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Altered EEG Theta and Alpha Band Functional
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Abstract— Individuals with mild cognitive impairment
(MCI), the preclinical stage of Alzheimer disease (AD), suf-
fer decline in their visual working memory (WM) functions.
Using large-scale network analysis of electroencephalog-
raphy (EEG), the current study intended to investigate
if there are differences in functional connectivity proper-
ties extracted during visual WM coding stages between
MCI patients and normal controls (NC). A total of 21 MCI
patients and 20 NC performed visual memory tasks of load
four, while 32-channel EEG recordings were acquired. The
functional connectivity properties were extracted from the
acquired EEGs by the directed transform function (DTF)
via spectral Granger causal analysis. Brain network anal-
yses revealed distinctive brain network patterns between
the two groups during the WM coding stage. Compared
with the NC, MCI patients exhibited a reduced visual net-
work connectivity of the frontal-temporal in θ (4-7Hz) band.
A likely compensation mechanism was observed in MCI
patients, with a strong brain functional connectivity of
the frontal-occipital and parietal-occipital in both θ and
α (8-13Hz) band. Further analyses of the network core
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node properties based on the differential brain network
showed that, in θ band, there was a significant difference
in the out-degree of the frontal lobe and parietal lobe
between the two groups, while in α band, such differ-
ence was located only in the parietal lobe. The current
study found that, in MCI patients, dysconnectivity is found
from the prefrontal lobe to bilateral temporal lobes, lead-
ing to increased recruitment of functional connectivity in
the frontal-occipital and parietal-occipital direction. The
dysconnectivity pattern of MCI is more complex and pri-
marily driven by core nodes Pz and Fz. These results
significantly expanded previous knowledge of MCI patients’
EEG dynamics during WM tasks and provide new insights
into the underpinning neural mechanism MCI. It further pro-
vided a potential therapeutic target for clinical interventions
of the condition.

Index Terms— Alzheimer disease, mild cognitive impair-
ment, electroencephalography, working memory, network
patterns.

I. INTRODUCTION

M ILD cognitive impairment (MCI) is a cognitive state
between normal aging and clinically defined onset of

Alzheimer’s disease (AD). Epidemiological evidence showed
that 10-15% of MCI patients would be converted to AD
annually, while the conversion rate is only 1-2% for normal
elderly people [2]. Individuals with MCI appear to have
intact general cognitive function and unimpaired ability for
activities of daily living (ADL), but their memory function
is impaired, compared with age-matched normal controls.
Deteriorated working memory (WM) maintenance and the
impairment of visuospatial memory are early symptoms of
MCI and AD [3], [4]. WM can be defined as a component
of short-term memory with a restricted capacity that depends
on central executive functions and attention, utilizing stored
information and linking them to long-term memory, and can
serve as a sensitive marker of early cognitive decline [5], [6].

The high temporal resolution of EEG makes it an appropri-
ate tool to quantify the neuronal oscillation coupling process
of the human brain, as signals with different frequencies are
considered to have specific neural functions, implying different
information processing mechanisms. Among them, θ (4)-7Hz)
and α (8-13Hz) frequency bands have been identified in
extensive studies as WM indicators [7], [8]. The θ neural
oscillation was first discovered in the hippocampus entorhinal
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cortex system of animals. It originates from the interaction
between glutamate and dopaminergic neurons and encodes
spatial position information through phase precession [9], [10].
The θ neural oscillations played a crucial role in maintain-
ing sequential memory items. Exactly as the spectrum and
time-frequency analysis of EEGs acquired during the visual
WM task showed that θ amplitude increased significantly at
the beginning of WM [11]. In further EEG studies with more
complex sequential memory tasks, researchers observed an
increase in θ activity. And more importantly, the changes
in memory load is monotonically correlated with the power
change of θ [12]. The information processing of WM not
only needs to consciously maintain task-related information,
but it also needs to effectively eliminate the interference of
task-unrelated information. And α neural oscillation plays
a major role in interference suppression, which is mainly
found in the parietal medial cortex. Many studies on WM
reported that, in the memory maintenance stage, the power
of α decreases with the increase of memory load, just as
whether the information is text, number, object shape, face
or spatial position. α oscillation t is considered to be the
inhibition of visual cortex processing to help subjects maintain
their existing memory better [13], [14]. These research on the
WM mechanism have left a deep impression on the academic
community, but a deeper understanding of the neural signal
coupling mechanism between different brain regions in WM
tasks is still missing.

