of 1-9.

This study focuses on examining the dynamic interactions
between the brain and heart in response to emotion elicitation,
particularly emphasizing the arousal dimension. Emotional
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status is classified as high arousal (HA) and low arousal
(LA), with the status preceding elicitation (Base) considered
for comparative analysis. Distinctions are made based on
participants’ subjective ratings, with a threshold set at 5.

B. Physiologic Network Interactions
1) Featured Waveform Extraction: The purpose of this paper

is to study the brain-heart coupling in different emotional
statuses, 14-channel EEG and lead-II ECG signals from the
DEAP database were used in this study. To compare these very
different signals with each other and to study the interrelations
between them, all time series are converted to the same time
resolution of 1 s before the analysis.

For EEG signals, the independent component analysis (ICA)
of the EEGLB toolbox is used. Preprocessing was performed
in EEGLAB, and EEG signals were high-pass filtered at 1 Hz
using the pop_eegfiltnew function. Next, bad channels are
identified and removed with the pop_select function based
on visual inspection. After preprocessing, the pop_runica
function, using the default infomax algorithm with the rec-
ommended ‘extended’ option enabled, is employed to perform
ICA on the EEG data. ICA decomposes the EEG signals into
independent components, some of which represent noise or
artifacts such as eye blinks, muscle activity, or electrical inter-
ference. These components are then inspected visually using
the pop_selectcomps function, allowing for the identification
of noise-related components. Once identified, these compo-
nents are removed from the data using the pop_subcomp
function. Finally, the cleaned EEG data is used for following
process. Subsequently, the Hanning window is applied, and
the sliding window method is employed to segment the signal
into multiple time windows, each of which is L in duration
with s window shift. Within each time window, the Short-
Time Fourier Transform is utilized to convert the time-domain
signal into the frequency-domain signal, thereby capturing the
frequency components of the signal within the current time
window. Let x(t) be the EEG signal in the time domain, the
frequency components of the signal within the current time
window at f frequency band P( f, t) is

P( f, t) =

∫
∞

−∞

x(τ, s) · ω(τ − t) · e− j2π f τ dτ (1)

where ω(t) is the Hanning window function, and s represents
the window shift.

Finally, similar as in [27], the spectral power S( f ) of five
frequency bands (δ waves (0.5 - 3.5 Hz), θ waves (4 - 7.5 Hz),
α waves (8 - 11.5 Hz), σ waves (12 - 15.5 Hz) and β waves
(16 - 19.5 Hz)) is computed by squaring the magnitude of the
signal in the frequency domain.

S( f, t) = |P( f, t)|2 (2)

For the ECG signal y(t), the QRS locations of each heart-
beat are detected using an R peak detector, which employs
stationary wavelet transforms for real-time beat detection from
single-lead ECG signals with the Daubechies 3 (‘db3’) wavelet
as the mother wavelet [33]. Following this peak detection, the

RR interval sequence is derived by computing the time inter-
vals between successive QRS peaks. Subsequently, the heart
rate, expressed in beats per minute, is calculated. To ensure
compatibility and standardization, the heart rate values are
inverted, and resampling is applied to transform the heart rate
into a discrete 1 Hz (1 s bins) format for further analysis and
interpretation.

2) BHI Coupling Strength Calculation: To investigate the
interaction between two physiological systems X and Y , their
respective output featured waveforms X and Y are partitioned
as X = {Xi

}
NL−1
i=1 ∈ RNL×L and Y = {Yi

}
NL−1
i=1 ∈ RNL×L

with a window shift of s, where NL = |X| = |Y| denotes
the number of segments and L denotes the time span of each
segment, as shown in Fig. 1 (a). To get enough R-waves in the
ECG, these segments have an equal length of L = 20 s, with
a window shift of s. Consequently, the NL =

(
N − L

)
/s + 1,

where N is the length of featured waveforms. Thereafter,
the segmented featured waveforms undergo individual nor-
malization to attain zero mean and unit standard deviation.
This procedure eliminates constant data trends, renders the
signals dimensionless, and ensures that the estimated coupling
between featured waveforms X and Y remains uninfluenced
by their relative amplitudes.

