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GMAC—A Simple Measure to Quantify Upper
Limb Use From Wrist-Worn Accelerometers

Sivakumar Balasubramanian , Member, IEEE

Abstract— Various measures have been proposed to
quantify upper-limb use through wrist-worn inertial mea-
surement units. The two most popular traditional measures
of upper-limb use – thresholded activity counts (TAC) and
the gross movement (GM) score suffer from high sensitivity
and low specificity, and vice versa. We previously proposed
a hybrid version of these two measures – the GMAC –
that showed better overall detection performance than TAC
and GM. In this paper, we answer two critical questions
to improve the GMAC measure’s usefulness: (a) can it be
implemented using only the accelerometer data? (b) what
are its optimal parameter values? Here, we propose a mod-
ified GMAC using only the accelerometer data and optimize
its parameters to develop: (a) a generic measure that is both
limb- and subject-independent, and (b) limb-specific mea-
sures that were only subject-independent. The optimized
GMAC showed better detection performance than the pre-
vious GMAC and surprisingly had comparable performance
to the best-performing machine learning-based measure
(random forest inter-subject model). In hemiparetic data,
its performance was similar to the previous GMAC and
the random forest inter-subject model; the limb-specific
GMAC measure, however, had a better performance than
the generic measure. The optimized limb-specific GMAC is
a simple, interpretable alternative to a machine learning-
based inter-subject model. The optimized GMAC can be
a valuable measure for offline or real-time detection and
feedback of upper limb use. The preliminary results of this
study, based on a small dataset, need to be validated on a
larger dataset to evaluate its generalizability.

Index Terms— Neurorehabilitation, upper-limb assess-
ment, wearable sensor, upper-limb functioning, accelerom-
eters, inertial measurement units.

I. INTRODUCTION

THERE is a growing interest in using wearable sensors
for tracking upper limb (UL) movement behavior to

quantify participation in daily life [1], [2], [3]. This interest is
fuelled by the need to go beyond conventional measures that
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rely on self-reported questionnaires and patient interviews [4],
which lack objectivity and sensitivity. An ideal system for this
assessment must consist of (a) an unobtrusive measurement
system to seamlessly record movement-related information,
and (b) an automated data analytics pipeline to extract the
relevant information. Such a system can provide accurate and
reliable quantitative answers to clinically relevant questions,
such as, how much the two ULs are used, how symmetric is
their use, how “good” are the movements, etc.

Micro-electromechanical systems-based inertial measure-
ment unit (IMU) is a compact, wearable sensor that measures
linear acceleration and angular velocity of the rigid body
to which it is attached. Ideally, a single sensor per limb is
preferred to track UL movements in daily life. The most
popular choice for sensor location is around the distal forearm
just proximal to the wrist joint [4], [5], [6], [7], [8], for
the following reasons: (a) the forearm’s linear and angular
kinematics are sensitive to both shoulder and elbow move-
ments, (b) this location has the largest moment arm about
the shoulder and elbow joints, thus, registering relatively large
linear acceleration signals resulting from shoulder/elbow joint
rotations, and (c) the ease of donning/doffing the sensor on
this location,

The most fundamental construct of interest in UL function-
ing is UL use [4]. This is a binary construct indicating the
presence or absence of a voluntary, meaningful UL move-
ment or posture [9]. An accurate estimation of this complex
construct requires access to information on the complete
UL kinematics and kinetics, and the context in which the
movement/posture is performed. In practice, a single wrist-
worn IMU only provides the linear acceleration aS and angular
velocities of the ωS of the forearm in the local sensor reference
frame, which is problematic for multiple reasons: (a) it cannot
dissociate useful shoulder-elbow movements from unwanted
movements, such as whole body movements, (b) it cannot
detect finger movements, (c) it cannot ascertain if a movement/
posture is voluntary, and (d) it is devoid of contextual
information.

Nevertheless, several measures have been proposed in the
literature to detect UL use from a single IMU [5], [7], [8], [10].
These measures can be broadly categorized into traditional [5],
[10], [11] and machine learning(ML)-based measures [6], [10];
we use the terms measure, model, and algorithm interchange-
ably in the rest of the manuscript. The traditional measures are
simple, hand-crafted algorithms with pre-specified parameter
values that use specific signal features to detect UL use. For
instance, the thresholded activity counts (TAC) measure [5]
uses the magnitude of the gravity-subtracted acceleration,
while the gross movement (GM) score [4], [8] uses the
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orientation of the forearm and the amount of forearm move-
ment. On the contrary, ML-based measures are algorithms
trained on a set of labeled data to detect UL use from IMUs.
Random forests, support vector machines, and multilayer
perceptrons have been reported previously for detecting UL
use [6], [10], with the random forests [6], [10] offering the best
performance to date. Additionally, intra-subject (i.e. subject-
specific) ML models perform better than inter-subject (i.e.
one model trained across different participants) models [6],
[10]. Although the ML-based measures perform better than
the traditional methods, the latter has some advantages, such
as: (a) they are simple and easy to interpret, and (b) they can
be implemented efficiently in firmware for real-time detection
and feedback of UL use (e.g. like the step count feedback
from pedometers).

