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Abstract— Sleep quality is an essential parameter of a
healthy human life, while sleep disorders such as sleep
apnea are abundant. In the investigation of sleep and its
malfunction, the gold-standard is polysomnography, which
utilizes an extensive range of variables for sleep stage
classification. However, undergoing full polysomnography,
which requires many sensors that are directly connected
to the heaviness of the setup and the discomfort of sleep,
brings a significant burden. In this study, sleep stage clas-
sification was performed using the single dimension of
nasal pressure, dramatically decreasing the complexity of
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the process. In turn, such improvements could increase the
much needed clinical applicability. Specifically, we propose
a deep learning structure consisting of multi-kernel convo-
lutional neural networks and bidirectional long short-term
memory for sleep stage classification. Sleep stages of
25 healthy subjects were classified into 3-class (wake,
rapid eye movement (REM), and non-REM) and 4-class
(wake, REM, light, and deep sleep) based on nasal pres-
sure. Following a leave-one-subject-out cross-validation,
in the 3-class the accuracy was 0.704, the F1-score was
0.490, and the kappa value was 0.283 for the overall met-
rics. In the 4-class, the accuracy was 0.604, the F1-score
was 0.349, and the kappa value was 0.217 for the over-
all metrics. This was higher than the four comparative
models, including the class-wise F1-score. This result
demonstrates the possibility of a sleep stage classification
model only using easily applicable and highly practi-
cal nasal pressure recordings. This is also likely to be
used with interventions that could help treat sleep-related
diseases.

Index Terms— Sleep stage classification, nasal pressure,
deep learning, biomedical application, healthcare.

I. INTRODUCTION

SLEEP is one of the most fundamental human processes
and plays an essential role in maintaining physical and

cognitive functions in everyday life [1]. However, in recent
years, the prevalence of sleep disorders, which pose chal-
lenges to public health, has increased annually [2], [3].
Sleep disorders (e.g., obstructive sleep apnea and insom-
nia) increase the risk of medical complications, including
cardiovascular disease, diabetes, and depression [4], [5].
To effectively address the issues related to poor sleep,
it is essential to establish a comprehensive understanding
of the underlying biology of sleep. The classification of
the sleep stage is usually performed using polysomnogra-
phy (PSG) signals, including electroencephalography (EEG),
electrooculography (EOG), electromyography (EMG), and
electrocardiography (ECG), as well as respiratory effort and
other physiological signals [6], [7]. However, such an exten-
sive protocol can be challenging, only achievable in laboratory
or hospital settings, making it impractical as a widespread
diagnostic tool.
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Sleep stages are classified mainly according to the American
Academy of Sleep Medicine (AASM) standard [6]. This
divides sleep into five stages: wakefulness (wake), rapid
eye movement (REM), and three sleep stages (N1–N3) with
non-rapid eye movement (NREM) [8]. The characteristics of
the EEG signals in each sleep stage include, for example,
sleep spindles for N2 and slow waves for N3. Outside of
these dominant EEG changes, other signals such as EOG and
EMG can also be used, prominent examples being horizontal
eye movements and reduced muscle tension, respectively, that
occur during REM sleep. In addition, various signals related
to breathing are also associated with sleep stages. In general,
breathing patterns can closely follow sleep stages in healthy
participants, with light sleep associated with an irregular
frequency and a moderate decrease in ventilation, which
decreases further in deep sleep, but the frequency is stable,
while during REM sleep breathing is erratic and shallow [9].
Compared to wakefulness, the rate of reversal of the nasal
cycle, which indicates alternating decongestion and congestion
of the nasal airways that produce a resistance change, is low
during sleep [10]. In particular, the amplitude of the airflow
signal affects the difference between the upper and lower
envelopes of a nasal pressure signal during sleep [11]. In this
sense, nasal pressure signals are also one of the important
candidates for effectively classifying sleep stages.

Given that each sleep stage is defined based on unique EEG
characteristics, most studies using EEG signals use the 5-class
system (i.e., wake, N1–N3, and REM) [8], [12]. However,
sleep stage classification studies using other biosignals employ
a strategy that reduces the number of classes for two main
reasons. First, changes in autonomic nervous activity are
slower than brain cortical changes [13]. Second, N1 is much
shorter than other sleep stages, making physiological changes
outside of the EEG rarely noticeable, causing unnecessarily
poor performance [13]. Some studies focus on the 3-class,
that is, wake-NREM-REM, sleep stage classification [14].
However, within NREM, N3 has received special attention,
as the most restorative period of sleep for metabolic function,
associated with sleep maintenance and sleep quality, which
makes it meaningful to divide NREM into a sleep classification
system [15]. In this sense, most approaches focus on the
4-class sleep stage in which N1 and N2 are combined [16],
resulting in sleep stages classified into four classes: wake, light
sleep (N1–N2), deep sleep (N3), and REM [17].