Then, the cross-correlation function between two physio-
logical systems is calculated as CXY by applying periodic
boundary conditions, where τ is the lag. For each segment i ,
the position corresponds to the maximum in the absolute value
of C i

XY (τ ) is defined as the time delay τ i
0 (Fig. 1 (b)).

C i
XY (τ ) =

1
L

L∑
l=1

Xi
l+(i−1)·s · Yi

l+(i−1)·s+τ (3)

τ i
0 = argmaxτ |C i

XY (τ )| (4)

Two physiological systems are identified as linked if con-
sidered interconnected when their corresponding featured
waveforms display a consistent time delay that does not change
by more than ±1 s across multiple consecutive time windows.
According to [27], for each τ0 in time series τ i

0, the segments
are considered as stable when for at least 0.8*H out of H
consecutive segments the time delay remains in the interval
[τ0-1, τ0+1]. Mathematically, this can be expressed as:

Stabili t y(τ0) =

N−L+1∑
i=1

I(|τ i
0 − τ0)| ≤ 1) ≥ 4 (5)

where I(·) is the indicator function.
The process of identifying intervals with stable time delays

is iterated using a sliding time window with a step size of one
along the entire series τ i

0.
Subsequently, the coupling strength of two physiological

systems is determined as the fraction (%TDS) of stable points
in the time series τ i

0, as shown in Fig. 1 (d)-(e). Thus, longer
periods of TDS between two systems’ featured waveforms
indicate more stable interaction and stronger coupling, with
link strength in physiological networks determined by %TDS.

%TDS =
Number of Stable Points

N − L + 1
(6)
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Fig. 1. Schematic of TDS method and its application in brain rhythms coupling strength representation. (a) Sequential segments of EEG spectral
power (Sδ and Sθ) of the δ and θ band shown for consecutive 20 s windows. (b) Cross-correlation (Cδθ) of Sδ and Sθ within each window across
the lags between two signals, and the time lag τ0 corresponding to the maximum represents the time delay. (c) Time delay τ0 between Sδ and
Sθ for consecutive 20 s windows moving with 1 s overlapping. (d) %TDS matrix representing the coupling strength between T7 channel and AF3
channel at different physiologically relevant EEG frequency bands (δ, θ, α, σ, β). (e) %TDS block-matrix representing the average coupling of all
brain rhythms across each pair of EEG channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4). Each block along the diagonal
corresponds to the coupling within different frequency bands of the same EEG channel, while each off-diagonal block represents the coupling
between specific pairs of EEG channels.

III. EXPERIMENTS AND RESULTS

A. Parameters Selection for Physiologic Network
Construction

1) Window Shift for Signal Segmentation: In the process
of physiologic network construction, window shift s is an
important parameter. It affects the degree of overlap between
consecutive windows (N −s) and the final number of windows
(NL =

(
N − L

)
/s + 1) obtained. To assess the influence of s

on BHI, we compared the effects of different s values ranging
from 1 to 9 with a step size of 1 on the average link strength
(ALS) (Fig. 2 (a)). The number of consecutive windows H
is set to 5. The ALS, measured in %TDS, represents the
mean of all elements in the TDS matrix for each emotional
status. It reflects the average strength of all links in a network
across subjects and film clips. This comprehensive analysis
provides insights into the evolving dynamics of brain rhythm
interactions in response to varying emotional status. It can
be seen that the average strength of network links exhibit
variations with transitions in emotional status, with the Base
displaying significantly stronger network links compared to
HA and LA. In addition, the ALS of constructed physiologic
network increases with s grows among all three emotional
statuses (expect s = 7 and s = 8 in LA). When the s reached 9,
the ALS is almost 1 in Base status, with ALS > 0.9 in
the other two statuses. It means that all the EEGs among
brain rhythms across cortical areas are coupled with the heart.
Considering the consistent trend of ALS across different s
values and the requirement for an adequate number of H for
stability calculations, we selected s = 1 for our subsequent
experiments.