Considering the spatiotemporal distribution of brain activ-
ities, our brain operates as a complex network, consisted of
a large number interconnected cortical regions [15], [16], and
the related information is constantly integrated and processed
among those specialized, spatially distributed but functionally
linked regions [17], [18]. Such interactions could be studied
by the brain network analysis. Understanding the functioning
of the neural connections at early stage of cognitive decline
is important for the early diagnosis, accurate prognoses, and
effective treatments, which allows one to slow down or even
reverse the progress of cognitive decline towards dementia.
In addition, changes in the interaction among regions of a
network could precede changes in regional activations [19].
Structural and functional connectivity studies in AD have
revealed a reduction in the connectivity between different
regions of the brain, converging into a network disconnection
hypothesis [20]. For example, a functional magnetic resonance
imaging (fMRI) study revealed that in the early stages of
AD, the connectivity of the default mode network (DMN)
regions decreased, and after 2-4 years, the connectivity of
all regions significantly decreased [21]. Another study on
early stage of AD also showed that the medial temporal lobe
and related cortex have atrophy, and the connectivity of the
front and middle regions of the brain has decrease [20]. The
pathways between these brain regions play important role in
the understanding of the visual WM network. For example,
the damage of the frontal-temporal pathway and parietal-
temporal pathway will lead to the decline of individual WM
ability and memory accuracy. This evidence is supported by
Wang et al.’s study, which showed that, under WM state,
the bilateral thalamic regions of NC patients had increased

dynamic amplitude of low frequency fluctuation (ALFF), but
MCI patients had decreased ALFF, as well as significant
changes in functional connectivity (FC) related to memory
behavior data [22]. While there were considerable literature
focusing on the decreased functional connectivity of MCI
and AD in the resting state within the θ and α frequency
ranges [23], [24], [25], [26], [27], the changes in functional
connectivity related to memory tasks have been rarely studied,
and previous reports have shown mixed results [28], [29], [30].
Therefore, from a network perspective, visual WM in MCI is a
particularly interesting topic, as the neural networks associated
with this cognitive function are particularly influenced by the
neuropathological processes of AD, especially the connectivity
between the frontotemporal lobe [31]. In addition, performing
visual WM tasks can accentuate the EEG abnormalities related
to MCI and potentially improve the classification accuracy of
healthy subjects and patients [32], [33]. Furthermore, WM is a
complex dynamic memory processing process, which includes
memory encoding, delay and memory retrieval process. Each
of these stages involves the participation of different brain
regions. For example, in memory encoding activation, the
activation area of the dorsolateral prefrontal lobe mainly leans
towards the posterior and lateral regions [34], while in the
memory delay stage, the activation area of the dorsolateral
prefrontal lobe mainly leans towards the anterior [34] and cen-
tral regions [35], [36]. However, to the best of our knowledge,
no research investigated the memory coding stage of visual
WM task to explore the network connectivity patterns of MCI
WM coding. Therefore, the purpose of this study is to analyze
EEG functional connectivity and network differences in the θ

and α frequency band during visual WM coding between MCI
patients and healthy elderly, and verify whether pre-AD MCI
also has abnormal brain functional connectivity during visual
WM tasks.

II. METHODS

A. Participants
A total of 41 community-dwelling elderly people were

recruited in this experiment, including 21 MCI and 20 cogni-
tively normal elderly people (NC). The detailed information
of the participants was shown in table I. This study was
approved by the Ethics Committee of West China Medical
College, Sichuan University, and all participants provided
written informed consent prior to their participation.

The neurocognitive scales used in the study were as follows:
Mini Mental State Examination (MMSE), Montreal Cognitive
Assessment (MoCA), ADL, Geriatric depression scale, Gen-
eralized Anxiety Disorder, and Ischemia Scale.