Conventional manual classification of sleep stages can be
time consuming and subjective because trained professionals
must visually examine and classify neurophysiological sig-
nals [18]. Automated methods can decrease the subjective
nature, and be less time-consuming. Consequently, this tech-
nological automation approach to sleep stage classification
can improve the accuracy and efficiency of sleep analysis.
Recently, automated sleep stage classification frameworks
using deep learning, such as convolutional neural networks
(CNNs) and bidirectional long short-term memory (biLSTM),
have been proposed [19], [20]. The strength of CNNs is
the excellent feature extraction, while the class of LSTM
techniques utilizes the temporal context of a signal to opti-
mize performance, which is potentially crucial in prediction

based on time series [21]. Using deep learning instead of the
appropriate hand-made features extracted from biosignals can
increase classification performance because the characteristics
of each sleep stage are inferred without restrictions from the
training data [22]. In general, machine learning approaches
using hand-crafted features that rely on expert experience and
prior knowledge can be limited by hidden features, unknown
to be important. Moreover, with the risk of error accumulation,
they are not always guaranteed to be optimal for classifi-
cation tasks. On the contrary, deep learning approaches are
data-driven systems that can train feature representations for
the sleep stage directly from raw data [16], [23].

In this study, we propose a deep learning framework con-
sisting of a multi-kernel CNN and biLSTM, that extracts
relevant characteristics of nasal pressure, for automatic sleep
stage scoring, as depicted in Fig. 1. Merging at least N1
and N2 deals with the bigger issue of class imbalances in
sleep classification tasks. However, these likely still persist,
which is why, after pre-processing nasal pressure data, we used
the synthetic minority oversampling technique (SMOTE) to
resolve the class imbalance for sleep stages [24]. The sleep
stage consisted of wake, NREM, and REM in the 3-class
stage [14], and wake, light sleep, deep sleep, and REM in
the 4-class stage [13], [25], [26]. Furthermore, the leave-one-
subject-out cross-validation (LOO-CV) method was employed
to demonstrate the generalizability of the proposed model [27].
The proposed framework using nasal pressure could demon-
strate the potential for healthcare, in the sense that automatic
sleep stage classification in a simplified recording procedure
can aid in the diagnosis and treatment of sleep disorders.

II. RELATED WORKS

A. Types and Number of Biosignals
Several studies have been conducted to develop automated

methods for sleep stage classification using multi-channel
biosignals. Phan et al. [28] designed XSleepNet, which uses
three neurophysiological signals: EEG, EOG, and EMG. They
propose a sequence-to-sequence sleep staging model that can
learn a joint representation from both raw signals and time-
frequency features. Using the Montreal Archive of Sleep
Studies (MASS) dataset, 87.6% overall accuracy was achieved
in the 5-class sleep stage using EEG, EOG, and EMG signals,
which is higher than the result obtained using only EEG
signals (i.e., 85.2%). Cui et al. [7] presented an automatic sleep
stage classification method based on CNNs combined with a
fine-grained segment with multiscale entropy in EEG signals.
Consequently, the authors achieved an average accuracy of
92.2% in another open-access sleep dataset, ISRUC-Sleep, for
the 5-class classification using multi-channel EEG signals.

The classification often relies on the use of multi-channel
biosignals, while the increased accuracy may not parallel
the increased impractical acquisition and analysis. Therefore,
the field has been turning to single-channel classification,
recognizing that classification performance is hardly affected
as it readily distinguishes transitions in the brain state [29].
As an example, Supratak et al. [30] proposed a deep learning
model called DeepSleepNet for automatic sleep stage scoring
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Fig. 1. Overview of the automatic classification of sleep stages using nasal pressure. The left side shows the overall framework for predicting
sleep stages from data collection to model training based on a multi-kernel convolutional biLSTM network. Nasal pressure signals were acquired
during the polysomnography test in an experimental environment. The sleep stage includes wake, NREM (N1+N2+N3), and REM for 3-class. In the
4-class, the sleep stages are wake, light sleep (N1+N2), deep sleep (N3), and REM. The right side briefly summarizes the entire process of the
proposed sleep stage classification system.

based on raw single-channel EEG signals. DeepSleepNet uti-
lizes CNNs to extract time-invariant features and biLSTM to
learn the transition rules among sleep stages from the EEG.
Using the Sleep-EDF dataset, the results indicated an overall
accuracy of 82.0% from the bipolar Fpz-Cz EEG channel.
Eldele et al. [31] introduced, which includes a feature extrac-
tion module that employs a multi-resolution CNN and adaptive
feature recalibration to extract low- and high-frequency fea-
tures of a single-channel EEG signal. Using the Sleep Heart
Health Study (SHHS) dataset, an overall accuracy of 84.2%
applied on C4-A1 Channel was achieved for the classification
of 5 class sleep stages. Recalling the multi-channel XSleep-
Net’s accuracy of 87.6%, these approaches are on par with the
state-of-the-art performance.