2) Window Length for Stability Determination: The stabil-
ity of two physiological systems is related to the number
of consecutive segments H in the time delay. Therefore,
we evaluated the effects of different H ranging from 5 to
23 with a step of 3 on ALS (Fig. 2 (b)). The consequent stable
segments (0.8*H ) for each H are 4, 6, 9, 11, 14, 16, and

Fig. 2. Parameters selection for physiologic network construction.
(a) Comparison of different s on average link strength, (b) the effect of
consecutive windows numbers H on stability determination.

19, respectively. Similar to the influence of s on ALS among
three emotional statuses, the ALS presents a descending trend
from Base to LA. Conversely, regardless of the emotional
status, the ALS decreases with the increase of H . It indicates
that with a larger H and a fixed stability ratio (0.8), it is
difficult to maintain stability between two systems, resulting
in lower ALS. To improve computational efficiency and ensure
sufficient link strength, we chose H = 5 as the parameter for
our subsequent analysis.

B. Brain-Brain Networks
1) Inter-Channel Brain Interactions: To gain a compre-

hensive understanding of the influence of same-frequency
interactions across brain areas and their responsiveness to
changes in emotional status, we present chord diagram repre-
sentations of frequency-specific networks in Fig. 3 (a). These
diagrams depict the ensemble of inter-channel links connecting
a specific frequency band at different brain locations (network
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Fig. 3. Brain-Brain interaction among and across brain rhythms. (a) Chord diagram representation of frequency-specific network interactions across
brain areas between emotional status. The various colored arcs within the circles represent different EEG channels, and the connections between
them indicate their respective coupling strengths. (b) network presentation of the %TDS matrices at 14 cortical locations for different emotional
stages (only links with %TDS≥ 0.45 are shown).

nodes). Our findings reveal that brain interactions mediated by
specific frequency bands in a given physiological status exhibit
distinct network structures and patterns during transitions
between emotional status. Comparison of specific frequency
networks under the same physiological status reveals signifi-
cant variations in network connectivity and link strength across
different frequency bands. In the Base status, preceding visual
emotional elicitation, nearly all brain rhythms participate in
mediating inter-channel interactions except for the β band.
During HA and LA status, the networks involving δ, θ , and
σ bands dominate inter-channel brain wave communications,
with higher coupling strengths observed in HA compared to
LA. Furthermore, with increasing frequency of brain rhythms,
the left and left posterior brain regions gradually diminish in
their involvement in inter-channel brain wave communications.
This is evident in the near absence of contributions from
almost the entire left brain region (AF3, F7, FC5, T7, P7,
O1) to inter-channel interactions.

2) Intra-Channel Brain Interactions: To better understand the
inherent dynamics of brain activity within specific regions,
we delved into intra-channel networks, which illustrate the
coordination of brain activation across frequency bands within
the same location (i.e., the same EEG channel), as shown in
Fig. 3 (b). Notably, lower-frequency brain rhythms, such as
δ with θ , exhibit stronger coupling, particularly observed in
frontal brain areas (AF3, F7, F3, FC5, FC6, F4, F8, AF4).
Additionally, the transition between emotional status induces
a significant reorganization in both link strength and topology
for all local networks of brain rhythm interactions. During
the Base status, robust connections within local networks of
brain rhythm interactions are observed, with high intra-channel

brain network connectivity across all EEG channel locations.
However, following visual stimulation, whether in a HA or
LA status, link connectivity and connection strength diminish
in both central and occipital areas, except the O1 channel.
Generally, the local network of brain rhythm interactions in
HA exhibits stronger connections than those in LA, especially
for the F8 channel.