The inclusion criteria for MCI that meet the criteria are
as follows: 1) the 2018 Guidelines for the Diagnosis and
Treatment of Dementia and Cognitive Disorder in China;
2) Complaint of memory impairment; 3) The MoCA score
<26/30, and the MMSE score > 24; 4) Daily Tool Activity
Scale score>6/8, ADL =100; 5) Age: 65-75 years old; 6) no
history of taking anti AD drugs; 7) no history of neurological
or mental illness. 8) Willingness to provide informed consent
form.
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TABLE I
DESCRIPTIVE STATISTICS OF THE NC GROUP AND THE MCI GROUP

REPRESENT AS MEAN (SD)

The inclusion criteria for the NC group are: 1) Not actively
complaining about forgetfulness; 2) The MoCA score >26/30,
and the MMSE score >24; 3) Age: 65-75 years old; 4) no
mental diseases and central nervous system disease.

The current standard the 2018 Guidelines for the Diagnosis
and Treatment of Dementia and Cognitive Disorder in China,
with an appropriate level of complexity, is in line with the
current national situation and is also reasonable.

B. Experiment Setup and Paradigm
The delayed sample-matching paradigm was used to exam-

ine the WM ability of elderly people. Before the experiment
begins, each subject must practice the experimental task until
they were familiar with the process and understood the purpose
of the experiment before finally formally starting the exper-
iment. The collection of EEG data was conducted between
9am and 6pm on weekdays. Participants sat in rooms with dim
lighting and reduced sound. All elderly people have normal or
corrected vision.

To remove the potential impact of image attributes such as
color, familiarity and pleasure on participants’ memory, all
experimental materials were two-dimensional black and white
images. At the beginning of each trial, the prompt symbol “+”
would appear in the center of the screen for 1.5 seconds to
remind the participant to direct his/her visual attention to the
center of the screen at the beginning of a trial. Subsequently,
four different stimulus images were randomly presented in
the center of the screen, each with a presentation time of
1 second and a display interval of 13 ms between the images.
After displaying four stimulus images, a fixation point “+”
was displayed on the screen for 3 seconds. During this stage,
the participant was asked to recall four stimulus images and
maintain memory of them. After the “+” disappears, a fifth
detection image (the detection image) would be displayed in
the center of the screen for 2.5 s. The participant was asked to
determine whether the fifth image was one of the previous four
stimulus images. If so, the participant would be required to

Fig. 1. Experiment setup and paradigm.

press the “Space” key on the keyboard, and press the “Right”
key if not. The participant would have 2.5 s to make this
decision and press the corresponding key. The fifth image in
each trial was pseudo random, with a 50% probability of being
one of the previous four stimulus images of the current trial
and 50% probability of not. Each session consisted of 20 such
trials, as shown in Fig.1. The behavioral data of the subjects,
including reaction time and accuracy, would also be recorded.

C. Instrumentation and Data Pre-Processing
A g.Nautilus active electrode EEG system was used to

acquire 32-channel EEG, with the 10-20 international standard
electrode positions. The EEG sampling rate was 250 Hz.
During the acquisition process, the electrode impedance
was kept below 10 k�. In the current study, the data
pre-processing module mainly focused on acquiring the reli-
able WM task-memory state related trials. To ensure data
quality for subsequent network analysis, the following prepro-
cessing steps were performed: 1) common-average-reference
(CAR); 2) 1-30 Hz band-pass filtering; 3) Independent com-
ponent analysis (ICA) was completed to identify and remove
artifacts such as eye-blink (>80%) and muscle artifacts
(>80%); 4) data segmentation and baseline correction. All data
processing was performed with the EEGLAB toolbox. And the
Infomax algorithm of ICA in the toolbox was used in the third
pre-processing step. In the process of data segmentation, the
length of EEG data in the encoding stage is 4 seconds, where
0 second represents the onset of the four stimulus pictures.

D. The Directional Transfer Function (DTF)
The directional transfer function (DTF) is used to describe

the size and direction of the information flow between
multi-channel signals. The strength of the causal relationship
between channels can be represented by the magnitude of the
DTF value, which is based on Granger causality theory and can
be extended to variables of any dimension. DTF method can
effectively estimate the brain connection of cerebral cortex.

A multivariable autoregressive model (MVAR) is estab-
lished based on the 32-channel EEG time series. Set the signal
as:

X (t) = [X1(t), X2(t), . . . , Xi(t) . . . , X32(t)] (1)

where X i is the time series of the i_th channel. The multi-
variable autoregressive model is as follows:

X (t) =

p∑
n=1

AnX (t − n) + e(t) (2)
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where An is 32 × 32 Coefficient matrix, e (t) is white noise,
and p is the order of MVAR model, determined by bayesian
information criterion (BIC). In this study, the order of the
model was 2, and a constant model order was used for all
participant data to ensure that the data analysis results of
different participants were compared and explained within the
same model framework, which increased the consistency and
interpretability of the results of the same group of participants.