EEG signals are measured by attaching electrodes to the
scalp. The AASM recommends six electrodes and two refer-
ences [6]. Placing electrodes on the head is time-consuming,
can only be done after some training, and can interfere with
the comfort required for good quality sleep [32]. Therefore,
EEG signal measurement was attempted with other sensors.
In automatic overnight sleep monitoring using a standardized
in-ear EEG sensor, Nakamura et al. [33] observed abrupt
electrode noise caused by participants’ movements such as
jaw. In addition, the recorded ear-EEG signal included physi-
ological noise from respiration, which was overlaid by a slow
oscillation of large amplitude. The around-ear EEG sensor,
on the other hand, may be less discrete than in-ear EEG,
but is more practical for detecting a wider range of brain
signals because it covers a larger area [34]. However, there
are few sleep stage classification studies using around-ear EEG
sensors.

Changes occur throughout the body, not only within the
brain, during sleep, providing a wide array of opportu-
nities in the utilization of biosignals that are easier to
acquire without compromising performance. In one such
attempt, Fan et al. [35] used a single EOG signal, added
oversampling techniques to address class imbalances, and
performed sequence learning using a bidirectional gated recur-
rent unit. For the 4-class sleep stage, an overall accuracy of
82.1 % was achieved on the Sleep-EDF dataset. Furthermore,
Sridhar et al. [25] predicted the sleep stage using heart rate
measured by ECG signals. Using a CNN model, 77.0%
accuracy was achieved on the SHHS dataset for the 4-class
sleep stage. However, measurement of these biosignals can
interfere with sleep, for example, by friction with clothing or
skin [36].

Our study focused on an unprecedented approach to the
classification of sleep stages through a single channel with
nasal pressure signal. Despite its proven efficacy as a signal,
nasal pressure signals have not been explored for classification
of sleep stages. The use of nasal pressure signals for classifica-
tion represents a novel contribution, opening novel pathways
for sleep research and potential diagnostic methodologies.

B. State-of-the-Art Deep Learning Methods

Recently, various deep learning models have been developed
to classify sleep stages. Many factors affect performance,
from the input feature of the model to the detailed architecture
of the deep neural network [29]. Simply because the model
structure is complex does not necessarily result in high per-
formance. Rather, if there are too many modules in the deep
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neural network, it may require a long training time, reducing
practicality.

When a single-channel input is used, it mainly focuses on
the characteristics of the signals. The EEG signal is the most
widely used feature in the sleep stage classification. There
are also various types of inputs used for deep learning, and
they are used in the form of time-series [12] by utilizing their
characteristics, or in the form of time-frequency representa-
tion [37] by utilizing spectral information. When using a single
EOG signal, only the sequence input was utilized as input
of the model [35]. When using multi-channel, it focuses on
the relationship between channels or signals. For example, the
covariance feature matrix based on multivariate phase space
reconstruction was used to utilize geometric properties and
spatial information in multiple biosignals [38].

The input form of the signal eventually affects the structure
of the CNN. Eldele et al. [31] used a 1D CNN model that
selects local features by utilizing a multi-head attention tech-
nique from single-channel EEG signals. Mousavi et al. [39]
also developed 1D CNN for sequence-to-sequence learn-
ing for automated sleep stage scoring. On the other hand,
ElMoaqet et al. [37] utilized 2D CNN using time-frequency
2D image data as single-channel EEG signals for sleep stage
classification. Even in studies using multi-channel signals,
2D CNNs are widely used if multi-channel data are used as it
is [7]. However, 1D CNN is sometimes used to divide signals
and put them in the model as a single channel [40].

Finally, it is also important to use deep transfer learning
to remove the computational overhead required to set up
and properly learn a deep learning scoring system from
scratch [29]. A commonly used approach in transfer learning is
the cross-dataset experiment. It takes a model that has already
been trained on large sleep datasets and transfers it to the
current model. In He et al. [41], a baseline model was trained
using the SHHS dataset including a total of 5,793 subjects, and
the proposed framework for sleep stage scoring was expanded
by Sleep-EDF data consisting of 20 subjects. As a result,
the performance increased compared to when the sleep stages
were classified simply using EDF data. On the other hand,
there are cases where models learned from completely differ-
ent data are imported rather than the same classification model.
However, in some cases, models learned from completely
different data are used. In ElMoaqet et al. [37], the authors uti-
lized GoogLeNet as a pre-trained CNN to transfer knowledge
from natural images in time-frequency EEG data for automatic
sleep stage scoring. However, using transfer learning does not
necessarily increase performance [41], so much research is
required.