C. Brain-Heart Networks
1) Surrogate Analysis and Statistical Assessment: A time-

shift surrogate analysis was conducted to examine the
cross-correlation strength Cmax (the global maximum of the
cross-correlation function) (see Fig. 4 (a)). To generate “shift
surrogate data”, one dataset was temporally shifted relative to
the other, with surplus values wrapped around to the beginning
of the dataset. This method preserves the statistical structure of
the original time series while disrupting correlations between
them. Three hundred random time shift lags were selected,
ensuring that time shifts exceeded 20 seconds. The results
indicate that the surrogate test applied to traditional cross-
correlation analysis does not reveal any discernible difference
between the rank distributions obtained from surrogate and real
data. Analysis of the time-shift surrogate data reveals consis-
tent trends: Cmax is consistently lower than real data during
LA, higher during HA, and highest during Base. However, the
surrogate tests do not demonstrate any statistical difference
between the surrogate and original rank distributions of Cmax.
These findings suggest that, in this context, cross-correlations
do not provide physiologically relevant information regarding
the interaction between systems.

To assess the efficacy of the TDS method in capturing
physiologically relevant information concerning endogenous
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Fig. 4. Surrogate analysis for the validation of BHI. (a) Rank distribution of the maximal cross-correlation (Cmax) for time-shift surrogate analysis,
(b) rank distribution of the network link strength (%TDS) for inter-subject surrogate analysis, (c) significant threshold level determination for %TDS.

interactions between systems, an inter-subject surrogate test
was conducted. This involved pairing physiological signals
from different subjects to eliminate physiological coupling.
As illustrated in Fig. 4 (b), rank distributions corresponding
to different emotional statuses demonstrate varying strengths
of network links measured in %TDS. Notably, the rank distri-
bution associated with LA shows a pronounced shift towards
lower values for network link strength, whereas the distribution
for Base consistently exhibits higher values for all links
compared to HA. The inter-subject surrogate test, employing
TDS analysis to eliminate endogenous physiological coupling,
yields significantly reduced link strength p-value<10−3 and
nearly uniform rank distributions across different emotion
statuses. This suggests that the TDS method effectively reveals
physiologically relevant information.

Additionally, to compare interactions between physiological
systems with varying strengths and changes across different
physiological states (e.g., transitions across emotional stages),
we establish the significance threshold as the percentage of
%TDS at which all links in the physiological network are
deemed statistically significant. This determination involves
comparing the distribution of original %TDS values with that
of %TDS values obtained from 300 surrogates. A Student’s
t-test is then conducted to ascertain the statistical significance
between these distributions for each pair of systems (links) in
the network. Network links are deemed significant when the t-
test p-value is less than 10−3. The significance threshold level
for %TDS is consequently defined as the value above which all
network links are statistically significant, indicating endoge-
nous interactions between physiological systems. We find that
a threshold of approximately 14 %TDS is necessary to identify
networks of statistically significant links across all emotional
statuses (Fig. 4 (c)).

2) Dynamics of Brain-Heart Interactions: To elucidate the
neurophysiological interactions between the brain and heart
during visual emotional elicitation, we investigated to iden-
tify and quantify the networks of interactions between these
systems. The intricate communications and their modulation
with emotional status are visually depicted using radar charts
(Fig. 5 (a)). The BHI network exhibits a relatively symmetric

distribution of ALS across different brain areas, with a slight
prevalence in strength observed for links between the heart and
temporal brain areas (T7 and T8). A systematic examination of
BHI link strength across all five frequency bands and various
emotional statuses reveals that the ALS for the entire brain-
heart interaction network is highest during the base status,
lower during HA, and lowest during LA. This finding suggests
that the strength of all links in the brain-heart network, irre-
spective of brain areas or frequency bands, follows a similar
modulation pattern during transitions across emotional status.