BIC is used for model selection, particularly in the fields
of statistics and machine learning. It has unique advantages
in selecting the order of MVAR models and are widely used
in modeling and prediction of practical problems [38]. BIC
tends to choose concise models with fewer parameters when
selecting models. This feature is very useful in preventing
overfitting, especially in small datasets or complex model
structures. BIC considers the posterior probability of the model
and provides a more comprehensive method for model evalu-
ation. This makes BIC more rigorous in theory and can better
reflect the true performance of the model. In addition, in some
practical applications, especially in scenarios that require
high-precision prediction or strong interpretability, BIC is
often able to select models with better performance. This may
be because BIC’s strict limitation on model complexity helps
to avoid selecting overly complex models, thereby improving
the model’s generalization ability and interpretability.

Formula (1) can be transformed to frequency domain by
Fourier transform:

X ( f ) = A−1( f )e( f ) = H( f )e( f ) (3)

where f is the frequency, H is the transfer matrix, A is the
identity matrix. Finally, the directional transfer function DTF,
which is also called γ 2

i j ( f ), is defined by the transfer matrix
H ( f ) as:

γ 2
i j ( f ) = |Hi j ( f )|2/

k∑
m=1

|Him( f )|2 (4)

In the formula, γ 2
i j ( f ) represents the ratio of the influence

of channel j on channel i over the influence of all channels
on channel i , after normalization. The larger γ 2

i j ( f ) is, the
stronger the causal connectivity between channel j (cause) and
channel i (effect) is, and vice versa. k represents the number
of channels.

A non-zero γ 2
i j ( f ) value indicates that there is a causal

connectivity between channel j and channel i , but this connec-
tivity may be a “pseudo connectivity”. Therefore, the surrogate
data method was used to test the significance of γ 2

i j ( f ), screen
out effective functional connectivity, and eliminate meaning-
less connectivity due to chance probability. This method was
proposed by Kaminski [39] to test the significance of γ 2

i j ( f ) in
1991. The core idea of this method is to generate an empirical
distribution for significance testing. Firstly, shuffle the EEG
signals of each channel, randomly arrange them to obtain new
data, and then calculate the γ 2

i j ( f ) of the reconstructed data;
Repeat this process 1000 times to obtain the values of γ 2

i j ( f )

in ascending order. Take the 950th data as the statistical test
variable, which is a statistic with a confidence level of 0.05;
When the γ 2

i j ( f ) calculated from the real EEG signal is higher

than 95% of the statistical test, the causal connectivity between
channel j and channel i is true, DT Fi j is γ 2

i j ( f ); When the
γ 2

i j ( f ) calculated from the real EEG signal is below 95% of
the statistical test, the causal connectivity between channel j
and channel i is false, and DT Fi j is 0.

Calculate the DTF matrix of 32 EEG channels in different
frequency bands, DT Fi j represents the value of the directional
transfer function from channel j to channel i , N is the number
of electrodes, i.e. the node of the causal network, and the
matrix value of the directional transfer function DT Fi j is used
as the edge of the causal network. DTF_ Mean is the average
value of the DTF matrix of multi-channel EEG in frequency
range. DTF_mean as network parameters to quantitatively
analyze the connectivity characteristics of the network can be
directly used as an indicator to describe the causal connectivity
strength of network.

E. Out-Degree
The outdegree index is one of the attributes of EEG net-

works calculated from the DTF matrix, and is often used to
measure the characteristics of brain information sources and
extensions [40]. A prominent node is often considered as the
command center for distributing information to other nodes.
Based on the constructed dynamic network, the outdegree of
each node can be obtained as:

ki =

∑
jϵN

ai j , i ̸= j (5)

where N is the number of all nodes in the network, ai j is the
connectivity from node i to node j . If there is a significant
connectivity, then ai j = DTF_mean, otherwise ai j = 0.