The TAC and the GM measures are the two most popular
measures for quantifying UL use. Previous studies have shown
that the TAC is a highly sensitive measure, while the GM
is highly specific [10], [12]. We recently proposed a hybrid
measure, called the GMAC, that combines the TAC and GM
measures to balance out their respective high sensitivity and
specificity [10]. The GMAC showed a better overall perfor-
mance than TAC or GM, as quantified using the Youden
index, but had a lower performance than the inter- and
intra-subject ML measures. Our previous work also showed
that the best-performing ML measures used the mean and
variance of the accelerometer signal to detect UL use; inter-
estingly, the accelerometer’s mean and variance are related
to the orientation of the forearm (used by the GM), and the
variance is related to the amount of forearm movement (related
to the GM and TAC). Thus, in principle, the GMAC and
ML measures use similar information but different decision
boundaries for deciding UL use. Given, that GMAC is a simple
and reasonable alternative to the ML measures, a more detailed
investigation of the GMAC algorithm and the optimization
of its parameters to work effectively for both healthy and
hemiparetic participants are warranted. Thus, this study aimed
to find answers to two important questions about the GMAC
algorithm:

1) Can the GMAC algorithm be implemented using only
a wrist-worn accelerometer? This is an important ques-
tion because: (a) some popular wearable sensors (e.g.
from ActiGraph, USA) only contain an accelerometer,
(b) gyroscopes do not add any values to UL use detec-
tion [10], and (c) gyroscopes are power-hungry sensors,
and avoiding them can result in more efficient UL-use
trackers.

2) What are the optimal parameters for the GMAC
algorithm that work well for both healthy and hemi-
paretic participants? The parameters of the GMAC
algorithm were previously chosen based on TAC and
GM, which might not be optimal.

The paper starts with a description of the GMAC algorithm
proposed by Subash et al. [10], followed by the description of
the newly proposed GMAC that works only with accelerom-
eter data. The optimization of the parameters of this new
algorithm and its comparison with existing algorithms is
presented subsequently. The paper ends with a discussion of

TABLE I
DETAILS OF THE HEALTHY AND HEMIPARETIC PARTICIPANTS THAT

PARTICIPATED IN THE STUDY [12]

its results, its implications for clinical use, and the limitations
of the current study.

II. METHODS
This work used data from our previous study [12] which is

openly available as part of a Github repository. The data was
collected from 10 healthy and 5 hemiparetic participants, using
a custom-built wearable IMU sensor that samples accelerom-
eter and gyroscope data at 50 Hz. Each IMU sensor contained
an SEN-14001 board (Spark Fun Inc.) with a SAMD21
microprocessor, a real-time clock, a 9-DOF IMU (MPU9250,
InvenSense-TDK Co.), a MicroSD card slot, and a battery
charging circuit. The IMU data and the real-time clock’s times-
tamp were logged at 50 Hz to an 8 Gb microSD card. Each
participant wore two IMU sensors one on each arm – whose
real-time clocks were synchronized to GMT+5.5h. The details
of the 10 healthy and 5 hemiparetic participants are provided
in Table I.

The participants performed various tabletop and
non-tabletop tasks (listed in Table II) chosen from the Motor
Activity Log [13] while wearing the IMU sensors on both
forearms, proximal to the wrist joints. These tasks were chosen
such that they included both functional and non-functional
movements of the upper limbs. The movements performed
by these participants were simultaneously recorded using a
video camera connected to a PC that was time-synchronized
with the IMU sensors. A custom software (using OpenCV
and Python) was written to record the video data along
with its PC’s timestamp. Two trained occupational therapists
annotated the recorded videos to label UL use employing the
Functional Arm Activity Behavioural Observation System
framework (FAABOS) [14]. More details about the data and
the protocol can be found in [10], [12].

A. The Previous GMAC Measure
The accelerometer and gyroscope signals are given by aS [n]

and ωS [n], respectively, at the sampling time instant n ∈ Z;
both signals are sampled at fs = 50Hz. The previously
proposed GMAC measure (referred to as the “Old-GMAC”)
computes the UL use uold

gmac every second (i.e. every fs
samples) using the activity counts αvm obtained from the
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Fig. 1. Schematic of the proposed GMAC algorithm to work with only accelerometer data. The proposed algorithm has three subblocks:
(a) Forearm orientation (red background), (b) Amount of forearm movements (blue background), and (c) Decision rule (green background). The
different parameters associated with the three blocks are shown in green colored text in the figure.