To illustrate the change patterns of BHI link strengths
across EEG channels during different emotional statuses, the
averaged %TDS were projected to the scalp (Fig. 5 (b)).
The change patterns of BHI link strengths among different
emotional statuses exhibit similarities in some EEG chan-
nels. In the δ frequency band, the frontal regions present
lower BHI coupling, while exhibiting higher link strength
at FC6, P7, and F3 channels. In the α band, BHI showed
strong coupling in the right frontal lobe but weak coupling
in the occipital lobe. Inversely, BHIs at the σ frequency
band exhibit significant differences among different emo-
tional statuses, regardless of EEG channels. Moreover, in the
β band, BHIs have an obvious bipolar distribution in the
central region at HA and Base status. Most obviously,
the θ frequency band exhibit significant arousal-dependent
changes among different statuses, especially in prefrontal
cortex.

Furthermore, the correlations of BHI between brain rhythms
and locations under different emotional statuses are quantified
by the Kendall rank correlation coefficient. The p-values are
listed in Fig. 6. Significant correlations (p-value< 0.05) are
denoted with green color, and extremely significant corre-
lations (p-value< 0.001) are marked with red color. The
interactions between the brain and heart show extremely
significant correlations among more than half of the EEG
channels at the β, θ and δ frequency bands. BHI is less relevant
with the α band, as the p-value< 0.001 is observed at only
three EEG channels. All statistical analyses were conducted
using MATLAB (R2023a) on a PC with an Intel Core i7-7700
3.6 GHz processor and 32 GB RAM.
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Fig. 5. Brain-heart interactions during different emotional statuses. (a) Network representation of coupling strength between heart and different EEG
channels across brain rhythms. Radar charts, centered within hexagons, illustrate the contribution of brain control from distinct brain areas to network
link strength across various emotional statuses. Each segment’s length along the radius in the radar charts reflects the TDS coupling strength
between the heart and each frequency band at respective EEG channel locations. These segments are color-coded to match the corresponding
EEG frequency nodes, providing a visual representation of how different brain regions influence network links throughout different emotional
statuses. (b) Topographical maps of the averaged BHI in the five canonical frequency bands. For each subfigure, from top to bottom: HA, Base, and
LA emotions; from left to right: δ, θ, α, σ, and β bands. For each frequency band, we normalized the averaged BHI to range from 0 to 1 across the
three emotional states and four stimulus patterns.

Fig. 6. Kendall rank correlation coefficient for BHI between brain
rhythms and locations under different emotional status. Significant cor-
relations (p-value< 0.05) are denoted with green color, and extremely
significant correlations (p-value< 0.001) are marked with red color.

IV. DISCUSSION

A TDS-based method was adopted to identify and quantify
the coupling of physiological systems during visual emotional
elicitation in this paper. We investigated the interactions among
brain rhythms across and within cortical locations (cross-brain-
wave interactions at the same locations and same-brain-wave
coordination across brain areas), and their relation to neural
plasticity in response to changes in autonomic regulation
underlying different emotional statuses. We also studied the
dynamical features of brain-heart networks to establish an
association of network structure and dynamics with emotional
status and physiologic function.

A. Brain-Brain Networks

The examination of inter-channel brain networks across
distinct emotional statuses reveals a notable observation con-
cerning the configuration of the network of brain wave
interactions. Particularly, the most substantial transformations
occur within the links representing interactions between brain
waves of different frequencies (see Fig. 2). This remark-
able reorganization in network connectivity and link strength
among diverse brain waves signifies a noteworthy degree
of neural plasticity, suggesting the modulation of global
cooperative behavior in brain wave interactions to effectively
accommodate physiological functions during various status.
Consequently, these findings underscore the intricate mecha-
nisms underlying the adaptability of the brain. The analysis
of Fig. 5 reveals the presence of denser network linkages
within the δ and θ bands. This observation suggests that
low-frequency components in the EEG may facilitate infor-
mation transmission during the brain’s focused processing of
emotion-related information. Notably, these findings diverge
from Lindquist’s research, which predominantly associates
high-frequency bands with emotion processing, particularly
highlighting negative emotional processing [34]. However, our
results align with their findings indicating a lack of sensitivity
to emotional stimulus variations in low-frequency activity.
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Additionally, the study conducted by Schubring et al. [35]
discovered a correlation between high-arousing pictures and
spectral power in the α and lower β frequency bands, which
correspond to the α, δ, and β bands as examined in our
research. Notably, the α band-related brain network connection
density was found to be lower in the status of HA compared
to both LA status and Base status. This observation is in
line with the prevailing notion that α power reflects cortical
inhibition or idle status of the cortex, thereby exhibiting an
inverse relationship with cortical activation–lower α power
indicating greater activation [36]. One possible explanation for
this observation is that the activity in the medial prefrontal
regions of the brain within the β band displayed distinct
patterns associated with positive emotions [37].