III. METHODS

A. Dataset
The 25 subjects (aged 35–61 years) were included in this

study. Table I presents detailed information on the study
participants. The exclusion criteria of the experiment were
as follows: (i) Individuals diagnosed with cognitive decline,
progressive mental or neurological diseases, lung disease,
severe snoring, narcolepsy, REM sleep disorders, or clinically

TABLE I
SUBJECTS’ DEMOGRAPHIC CHARACTERISTICS

uncontrolled severe internal diseases (e.g., diabetes and hyper-
tension), (ii) shift workers, pregnant and lactating women, and
(iii) individuals diagnosed with insomnia.

The PSGs were performed using Embla RemLogic 4.0 at
Samsung Medical Center, Seoul, South Korea. The key fea-
ture of this study, nasal pressure, was also measured using
the Embla N7000 device with MDrive. Each recording was
scored by a skilled PSG technician according to the AASM
manual. The ground-truth sleep stage was determined based on
EEG signals, eye movement, muscle activity, and respiratory
activity. The respiratory signal used here was measured by
chest movements and, thus, separate from the nasal pressure
measurements. The study protocol was approved by the Insti-
tutional Review Board of Samsung Medical Center (IRB No.
2021-04-133) and the study was conducted in accordance with
the ethical standards described in the Declaration of Helsinki.
Written informed consent was obtained from all participants
and all data was de-identified.

B. Nasal Signal Pre-Processing
The initial signals were pre-processed to transform the input

signal for model training. The Savitzky-Golay filter [42], [43]
was used to smooth and minimize data noise, as shown in
Fig. 2. The Savitzky-Golay filtering technique involves fitting
a polynomial to a narrow window of consecutive data points.
Subsequently, the coefficients derived from this polynomial
are used to compute a smoothed value for the central data
point positioned within the window. Data consist of a set
of points x j , y j , j = 1, . . . , n, where x j is an independent
variable and y j is an observed value. The set of m convolution
coefficients Ci is expressed as

Y j =

m−1
2∑

i= 1−m
2

Ci y j+i , (
m + 1

2
≤ j ≤ n −

m − 1
2

) (1)

This iterative process was applied to each individual data
point within the signal, ultimately generating a filtered signal
from the original data. The resulting filtered data were then
resampled, producing data with 2,000 timestamps (approxi-
mately corresponding to 66.6 Hz) within a 30-sec interval.
Furthermore, normalization was performed by adjusting the
data range to span from 0 to 1.

Next, we used SMOTE, a widely used machine learning
method, to rectify class imbalances in the datasets [44], [45].



LEE et al.: AUTOMATIC SLEEP STAGE CLASSIFICATION USING NASAL PRESSURE DECODING 2537

Fig. 2. Pre-processing phase for the nasal pressure signal. The downsampled data were computed to smooth the signal through the Savitzky-
Golay filter. The figure on the left shows the signal at the entire sleep time of a representative subject, and the figure on the right shows the enlarged
area corresponding to the red box in the figure on the left.

Fig. 3. The overall framework of the proposed multi-kernel convolutional biLSTM network. The proposed framework involves a synthetic minority
over-sampling technique (SMOTE) to rectify the imbalanced class in the pre-processing step. The deep learning architecture comprises three main
phases: three sets of convolution blocks for representation learning, an LSTM block for sequential learning, and a classification block for prediction.
Conv. = convolutional layer.

This technique was selected due to its unbalanced class
distribution, as a night’s sleep is usually dominated by NREM
sleep, as opposed to wake and REM sleep. The deep learning
framework was deemed suitable to fully understand the data
through SMOTE. SMOTE created synthetic samples for the
minority class, thereby enhancing the model’s ability to iden-
tify and categorize these instances. This involved computing
the difference vector between a minority class sample and its
nearest neighbor samples, followed by generating new data
points by scaling the difference vector using a random factor.
The x0 denotes a candidate for integration as a minority class
instance. IB(x0,r) refers to the coverage of the minority class
within a radius range r centered on x0.