TABLE II
LIST OF TASKS PERFORMED BY THE PARTICIPANTS IN [12]

vector magnitude algorithm [5], and the mean pitch angle θ p
of the forearm,

uold
gmac [k] =

{
1, αvm [k] > 0 & |θ p [k] | < 30 deg
0, Otherwise

θ p [k] =
1
fs

∑
n

θp [n] , (k − 1) · fs < n ≤ k · fs (1)

where, k ∈ Z represents the sampling time instants of uold
gmac,

αvm , and θ p (all computed every 1s), αvm [k] and θ p [k]
are the output of the vector magnitude algorithm and the
mean forearm pitch angle using the IMU data over the time
window where (k − 1) · fs < n ≤ k · fs , respectively. This
Old-GMAC algorithm uses both the accelerometer and the
gyroscope signals to compute αvm and θ p [10].

B. The New GMAC Measure: Using Only the
Accelerometer Data

If we only had the acceleration data aS [n], we could still
estimate information about the amount of forearm movement
αgmac [n] and forearm orientation θgmac [n]. A block diagram
representation of the estimation procedure for αgmac [n] and
θgmac [n] from aS [n] is shown in Figure 1, which also shows
the various associated parameters (details in Table III). The
forearm orientation is computed as the arccos of the normal-
ized component of the acceleration signal along the length of
the forearm (which is taken as the x axis in Figure 1). The
amount of forearm movement is computed by first highpass
filtering the accelerometer data to remove the slow varying
contribution from gravity, followed by computing the 2-norm
(Figure 1). Both of these signals are smoothed using moving

average filters. The decision rule consists of two rules as shown
in Eq. 1 for detecting UL use,

ugmac [n] = uα [n] · uθ [n] (2)

where, uα [n] , uθ [n] ∈ {0, 1} are obtained through thresh-
olding rules applied on αgmac [n] and θgmac [n], respectively,
smilar to Eq. 1. The thresholding rule on αgmac [n] is given
as follows,

uα [n] =

{
1, αgmac [n] > αth

0, Otherwise
(3)

While, the second thresholding rule on θgmac [n] is a hys-
teresis rule, where the output at the time instant n depends
on the current input θgmac [n] and the past value of the output
uθ [n − 1],

uθ [n] =


1, θgmac [n] > θth

0, θgmac [n] < θth − 1θ

uθ [n − 1] , Otherwise
(4)

Figure 2 depicts the above hysteresis rule, where the
shaded red region represents the range of forearm pitch
angles where the previous state of the output is retained
(uθ [n] = uθ [n − 1]). Forearm pitch angles above θth are con-
sidered as UL use (uθ [n] = 1), while angles below θth − 1θ

are considered as no UL use uθ [n] = 0.
The choice of a simple thresholding rule for αgmac [n]

and a hysteresis rule for θgmac [n] was based on prelimi-
nary optimization work, indicating that a hysteresis rule on
αgmac [n] did not improve the detection performance. Eqs. 2, 3,
and 4 constitute the new GMAC algorithm that uses only the
accelerometer data aS [n] to detect UL use. The optimization
of the parameters associated with the different components of
this algorithm is described in the next section.

C. Optimization of the New GMAC Parameters
The optimization of these parameters was carried out

through a grid search approach with the parameter ranges for
the search shown in Table III. The choice of the parameter
ranges was based on what we believed to be a reasonable
range for the parameters:
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TABLE III
DESCRIPTION OF THE DIFFERENT PARAMETERS OF THE PROPOSED GMAC ALGORITHM DEPICTED IN FIGURE 1

Fig. 2. Depiction of the pitch threshold rule with hysteresis. The shaded
red region represents the range of forearm pitch angles where the
previous state of the output is retained

(
uθ [n] = uθ [n − 1]

)
. The pitch

angles above θth are considered as UL use
(
uθ [n] = 1

)
, while angles

below θth − ∆θ are considered as no UL use uθ [n] = 0. g represents
the acceleration due to gravity, the brown colored box on the forearm
represents the IMU sensor, and the angle of the blue dashed line
(forearm axis) represents the pitch angle of the forearm. In this particular
example, θgmac [n] > θth H⇒ uθ [n] = 1.

• fhp ∈ {0.01, 0.1, 1} H z: Frequencies below 0.01H z are
most likely to correspond to static postures, and move-
ments with frequency components 1H z are likely to
correspond to movements of interest.

• Nhp ∈ {1, 2} were chosen to keep the high pass filter
simple.

• Np, Nam ∈ {1, 25, 50} were chosen to limit the window
size of the moving average filters to less than 1s, to avoid
the past beyond 1sec from influencing the upper-limb use
output. The sampling frequency is fs = 50H z.