The network of brain rhythm interactions within 14 cortical
regions was meticulously examined to investigate the coordi-
nation of brain activation across frequency bands at identical
locations. Our inquiry revealed that distinct brain regions
exhibit varying degrees of cross-frequency coupling within the
same emotional status. Specifically, frontal areas demonstrated
highly connected networks, indicative of robust interactions
across all frequency bands. In contrast, central areas exhib-
ited lower connectivity, while occipital areas displayed the
lowest level of connectivity. This pattern of cross-frequency
coupling is attributed to the generation of different brain
rhythms by neuronal populations in the 14 cortical layers,
subsequently projecting onto the scalp. Consequently, this
naturally gives rise to cross-frequency coupling at the same
anatomical location, reflecting the synchronous activities of
neuronal populations and quantifying the inter-layer coordina-
tion among cortical neurons. This result aligns with previous
research, suggesting that the frontal cortex is an integra-
tion area, facilitating the integration of multi-modal sensory
information and emotional reactions, and playing a vital role
in social cognition and emotional evaluation [38]. The δ-θ
coupling at frontal pole areas exhibited the greatest strength
among the 14 cortical regions, a phenomenon substantiated
to have significant implications for semantic cognition [39].
Furthermore, the coupling related to the α frequency band
displayed variations contingent upon emotional status, pro-
viding empirical support for the current understanding of the
impact of cognitive and emotional tasks on α-waves [40].
Observations also indicated that the δ-α-σ couplings in most
channels manifested divergences across distinct emotional
status, suggesting that the cross-frequency coupling of brain
oscillations could enhance our comprehension of the neural
mechanisms underlying emotions [41].

B. Brain-Heart Networks
To validate the statistical significance of observed data and

discern genuine patterns from random fluctuations, surrogate
analyses were employed, comparing original data with ran-
domized surrogate data. Based on the results of the time-shift
surrogate test (Fig. 4 (a)), it can be inferred that the TDS
method exhibits greater reliability in identifying physiological
coupling when contrasted with traditional cross-correlation
analyses. This conclusion is rooted in the observation that
cross-correlation analyses are ill-suited for heterogeneous and

non-stationary signals, and are susceptible to the influence
of auto-correlations within these signals [27]. Additionally,
upon applying the TDS method to inter-subject surrogate data,
we observed nearly uniform rank distributions with decreased
link strength, as illustrated in Fig. 4(b). This decline indicates
the absence of physiological interactions. Moreover, all sur-
rogate distributions exhibited a consistent pattern, indicating
that the stratification of emotion status observed in real data
corresponds to alterations in physiological coupling associated
with transitions in emotion status. The rank plots derived from
the inter-subject surrogate test further reveal that link strength
consistently diminishes during LA, increases during HA, and
peaks during Base. This trend may be linked to the gradual
augmentation of auto-correlations within the signal output of
physiological systems [42].