F. Statistical Analysis
The SPSS 22.0 software was used for statistical analy-

sis. Independent sample t-tests were used to analyze the
differences in neurocognitive scale scores, behavioral data,
DTF_mean connectivity values, and important node network
attributes (node degrees) between the two groups. The signif-
icant was p < 0.05 for all analyses.

III. RESULT

A. General Behavioral Results
The results showed that there were significant differences

between the two groups in the scores of the behavioral data in
WM tasks, there were significant differences between the two
groups in accuracy (p < 0.001) and accuracy/reaction time
(p < 0.001), but no significant difference in response time
(p = 0.745). as shown in Fig. 2.

B. Dynamic Network Patterns
The WM memory encoding stage involves a series of

complex neurocognitive processes such as attention, inhibition,
and decision-making, which not only depend on the activation
of a single brain region, but also involve information exchange
among multiple brain regions. The brain network analysis
method can objectively measure the relationships between
brain regions, treating EEG electrodes positions as network
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Fig. 2. Statistical analysis of behavioral results. (a) Statistical analysis
of the accuracy of the two groups, (b) Statistical analysis of the reaction
time of two groups, (c) Statistical analysis of the accuracy/reaction time
of two groups. ∗p < 0.05.

Fig. 3. The significant differences of brain functional connectivity
between the two groups. (a) The differential Dynamic network patterns
between two groups in the θ frequency band. Left: functional connec-
tivity of MCI that have stronger information flow pattern than NC; right:
functional connectivity of NC that have stronger information flow than
MCI. (b) The differential Dynamic network patterns between two groups
in the α frequency band, showing functional connectivity of MCI that
have stronger information flow pattern than NC.

nodes and considering the connectivity between nodes as the
edge of network, which can explore the network topology
properties of different populations in WM memory states
and reveal MCI-related abnormal mechanisms of information
processing.

Considering that the wide range of neural oscillations in
the encoding stage of WM are distributed in the θ and α

frequency band, in order to explore the differences of brain
dynamic functional connectivity patterns between the two
groups during the encoding stage of WM tasks, we calculated
the significant differences of brain functional connectivity
DTF_mean between the two groups in these two frequency
bands (p < 0.05), as shown in Fig. 3. (Color represents the
size of the p-value).

Evidently, during the WM task encoding stage, there were
significant differences in brain network connectivity patterns
between the two groups in both θ and α frequency bands,
especially θ . Overall, stronger differential functional connec-
tivity in the θ frequency band was found in MCI, involving
a significantly wider range of brain regions (16 nodes vs
5 nodes) and higher number of brain network connectivity
(13 vs 3). Meanwhile, in the α band, only MCI has stronger

Fig. 4. Statistics on the numbers of connectivity with significant differ-
ences between different brain regions. (a) In the θ band, the difference
in network pattern between MCI and NC corresponds to the statistics of
the number on the connecting edges of five brain regions. (Left: MCI,
right: NC); (b) In the α band, the network pattern of MCI differences
corresponds to the statistics of the number on the connecting edges of
five brain regions. F: frontal lobe; O: Occipital lobe; P: Parietal lobe; T:
Temporal lobe; C: Central District.

differential brain network connectivity, where the number of
nodes was 8 and the number of significant connectivity was
6. The more complex functional network structure means that
MCI patients have lower processing efficiency than NC when
completing the same WM task, resulting in mobilization of
more brain functional connectivity when memorizing the same
pictures.

C. Dynamic Network Properties
Then we further explored the abnormal brain functional

connectivity of MCI brain regions during the WM processing
stage, and calculated the numbers of brain connectivity with
significant differences between different brain regions. Our
research results showed that, for NC group, there was a sig-
nificant connectivity from prefrontal lobe to bilateral temporal
lobe (The numbers of the significant connectivity =2) in θ fre-
quency band, while MCI did not. This indicated MCI patients
had a significantly reduced brain functional connectivity from
frontal lobe to temporal lobe than NC. However, MCI patients
recruited a much stronger information flow from the frontal
lobe and the parietal lobe to the occipital lobe in θ and α band,
as shown in the Fig. 4, indicating that the brain connectivity
of some brain regions related to visual WM in MCI patients
have changed.