• αth ∈ {0, 0.1, 0.25}: This threshold was based on the
values previously used in the GMAC algorithm [10].

• θth ∈ {−90, −80, · · · , 90} deg covers the entire range of
possible angles of interest.

• 1θ ∈ {0, 20, · · · , 80} deg covers a wide enough range of
hysteresis values between 0 and 90.

For each parameter combination p, the Youden index [15]
was computed for each limb for each subject (healthy partic-
ipants and patients), as the following:

J (p) = Sensi tivi t y (p) + Speci f ici t y (p) − 1

where, p =
[

fhp, Nhp, Nam, Np, αth, θth, 1θ
]⊤ is a parameter

combination, the sensitivity and specificity are computed from
the confusion matrix generated from the UL use detected using
the new GMAC algorithm for the given parameter combination
ugmac (Figure 1), and the ground truth obtained from the
FAABOS framework.

The optimal parameter combination for the new GMAC
algorithm was defined as the one that maximizes the over-
all detection accuracy, consistently (in terms of the Youden
index). This was defined as the following optimization
problem,

p∗
= arg max

p
f (p)

f (p) := J50 (p) ·
[
1 − (J75 (p) − J25 (p))

]
(5)

where, f (p) is the performance measure of a particular
parameter combination p, Jq (p) is the q th percentile of the
Youden index computed for a given parameter combination p,
and p∗ is the optimum parameter combination. The median
Youden index J50 (p) in f (·) is a measure of the detection
accuracy, while the term

[
1 − (J75 (p) − J25 (p))

]
is a measure

of the consistency of the detection accuracy.
The new GMAC algorithm’s parameters were optimized for

developing two types of models:

• A single generic model was obtained by maximizing
f (p) on the entire dataset (15 participants) involving both
limbs of healthy and hemiparetic patients. This model
will be referred to as the “generic” model in the rest of
the manuscript. Although simple, a single generic model
can miss inter-subject and inter-limb differences and thus
compromise performance.

• Limb specific models obtained by maximizing f (p)

for each limb of the 10 healthy (right and left), and
5 hemiparetic (affected and unaffected) participants. This
results in four models corresponding to the two limbs of
healthy and hemiparetic patients. These models will be
referred to as “limb-specific” models. Notice that these
are still inter-subject models that are limb-specific; a
single model is still employed across participants for each
limb. This approach is expected to perform better than
the single generic model by accounting for inter-limb
differences.

Leave one subject out validation: An estimate of the expected
performance of the optimized GMAC models was com-
puted by employing a leave-one-subject-out cross-validation
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TABLE IV
OPTIMAL PARAMETER COMBINATION FOR THE GMAC ALGORITHM FOR

THE DIFFERENT MODELS. THE OPTIMAL PARAMETER COMBINATION IS
THE ONE THAT MAXIMIZES THE PERFORMANCE MEASURE f

(
p
)

DEFINED IN EQ. 5. THE FIRST ROW CORRESPONDS TO THE SINGLE

MODEL FOR ALL PARTICIPANTS, WHILE THE REST FOUR ARE MODELS

TRAINED FOR THE FOUR LIMBS - LEFT AND RIGHT FOR THE 10
HEALTHY PARTICIPANTS, AND UNAFFECTED AND AFFECTED

LIMBS FOR THE 5 PATIENTS

approach. This cross-validation approach was slightly different
for the generic and the limb-specific models.

1) Validation of the generic model: We have a total of
15 participants. The grid search optimization process
was performed on 14 participants by randomly leaving
out one participant i ∈ {1, 2, . . . 15}; let the optimal
parameter when leaving out the i th participant be p∗

i .
The Youden index J

(
p∗

i
)

of these 15 optimal parameters{
p∗

i
}15

i=1 were obtained to compute the expected Youden
index from generic optimal GMAC model on unseen
data.

2) Validation of limb-specific models: The procedure
is similar to that of the generic model, except that
limb-specific models for the left and right arms result
in 10 optimal parameter sets (corresponding to leaving
one of the 10 healthy participants out), and 5 estimates
for affected and unaffected limb-specific models (cor-
responding to the 5 patients). The Youden indices were
similarly computed for the optimal parameters identified
for each of the four limb-specific by leaving a subject
out.

The expected Youden index obtained from the
cross-validation procedure for the different models was
compared against that of the Old-GMAC, inter-subject
random forest (RF-Inter), and intra-subject random forest
(RF-Intra) measures from our previous work [10], through
linear mixed effects models; the statistical significance was
set at p < 0.05.

The data used in the current study was made available as
part of our previously published work in [10]. This data can
be found at Upper-limb Assessment GitHub repository. The
code used in the current study is available at GMAC GitHub
repository.