IB(x0,r) =

∫
B(x0,r)

pX (x)dx (2)

where pX (x) denotes the original probability density of the
minority class. The newly generated point z is obtained by
adding a uniform random variable w multiplied by the vector

difference between xk (a neighboring point) and x0.

z = (1 − w)x0 + wxk (3)

The density function of point z is expressed as

pZ(z)

= (N − K )

(
N − 1

K

) ∫
x

pX (x)

∫
∞

r=∥z−x∥

pX

(
x +

(z − x)r
∥z − x∥

)
×

(
rd−2

∥z − x∥
d−1

)
B

(
1 − IB(x,r); N − K − 1, K

)
drdx

(4)

where N and K represent the numbers of samples of the
minority class and neighboring samples, respectively.

C. Proposed Model
The proposed multi-kernel convolutional biLSTM network

architecture was designed to classify sleep stages using nasal
signals, as illustrated in Fig. 3. The architecture comprised
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three main phases: (i) three sets of convolutional blocks for
representation learning, (ii) an LSTM block for sequential
learning, and (iii) a classification block.

Each convolution block, which was responsible for captur-
ing features, comprises two primary components: convolution
and batch normalization. Convolution employed a 1D format,
applying convolutions along the time dimension of the input
data to capture the patterns and relationships within the
sequence. This involved narrow and wide kernels (i.e., kernel
sizes 30, 50, 60, 70, 80, and 100) that were utilized as
the input sequence. The kernel multiplied element-wise with
the corresponding segments of the input, and the results
were aggregated to generate individual output values. This
process was repeated throughout the input sequence, result-
ing in a reduced-length output sequence. The adoption of a
multi-kernel approach in our sleep stage classification study
is driven by its ability to enhance feature representation,
capture temporal dynamics, provide robustness against signal
variability, and improve model generalization, making it highly
effective for analyzing the complex patterns inherent in nasal
pressure signals.

The convolutional kernel size was set to 1 × 512 using a
stride size of 1 × 1. The rectified linear unit (ReLU) served
as the non-linear activation function during this convolution
step and enhanced its ability to capture complex patterns in
the input data. The ReLU activation function was as follows:

f (x) =

{
0 for x < 0
x for x ≥ 0

(5)

f (x) = max(0, x) (6)

In addition, a max pooling technique was employed to select
the highest value within a small window to represent a segment
of a convolved sequence. The output of the convolutional and
pooling layers was flattened to a 1D vector. Following the
convolutional stages, an LSTM block featuring a biLSTM
setup was incorporated. With a hidden unit size of 256, this
block effectively captures temporal dependencies and complex
patterns in sequential data. Particularly in the case of cyclical
data, such as the sleep-wake cycle or the cycle across the
sleep stages, such an element could be considered crucial.
Subsequently, a fully connected (dense) layer learns the intri-
cate associations between the various features extracted by the
convolutional and LSTM layers.

A softmax layer was used in the final classification step.
This layer transformed the outputs of the preceding layers into
probabilities for different sleep stages. Through the softmax
layer, the model generated a probability distribution across
distinct classes, thus facilitating accurate categorization of the
input data. The specific parameters of the proposed model are
listed in Table II.

IV. EXPERIMENTS

A. Experimental Setup
Many studies that use a single biosignal typically classify

sleep stages by reducing them to 3- or 4-class because the
slower signal adaptation makes this more feasible [13], [46].
Therefore, we combined the sleep stages by dividing them into

TABLE II
DETAILS OF PARAMETERS AND LAYER IMPLEMENTATIONS FOR THE

PROPOSED MULTI-KERNEL CONVOLUTIONAL BILSTM NETWORK

TABLE III
DETAILS OF THE DATASET USED IN OUR EXPERIMENTS

three and four stages. Table III details each sample in a 30-
sec epoch according to the AASM manual. We adjusted it to
3-class (i.e., wake, NREM, and REM) or 4-class (i.e., wake,
light sleep, deep sleep, and REM) to suit our experiments.

To evaluate the various models, we used LOO-CV as
the evaluation method. This method can be viewed as a
cross-validation of each subject as a transfer learning method
to explore the generalizability of the model [27]. For example,
we had 25 participants, so we used the training dataset for the
remaining 24 subjects, excluding one subject from the test data
set, and evaluated the data of the unseen subject who was not
included in the training process [31]. For each iteration of
the LOO-CV, we further split the training set (which includes
data from 24 patients) into a smaller training subset and a
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TABLE IV
SPECIFICATIONS OF HYPERPARAMETERS FOR COMPARATIVE MODELS

validation subset. Specifically, we used a stratified split to
ensure that the validation subset is representative of the overall
sleep stage distribution. We randomly allocated 80% of the
data for the training subset and 20% for validation subset
within each leave-one-out iteration. This validation subset was
used to monitor the model’s performance during training and
to tune the hyperparameters. The final model was evaluated
in the test patient (left out during the LOO-CV iteration) to
assess its generalizability. This process was repeated for each
patient in the dataset to evaluation. SMOTE was applied only
to training datasets.