The analysis of the coupling between 5 brain rhythms from
14 cortical locations and the heart was conducted to eluci-
date the mechanisms governing the regulation of brain-heart
dynamics during emotional arousal. As depicted in Fig. 5(a),
during the HA status, the α band exhibited stronger coupling to
the heart, followed by β and δ bands. In the base status, heart-
brain coupling primarily depended on the δ band, while in the
LA status, β and θ bands dominated in heart-brain coupling.
Notably, Candia-Rivera found that θ oscillations occurred dur-
ing emotion elicitation, indicating that the θ band is actively
modulated by vagal inputs under emotion elicitation [43]. The
δ band, although less studied in relation to arousal, has demon-
strated potential involvement in emotional processing [44].
The close relationship between the θ and δ bands during
emotional processing has also been previously described [45].
Various brain regions, including the prefrontal, frontocentral,
and parietooccipital regions, have been implicated in the
interaction between the brain and the heart during emotion
processing [1]. In Fig. 5(b), midline frontal θ is associated
with higher heat-brain coupling in HA status, consistent with
Aftanas’s report that changes in θ are related to the perceived
level of arousal [46]. Aligning with previous studies [13], [47],
significant differences in BHI during the processing of positive
and negative emotional stimuli are linked to EEG oscillations
in the θ band. Furthermore, BHI appears associated with
arousal elicitation, with a preference for EEG oscillations in
the θ band, especially over the temporal and occipital cortices.
While lateralization of brain regions has been proposed as part
of differential emotional processing [19], major differences
in arousal between the left and right hemispheres were not
observed in our study. It is speculated that these differences
may arise due to variations in elicitation media (images vs.
video) or the diverse valence/arousal levels implemented in
the two experimental setups.

C. Limitations and Future Directions

Our study acknowledges several limitations warranting
attention. One notable constraint is the lack of integration
with clinical laboratory results, hindering the exploration of
relationships between coupled heart-brain network features
and relevant biomarkers. Incorporating clinical laboratory data
is crucial to unveil neurooscillator-based biomarkers, shedding
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light on the neurobiological underpinnings of emotional pro-
cesses. Future research should prioritize integrating clinical
laboratory data to establish robust connections between heart-
brain dynamics and specific biochemical markers associated
with distinct emotional states. Additionally, the temporal scope
of our data presents a limitation. Extending data collection
duration is essential to elucidate dynamic changes in heart-
brain coupling across various emotion generation stages.
A more extensive investigation would yield a comprehen-
sive understanding of temporal evolution and variability in
dynamic functional connections during emotional process-
ing. Furthermore, while our study employs TDS to quantify
coupling strength between mind and brain, it is essential
to acknowledge the method’s inherent limitations. TDS pri-
marily assesses coupling strength without addressing the
directional aspects of these connections. To overcome this
limitation, future research could refine or complement TDS
with methodologies such as Granger causality analysis or
maximum information coefficient, enhancing understanding of
directional mind-brain coupling during emotional processing.
This multifaceted analytical approach would advance our
understanding of the complex interplay between cognitive and
emotional mechanisms.

V. CONCLUSION

In summary, our study employs a network physiology
methodology, utilizing TDS as a quantifying measure for the
coupling strength between the brain and heart in response to
visual emotional elicitation. We emphasize the potential role
of low-frequency components, specifically in the δ, θ , and
α bands of the EEG, in facilitating information transmission
during the focused processing of emotion-related stimuli by
the brain. Exploring intra-channel interactions among brain
rhythms across different emotional states reveals distinct pat-
terns. Surrogate analysis demonstrates the greater reliability
of the TDS method in identifying physiological coupling
compared to traditional cross-correlation analyses. Notably,
the frontal regions, particularly in the context of δ-θ coupling,
BHI emerges as pivotal in emotional mediation compared to
the central and occipital regions. Surprisingly, our findings
indicate no significant difference in BHI between the left
and right hemispheres during emotion processing. However,
a preference for EEG oscillations, particularly in the θ band,
is evident over the prefrontal cortex. This study provides novel
insights into the synchronous dynamics between cortical and
heartbeat activities during emotional elicitation, highlighting
the necessity for nonlinear analysis approaches to comprehen-
sively characterize functional BHI.
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