III. RESULTS

All analyses in this work were carried out in Python
using the Jupyter Notebook environment [16] and the linear
mixed-effects modeling was performed using the ‘statsmodels’
package [17]. The results for the generic model are presented
first followed by that of the limb-specific models.

A. Performance of the Generic Model
The optimal parameter combination for the generic model

is shown in the first row of Table IV which results in the

TABLE V
COMPARISON OF THE YOUDEN INDEX, SENSITIVITY, AND SPECIFICITY

OF THE OPTIMIZED GENERIC GMAC WITH THE OLD-GMAC,
RF-INTER, AND RF-INTRA MEASURES FROM SUBASH ET AL. [10].

THE MEAN DIFFERENCES WERE OBTAINED THROUGH A LINEAR

MIXED EFFECT MODEL WITH THE DIFFERENT MEASURES AS THE

FIXED EFFECT, AND THE PARTICIPANTS AS A RANDOM EFFECT. THE

CELLS HIGHLIGHTED IN LIGHT RED INDICATE

NON-SIGNIFICANT DIFFERENCES

maximum performance f (p∗) = 0.409 across both limbs of
the 10 healthy and 5 hemiparetic participants.

Figure 3(A) shows the comparison of the Youden index of
the optimized GMAC model to that of the three different mea-
sures from [10]: the Old-GMAC, the RF-Inter and RF-Intra
models. The mean Youden indices and the 95% confidence
interval shown in Figure 3(A) are bootstrap estimates obtained
for both limbs across all participants. The figure indicates
that the optimized generic GMAC is better than the Old-
GMAC measure, but is not different from the RF-Inter subject
model. Figure 3(B) shows the receiver operating character-
istics plot depicting the sensitivity and specificity of the
optimized GMAC algorithm and the three measures from
Subash et al. [10]. Figure 3(C) and (D) show the scatter plot
of the sensitivity and specificity of the optimized GMAC
algorithm for different parameter combinations for the healthy
and hemiparetic participants, respectively. The mean and 95%
confidence interval estimated through a bootstrap procedure
for the sensitivity and specificity are shown in these plots.

The mean differences in the Youden index, sensitivity,
and specificity between the optimized GMAC and the other
three measures from [10] are shown in Table V; these values
were obtained through a linear mixed effect model with the
different measures as the fixed effect, and the participants as
a random effect. Separate linear mixed-effects models were fit
for all participants, healthy participants alone, and hemiparetic
participants alone (Table V). The cells highlighted in light
red indicate non-significant differences. The table reveals the
following:

1) When we consider all participants (10 healthy and
5 hemiparetic) or just the healthy participants, the
generic optimized GMAC measure has a significantly
greater Youden index (Table V) than Old-GMAC and is
not different from the RF-Inter subject model.

2) For hemiparetic participants, optimized GMAC is not
significantly different from both the Old-GMAC and
RF-Inter participants models.
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Fig. 3. Comparison of the Youden index of the generic model with that of the Old-GMAC, RF-Inter, and RF-Intra measures from Subash et al. [10].
(A) Plot of the bootstrap estimates of the mean and its 95% confidence interval of the Youden index for the different measures. (B) The receiver
operating characteristic plot depicts the sensitivity and specificity of the generic model and the three measures from Subash et al. [10]. The dashed
black line represents the performance of a random classifier with a Youden index of 0. The lighter-colored dotted lines passing through the markers
represent the constant Youden index line corresponding to the different measures. The closer the dotted line is to the top-left corner, the higher
its Youden index. (C) The scatter plot of the sensitivity and specificity of the proposed GMAC algorithm for different parameter combinations p for
the healthy participants. The scatter plots in green and orange represent the data for the right and left limbs, respectively, along with the mean and
95% confidence interval of the sensitivity and specificity. (D) The scatter plot of the sensitivity and specificity of the proposed GMAC algorithm for
different parameter combinations p for the hemiparetic participants. The scatter plots in green and orange represent the data for the unaffected and
affected limbs, respectively, along with the mean and 95% confidence interval of the sensitivity and specificity.

Fig. 4. Comparison of the Youden index of limb-specific model with that of the Old-GMAC, RF-Inter, and RF-Intra measures from Subash et al. [10].
(A) Plot of the bootstrap estimates of the mean and its 95% confidence interval of the Youden index for the different measures. (B) The receiver
operating characteristic plot depicts the sensitivity and specificity of the limb-specific model and the three measures from Subash et al. [10].
The dashed black line represents the performance of a random classifier with a Youden index of 0. The lighter-colored dotted lines passing
through the markers represent the constant Youden index line corresponding to the different measures. The closer the dotted line is to the top-left
corner, the higher is its Youden index. (C) The scatter plot of the sensitivity and specificity of the proposed GMAC algorithm for different parameter
combinations p for the healthy participants. The scatter plots in green and orange represent the data for the right and left limbs, respectively, along
with the mean and 95% confidence interval of the sensitivity and specificity. (D) The scatter plot of the sensitivity and specificity of the proposed
GMAC algorithm for different parameter combinations p for the hemiparetic participants. The scatter plots in green and orange represent the data
for the unaffected and affected limbs, respectively, along with the mean and 95% confidence interval of the sensitivity and specificity.