B. Comparative Methods
We further experimented with the following four models to

compare the sleep stage classification performance using the
proposed model. The same training and test procedure was
performed for the comparison model as used for the proposed
model. The hyperparameter tuning was applied using the
default setting provided by scikit-learn library (https://scikit-
learn.org/). The selection of default parameters was based
on an unbiased comparison of the baseline performance of
each machine learning model against our proposed model.
That means, by using the standard hyperparameter tuning
(Table IV), we aimed to mitigate any potential biases that
might arise from custom-tailored hyperparameter tuning.

1) Random Forest (RF): This type of ensemble learning
method learns from several decision trees constructed during
training [47]. A tree comprises a set of nodes and edges that
form a hierarchical structure. Multiple input variables can be
handled without erasing them, and the generalization perfor-
mance is high through randomization. Due to this randomness,
the trees have slightly different characteristics that improve
generalization performance by making the predictions of each
tree uncorrelated.

2) Naïve Bayes Classifier (NBC): This is a type of probabil-
ity classifier that applies Bayes’ theorem, which assumes the
independence between classes. There is the advantage that the
amount of training data to estimate the parameters required
for classification is very small [48]. Although it is known for
its simplicity, the Naïve Bayes can outperform other state-
of-the-art classification methods in many applications such as
automatic medical diagnosis [49].

3) Linear Discriminant Analysis (LDA): LDA classifies data
by learning the data distribution and creating decision bound-
aries. It aims to find a straight line that can effectively

distinguish between two classes after projecting them onto a
particular axis. This straight line indicates that the centers of
the multiple classes are far from each other and that their
variance must be small after the projection [49]. Therefore,
it reduces dimensions by projecting the input data set into a
low-dimensional space.

4) Support Vector Machine (SVM): SVM classified the data
by determining the optimal separation hyperplane from the
training data [50]. It determines a hyperplane that maximizes
the distance between the data points of each class closest
to the hyperplane. SVM is capable of non-linear and linear
classification. To achieve this, it is necessary to consider
the given data as a high-dimensional feature space. In this
study, a stochastic gradient descent algorithm was used for
optimization.

C. Evaluation Metrics
For overall performance, three metrics used mainly in the

classification of the sleep stage were adopted: accuracy (ACC),
macro F1-score, and kappa value [18]. In particular, the F1-
score refers to the harmonic mean of precision and recall [12]
and is an essential performance metric for class imbalance
datasets [31]. When true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN) are provided for
each class, the following three metrics can be calculated:

ACC =
T P

T P + F P + T N + F N
(7)

Precision =
T P

T P + F P
(8)

Recall =
T P

T P + F N
(9)

F1-score = 2 ×
Precision × Recall
Precision + Recall

(10)

Kappa values were calculated as follows:

K appa value =
p0 − pe

1 − pe
= 1 −

1 − p0

1 − pe
(11)

where p0 and pe denote the accuracy and probability of the
chance rate, respectively.

Finally, classification performance was measured for each
class. In this study, the F1-score was calculated as a class-wise
performance metric.

V. EXPERIMENTAL RESULTS & DISCUSSION

A. Classification Performance
Fig. 4 presents a confusion matrix that delineates the out-

comes of the proposed model. In Fig. 4(a), the classification
accuracy for the 3-class configuration was 0.7040 (± 0.0550)
in a data set comprising 25 subjects. In particular, the highest
prediction rate was recorded for NREM, with a value of
0.7896 for TP. In contrast, for the wake, the TP value was
lower (0.2838), indicating a pronounced confusion between
the predictions for the wake and NREM.

Fig. 4(b) shows the classification performance for the
4-class stages, showing an accuracy of 0.6044 (± 0.0606).
Among TP, the preponderance of predictive instances belonged
to light sleep with a substantial likelihood of 0.6726. The REM
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Fig. 4. Confusion matrix for the sleep stage classification. (a) Clas-
sification of the three-class sleep stages: wake, NREM, and REM.
(b) Classification of the four-class sleep stages: wake, deep sleep, light
sleep, and REM.

had a probability of 0.4710. On the contrary, the lowest prob-
ability quantified at 0.2129, was associated with the prediction
of deep sleep. Regarding the probability of TN, the most
confusing results were obtained when predicting light sleep,
producing a confusion probability of 0.3838, specifically when
deep sleep was the actual class. On average, the most accurate
predictions were related to light and deep sleep conditions.

This evaluation underscores the potential efficacy of REM
predictions, as well as the model’s ability to accurately predict
instances aligned with the light- and deep-sleep categories.