3) The optimized GMAC measure is significantly worse
than the RF-Intra model, across all participants, only
healthy or only hemiparetic participants.

B. Performance of the Limb-Specific Models
The optimal parameter combination for the four

limb-specific models is shown Table IV (last four rows); note
the maximum performance (last column of Table IV) for all
four limb-specific models is greater than that of the generic
model. The models for healthy participants (left and right)
have similar optimal parameter combinations to each other
and to that of the generic model. However, these are different
for the hemiparetic participants compared to those of the
models for healthy participants and the generic model. The
major differences are the moving average filter Np, the pitch
threshold θth and pitch hysteresis 1θ .

Figure 4(A) shows the comparison of the Youden index
of the limb-specific optimized GMAC models, similar to
Figure 3. The figure indicates that the limb-specific opti-
mized GMAC is better than the Old-GMAC measure, but
is not different from the RF-Inter subject model; it has
a slightly higher mean Youden index than the generic

model. Figure 4(B) depicts the sensitivity and specificity of
the limb-specific GMAC algorithm and the three measures
from [10]. Figure 4(C) and (D) show the scatter plot of the
sensitivity and specificity of the optimized GMAC algorithm
for different parameter combinations p for the healthy and
hemiparetic participants, respectively.

Table VI shows similar results to that of Table V, and the
main results are similar to that of the generic model.

1) When considering all participants or just healthy par-
ticipants, the limb-specific optimized GMAC measure
has a significantly greater Youden index (Table VI) than
the Old-GMAC and is not different from the RF-Inter
subject model.

2) Interestingly, for patients, the limb-specific optimized
GMAC is still not significantly different from the
Old-GMAC and RF-Inter participants models. Although
the mean value of the Youden index is higher for the
limb-specific models (0.119), compared to the generic
model (0.003).

3) The RF-Intra measure performs better than limb-specific
optimized GMAC.



BALASUBRAMANIAN: GMAC—A SIMPLE MEASURE TO QUANTIFY UPPER LIMB USE 2519

TABLE VI
COMPARISON OF THE YOUDEN INDEX, SENSITIVITY, AND SPECIFICITY

OF THE OPTIMIZED LIMB-SPECIFIC GMAC WITH THE OLD-GMAC,
RF-INTER, AND RF-INTRA MEASURES FROM SUBASH ET AL. [10].

THE MEAN DIFFERENCES WERE OBTAINED THROUGH A LINEAR

MIXED EFFECT MODEL WITH THE DIFFERENT MEASURES AS THE

FIXED EFFECT, AND THE PARTICIPANTS AS A RANDOM EFFECT.
THE CELLS HIGHLIGHTED IN LIGHT RED INDICATE

NON-SIGNIFICANT DIFFERENCES

The individual Youden index for each participant for both
limbs from the leave-one-subject-out cross-validation proce-
dure for the generic and limb-specific models are shown in
Table VII. The corresponding values for the three measures
from [10] are also provided in the table for comparison. The
corresponding mean (µ) and standard deviation (σ ) of the
Youden index for the healthy and hemiparetic participants for
each limb are also shown in this table. In general, the right and
the unaffected limbs have a higher mean Youden index than the
left and affected limbs, respectively. The affected limb has the
lowest mean Youden index compared to the other limbs.

IV. DISCUSSION

This paper presented preliminary work on a simple measure
for quantifying UL use employing a wrist-worn accelerometer.
The present work demonstrated that the GMAC measure can
be computed entirely from the accelerometer data, and with
optimal parameters, it performs better than the Old-GMAC
measure [10] on the entire dataset (healthy and hemiparetic
participants) in terms of the Youden index. Surprisingly, the
performance of this optimized GMAC measure was as good
as that of the RF-inter model [10]. However, when the hemi-
paretic data are analyzed separately, the optimized GMAC
measure is not significantly different from the Old-GMAC
measure or the RF-Inter (Table V). This is most likely due
to the large inter-limb and inter-subject variability in the
small hemiparetic dataset used in this study. Additionally,
four limb-specific optimized GMAC models were developed
to address the inter-limb differences between healthy and
hemiparetic participants. The limb-specific models performed
similarly to the generic optimized GMAC model with slightly
better performance (although not significant) for the hemi-
paretic dataset. The RF-Intra model [10] outperformed both
the generic and limb-specific optimized GMAC models. The
results of this study have some important implications for the
UL use detection problem and its use in clinical research and
practice.

A. Optimized GMAC Versus Old GMAC
Given that the parameters of the new GMAC measure were

optimized in this study, it is expected that both the generic and
limb-specific optimized GMAC measure performed better than
the Old-GMAC measure [10] on the entire dataset (healthy
participants and patients) and healthy participants only. This
improved Youden index was due to increased sensitivity
(Table V and Table VI) without compromising specificity.
There are two possible reasons for this improvement:

1) Modified pitch angle thresholds. It was previously
noted that the GM pitch angle thresholds of ±30◦

might be conservative, as many functional movements
require one to lift his/her forearm by more than
+30◦ [12]. This range of ±30◦ originally proposed
by Leuenberger et al. [8] was based only on visual
observations of reaching movements and ADL. The
proposed GMAC addresses this issue by making all pitch
angles greater than θth to be marked as functional if it
satisfies the acceleration magnitude criterion (decision
rule in Figure 1). This could have helped improve the
sensitivity of the optimized GMAC compared to that of
the Old-GMAC.

2) Hysteresis in the pitch angle decision rule. Another
reason for the improved performance of the optimized
GMAC could be the use of the hysteresis rule on the
forearm pitch angle instead of the simple rule |pitch| <

+30◦ (Eq. 1). The hysteresis adds memory to the pitch
angle decision rule, which captures the intuition that
if a UL is in a functional (or non-functional) state at
the current time instant, it is likely to stay in that state
unless there is a drastic change in its forearm pitch angle
or the acceleration magnitude. All previously reported
measures have been purely “feedforward” in nature, i.e.,
the current output does not impact the future output.
It might be worth exploring the use of output feedback
in other measures for UL use detection to improve their
performance.

Nevertheless, the generic and limb-specific optimized
GMAC measures were not significantly different from the
Old-GMAC measure for the hemiparetic dataset. This could
be attributed to the small size of the hemiparetic dataset and
the large variability in the Youden index for the affected limb
for the hemiparetic (Table VII). Although not significant, the
limb-specific model has a higher mean Youden index (0.119 in
Table VI) than the generic model (0.003 in Table V) for the
hemiparetic dataset. This larger Youden index is due to a
significant increase in the specificity of the measure compared
to the Old-GMAC.

B. Optimized GMAC Versus Random Forest Models
The more interesting result of the current study is the

similar performance of the optimized GMAC measure to
that RF-Inter model from [10]; this was observed for the
entire dataset, and for both healthy and hemiparetic dataset
individually (Table V and Table VI). There are two potential
explanations for this: (a) The proposed GMAC uses similar
information to the two most important features identified for
the RF-Inter model from [10]: mean x-component of the wrist
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TABLE VII
YOUDEN INDEX OF THE DIFFERENT MEASURES FOR EACH PARTICIPANT FOR BOTH LIMBS. THE VALUES FOR THE GENERIC AND LIMB-SPECIFIC

GMAC WERE OBTAINED FROM THE CURRENT STUDY, WHILE THE CORRESPONDING VALUES FOR THE OLD-GMAC, RF-INTER, AND RF-INTRA

MEASURES ARE FROM SUBASH ET AL. [10]. THE MEAN
(
µ

)
AND STANDARD DEVIATION

(
σ
)

OF THE YOUDEN INDEX FOR THE HEALTHY AND

HEMIPARETIC PARTICIPANTS FOR EACH LIMB ARE ALSO SHOWN

acceleration (related to forearm pitch) and the acceleration
variance. (b) The average population-level UL use behavior
has a relatively simple structure which is captured well by the
simple GMAC algorithm proposed in the current study.

However, the RF-Intra model outperforms all the other mod-
els including the optimized GMAC, which is expected as the
intra-subject models are tuned to each subject’s characteristics.
In general, the RF-Intra was found to have high sensitivity
and specificity, except for the limb-specific optimized GMAC
models for hemiparetic participants (Table VI).

C. Generic Versus Limb-Specific GMAC Models
The generic and limb-specific models investigated in the

current study are inter-subject models. The generic model uses
a single set of parameters for both limbs of all participants
(healthy or hemiparetic). This is the simplest solution to
the UL use detection problem requiring no subject-specific
or limb-specific tuning. However, such models may have
inferior performance than a subject-specific model due to
their inability to capture inter-subject and inter-limb variability.
The generic optimized GMAC model, which performed well
on the entire dataset and healthy participants only, did not
perform better than the Old-GMAC measure for the hemi-
paretic dataset. Table VII indicates that the Youden index is
different for the affected and unaffected limbs (≈ 0.3) for
hemiparetic participants, pointing to inter-limb differences that
could have impacted the generic GMAC model’s performance.
The generic model performs better than the Old-GMAC model
for the affected limb (0.32 versus 0.22) and worse for the
unaffected limb (0.45 versus 0.55). This observation prompted
the investigation of the limb-specific GMAC models, which
were expected to perform better than the generic model,
by capturing inter-limb differences.