B. Representation of Sleep Stage Classification
A hypnogram is a graphical representation of the sleep

stages through which an individual progresses during the
night. In Fig. 5, time is represented on the horizontal axis for
approximately 650 min, and the stages of sleep are indicated
on the vertical axis. Different sleep stages were color-coded
or labeled using different symbols. The hypnogram provides

a visual summary of the amount of time an individual spends
in each stage of sleep during the night, providing information
on sleep quality and patterns using the proposed model. The
pre-processed nasal signal for sleep time is shown in Fig. 5(a).
In the 3- and 4-class classifications, NREM and light sleep
exhibited the highest predicted probabilities (Fig. 5(b), (c)).
Furthermore, when considering the 4-class classification, the
highest probability of prediction was observed for light sleep
and REM (Fig. 5(c)).

C. Evaluation for Comparative Methods and
Proposed Model

Our proposed model exhibited superiority in both 3-class
and 4-class sleep stage classifications compared with the
four methods: RF, NBC, LDA, and SVM. Table V presents
the complete comparison results for the 3-class sleep stage
classifications. Our proposed model achieved an accuracy of
0.7040 (± 0.0550), a macro F1-score of 0.4904, and a kappa
value of 0.2831, thus outperforming all other comparative
models. A particularly remarkable result was observed for the
class-wise F1-score, where the proposed model demonstrated
the highest performance for the NREM, yielding an score of
0.8216. In contrast, the comparative models yielded the fol-
lowing results: RF achieved an accuracy of 0.3368 (± 0.0454),
NBC achieved 0.5720 (± 0.1231), LDA achieved 0.3992
(± 0.0681), and SVM achieved 0.3560 (± 0.1809). These per-
formances converged around chance-level accuracy (0.3342).
SVM showed the lowest predicted classification performance
with an accuracy of 0.3560, a macro F1-score of 0.2320, and
a kappa value of 0.0149. SVM has a difficult time deter-
mining an optimal decision of the decision boundaries [51].
On the contrary, RF exhibited robust predictive perfor-
mance for NREM, substantiated by a class-wise F1-score
of 0.4236.

In Table VI, for the 4-class sleep stage classification, the
proposed model achieved the highest performance, with an
accuracy of 0.6044 (± 0.0606), a macro F1-score of 0.3496,
and a kappa value of 0.2174. Among the class-wise F1-scores,
the predictive performance for light sleep was good, attain-
ing a score of 0.7616. The NBC recorded an accuracy of
0.5068 (± 0.1143) and macro F1-score and kappa values of
0.3292 and 0.1828, respectively, showing a high performance
compared to other models. The class-wise F1-score for NBC
was 0.6680, which means its strength in predicting light
sleep. On the contrary, other comparative models showed
predicted performances; for example, RF achieved an accuracy
of 0.3564 (± 0.0774), LDA achieved 0.2908 (± 0.0494), and
SVM recorded 0.2020 (± 0.0852), similar to chance-level
accuracy.

In particular, in the 4-class sleep classification, the ratio of
deep sleep (N3) is so low at 8.68%, that overall classification
performance appears to be lower than that of the 3-class, which
has a relatively good class ratio. However, in the proposed
framework, SMOTE was used to solve the class imbalance
problem, so performance improvement was particularly notice-
able in the 4-class compared to other models.

In addition, even though both the class-wise F1-score and
the macro F1-score are higher than the comparative models,
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Fig. 5. Example of hypnogram according to inputs, labels, and predictions from a representative subject who has shown the highest performance.
(a) The pre-processed nasal signals were normalized from the range of 0 to 1. (b) Predicted stages follow the ground truth for 3-class sleep stages
(wake, NREM, and REM). The wake refers to purple, NREM refers to blue, and REM refers to red. (c) The predicted stages track the ground truth
for 4-class sleep stages (wake, light sleep, deep sleep, and REM). Wake, light sleep, deep sleep, and REM refer to purple, blue, green, and red,
respectively. The ground truth is visually indicated by an expert.

the F1-score seems very low in both the 3-class and 4-class
sleep stage classification. In the 3-class sleep stage classifi-
cation, when the proposed model was used, a low class-wise
F1-score was shown at 0.0756 in wake and 0.3704 in REM,
while a high performance was shown at 0.8216 in NREM.
It is believed that wake and REM have a relatively low class
ratio in the entire sleep stage, and both have movements
in the body, so their performance is relatively lower than
that of NREM. Likewise, in all other comparative models,
the F1-score of NREM was higher than that of wake and
REM. In the 4-class sleep stage classification, the proposed
model showed relatively high performance with light sleep of
0.7616 and REM of 0.5724, and low performance with wake