The limb-specific model does not produce drastically dif-
ferent results from the generic model for healthy participants.
This is not surprising since the optimal parameters for the
right and left limb-specific models (Table IV) are similar to

that of the generic model. This similarity is explained by
the large representation of healthy participants in the full
dataset used for optimizing the generic model. On the contrary,
for hemiparetic participants the limb-specific model results
in a higher mean Youden index than the generic GMAC
model. The optimal parameters for the affected and unaffected
limb-specific models are very different from that of the generic
model (Table IV). The pitch threshold θth is 20 deg for the
affected and unaffected limbs, which is 10 deg higher than that
of the healthy participants. This could be due to the annotating
clinicians following a conservative strategy with hemiparetic
participants when assigning functional status to a limb when
it was in a non-functional state previously; they possibly
required the arm to move by a larger amount than healthy
individuals to deem it functional. The other big difference is
the moving average filter size Np, which was equal to 1 for the
affected and unaffected limbs, i.e., no filtering is applied while
computing the pitch angle compared to a 1sec (50 samples)
long filter for the right and left limbs. This could be due
to patients performing slow movements, especially moving
the forearm against gravity, which removes the need for a
filter for pitch angle estimation. The pitch hysteresis band
1θ was 40 deg and 60 deg for the affected and unaffected
limbs, respectively (Table IV). This implies that when the
affected and unaffected forearms drop below −20 deg and
−40 deg, UL use is set to non-functional, respectively. This
difference might be related to the relative use of the affected
and unaffected limbs in patients. Due to reduced use of the
affected limb, a smaller drop in forearm pitch angle is marked
as non-functional, while a larger drop is required for the
unaffected limb.

D. Where Will the GMAC Be Used?
The current study indicates that the optimized GMAC is

a superior alternative to the existing traditional measures of
UL use and the previously proposed by [10]. It is a simpler
and easily implementable alternative to the random forest
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inter-subject model, which is currently the best-performing
ML model for population-level data [6], [10]. However, limb-
specific optimized GMAC models are better alternatives to
a generic optimized GMAC model. Notably limb-specific
models are still inter-subject models and once trained they
can be employed without any subject-specific tuning. The
limb-specific models are a good compromise between a single,
generic inter-subject model for both limbs of all participants
and a fully personalized limb-specific intra-subject model.

Intra-subject ML algorithms produce better UL use detec-
tion accuracy than traditional approaches [6], [10]. If available,
optimal trained intra-subject models are currently the best
option for offline UL use detection from previously recorded
wearable sensor data. However, such ML-based algorithms
may not be best suited for real-time UL use detection and
feedback. The proposed GMAC measure (Figure 1) is an
attractive alternative when, (a) trained ML intra-subject models
are unavailable, (b) there is no annotated dataset to train
new ML models, or (c) if real-time detection of UL use
is required in an application. The GMAC measure can be
efficiently implemented in the wearable sensor to detect UL
use and intermittently transmit average UL use information
to a mobile app for regular feedback. Given that the GMAC
only involves simple linear filtering and thresholding rules
(Figure 1), it is well suited for highly efficient firmware-level
implementation in a wearable device; we note that relatively
simple random-forest algorithms are also amenable to efficient
firmware implementation. Future work must explore these
possibilities of using GMAC to provide regular feedback to
patients about UL use, which could encourage a hemiparetic
subject to incorporate their affected limb in daily life.

E. Limitation of the Current Study
The main limitation of the study is the limited size of

data involving a small number of participants (10 healthy
participants and 5 patients). Thus, the study outcomes should
be considered preliminary. However, the outcomes warrant
future validation with a large dataset involving more patients
with a wide range of impairments, performing a broader set
of tasks.

V. CONCLUSION

The paper demonstrated how the GMAC can be derived
from just the accelerometer data and showed that an optimized
choice of the GMAC measure’s parameters leads to better
performance than the Old-GMAC measure [10]. Surprisingly,
the optimized GMAC had a similar performance to the ran-
dom forest inter-subject measure [10], indicating that at the
population level, the UL use behavior has a simple average
structure. A generic GMAC model is a simple solution for
detecting UL use, but limb-specific inter-subject models are
a better alternative, especially for hemiparetic participants.
Limb-specific optimized GMAC is a very attractive alternative
when trained machine learning models are unavailable. The
proposed GMAC algorithm can also be efficiently imple-
mented in firmware for real-time detection and feedback of UL
use, which is an important step towards encouraging UL use
in hemiparetic patients. Future work involving a large dataset,

verifying the outcomes of the current study, and efficient
real-time implementation and evaluation are warranted.
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