of 0.2432 and deep sleep of 0.1881. In the wake, it seems that
misclassification appeared because it was relatively confused
with REM where movement occurs and light sleep with a
large number of data. In addition, deep sleep seems to have
had difficulty learning because the number of data was 8.68%.
In other comparative models, the F1-score of light sleep was
also higher than in other stages of sleep. In particular, the
proposed model showed a relatively higher F1-score of REM
than other models. Therefore, based on the results of this clas-
sification, the macro F1-score, a performance indicator suitable
for class imbalance, was 0.4904 in the 3-class sleep stage and
0.3496 in the 4-class sleep stage, which was somewhat lower
than the accuracy.
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TABLE V
CLASSIFICATION PERFORMANCE OF THREE-CLASS FOR SLEEP

STAGE SCORING USING EVALUATION METRICS

D. Limitations & Future Works

Although this study shows promising results, it has several
limitations. First, the 5-class sleep stage classification was not
performed, which would have corresponded to the AASM
guidelines. We focused on 4-class sleep stage classification
similar to other studies using a single biosignal because it was
based on scenarios for digital healthcare applications using
simple equipment, such as wearable devices.

Second, the performance of our proposed model was decent,
but the number of subjects is relatively small, limiting gener-
alizability. In addition, since this experimental performance is
somewhat inferior to other studies using a single biosignal,
the difference in the number of subjects is believed to be
a major factor. For example, 561 subjects were used in the
study by Sridhar et al. [25], which achieved 77% accuracy in
the 4-class sleep stage using a single ECG signal. However,
the performance of the proposed model with limited training
data highlights its potential. In addition, we conducted the
experiment heuristically considering the more complex deep
learning scenario. For the first time, when we designed our

TABLE VI
CLASSIFICATION PERFORMANCE OF FOUR-CLASS FOR SLEEP

STAGE SCORING USING EVALUATION METRICS

model initially, the convolution block and the LSTM block
were designed to be shorter and deeper. However, it was
observed that the classification performance was rather sat-
urated around average classification performance (± 5%).
We could not expect a dramatic performance improvement
even if we stacked the layers more deeply. Rather, it showed
similar performance, and more computational cost occurred.
Furthermore, after the entire LOO-CV training, the proposed
method took about 22 minutes on average to train, but other
models took more than average 46 minutes. In particular,
as the LSTM layer increased, more training time was required.
Therefore, in this study, we reported the most appropriate
architectural configuration as the proposed model. In future
work, after collecting the large amount of data, we will adopt
AutoML techniques [52] to obtain an optimized deep learning
architecture for classification.

Third, we focused on sleep stage classification, not sleep
apnea, even though the nasal pressure signals may be more
favorable for the diagnosis of sleep apnea. The nasal pressure
signals can perform well in apnea events and have histor-
ically shown excellent ability to detect apnea events [23].
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However, our data was measured to confirm the possibility
of nasal pressure in the sleep stage classification in healthy
individuals, and unfortunately, the apnea-hypopnea index for
the diagnosis of sleep apnea was not measured. In other words,
the method was used in healthy participants to detect the sleep
stage. Future work should test this method on patients with
apnea (as this might be more difficult to assess sleep stage in
the presence of apnea) and in doing so, we could integrate an
apnea detection module that operates on the same signal in our
model (to counteract the potential “artifact” of apnea). In this
regard, the proposed framework itself could be applicable to
the diagnosis of sleep apnea.

Furthermore, we will develop an advanced model to conduct
a further evaluation on a test-bed that can also distinguish
classes for sleep classification up to N1 and N2 for patients
and individuals with sleep disorders.

VI. CONCLUSION

In this study, a deep learning model was proposed to classify
sleep stages based on nasal pressure. After preprocessing
the nasal pressure signal, SMOTE was used to resolve the
class imbalance of the sleep stage classification task. In addi-
tion, a multi-kernel technique was used to extract sleep-stage
features from the pre-processed data through convolution
blocks, which were predicted through an LSTM block. Our
results indicate that our model achieved superior performance
compared to existing baseline models and is meaningful in
that it can reduce sleeper inconvenience by wearing the low
impact measuring equipment used to record nasal pressure.
The well-documented rise in sleep disorders [4], [5] requires
matching technology that can match the need for diagnosis
and, potentially, help with treatment. In particular, devices
with a low burden such as those used here could allow for
easy training, home-environment use, and even longitudinal
tracking of disease and treatment progression. Furthermore,
the current device offers a unique opportunity to be used in
unity with some interventions, which could both track and
facilitate sleep through nasal equipment. In the future, testing
the proposed methodology in clinical contexts may broaden
its applicability even further, where in particular respiratory
issues could be easily and sufficiently captured.
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