The changes in brian functional connectivity is derived by
the functional abnormalities in brain regions, so exploring the
core nodes in WM tasks may provide potential targets for the
clinical interventions of MCI. Based on the different brain
network patterns between the two groups, it was found that
the core nodes were located in FZ and Pz, which indicated
that Fz and Pz may be overactivated during the WM cod-
ing phase in MCI, and they served as the command center
and sequentially control the activation of other nodes. The
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Fig. 5. Statistics of the outdegree information of core nodes between
two groups (a) Statistics of electrode FZ and Pz outdegree information
in MCI and NC among θ band. (b) Statistics of electrode Pz outdegree
information in MCI and NC among α band.

outdegree measurement values of Fz and Pz were calculated,
and the results showed that, in θ band, there was a significant
difference in outdegree information of Fz (frontal lobe) and
Pz (parietal lobe) between MCI and NC. On the other hand,
in α band, there was a significant difference in the outdegree
information between the two groups located in the Pz (parietal
lobe) (p < 0.05), as shown in Fig. 5.

IV. DISCUSSION

To our best knowledge, the current study was the first
EEG-driven study of brain network connectivity patterns dur-
ing the memory coding stage of WM tasks in MCI patients.
In this study, we validated that functional connectivity abnor-
malities and disconnection of brain region occur in the early
stages of MCI, as MCI patients exhibit significant changes in
brain network connectivity patterns related to memory coding
compared to NC. For differential brain network connectivity,
this study found that, under WM encoding, MCI patients
have reduced visual memory coding connectivity from the
prefrontal lobe to the bilateral temporal lobe compared to
NC, while significantly increasing compensatory connectivity
from prefrontal and parietal lobes to the occipital lobe. More
importantly, the result indicated that the more complex and
diverse brain connectivity patterns are driven by the core node
Fz (frontal lobe) and Pz (parietal lobe).

Memory is a core component of human cognitive function,
involving multiple processes such as encoding, storing, and
extracting information. In daily life and work, memory ability
plays a crucial role in learning new knowledge, solving prob-
lems, and making decisions. The main clinical manifestation
of MCI is the decline of memory function, including episodic
memory [41] and WM [42]. Therefore, understanding the
activity mechanism of the brain based on memory tasks is
of great significance for understanding the essence of human
cognitive function, revealing the pathological mechanisms of
MCI diseases, and developing effective treatment methods.

WM depends on structures related to executive control, such
as prefrontal cortex (PFC) and posterior parietal cortex (PPC),
which are important nervous base of WM, the prefrontal
cortex controls the screening of information that can be

maintained in the parietal lobe region [43], [44], [45], and
their neural activities persist in the process of maintaining the
representation of WM [46], [47], [48]. Our study showed that
the difference in activity of the prefrontal lobe between the
two groups is mainly manifested in changes in the θ band
of EEG, and this was also consistent with previous research
findings [12], [49]. Therefore, during the encoding phase of
MCI’s WM task, the strong neural oscillation in the prefrontal
lobe in the θ band may be an indicator of the decline of its WM
ability. Based on the neural mechanism of the representation
of visual WM storage accuracy, the posterior parietal cortex
is an important brain region involved in the representation of
visual WM accuracy. However, research on the involvement
of the parietal lobe in the “information retention” moment
is more focused on the analysis and processing of α band
EEG signals. For example, Roberts et al. used an object
memory information experiment and found that there was an
energy increase in the θ band of the left prefrontal lobe,
while there was an energy increase in the α band of the
left parietal lobe. Our research shows that MCI excessively
activates the parietal lobe region and exhibits stronger neural
oscillations at not only in α but also in θ band. In conclusion,
our research results show that MCI displays dysfunction of
prefrontal and parietal lobes in brain regions related to visual
WM coding, which further leads to changes in brain network
patterns. At the same time, changes in these brain regions
(such as the network outdegree information of the parietal and
prefrontal lobes) can be identified as pre changed targets in the
degenerative process leading to dementia. Current research has
shown that non-invasive stimuli such as transcranial alternating
current stimulation have a significant curative effect in memory
function [50]. However, there is still no unified standard for the
treatment parameters of MCI, including frequency and target
selection. Therefore, the differential targets in different fre-
quencies in current research can serve as important references
for subsequent MCI interventions.

The next question involves the connectivity between brain
regions and the relationship between this and behavior per-
formance during WM tasks. Previously, most studies were
based on resting state EEG to explore the brain connectivity
of MCI, and some preliminary results were obtained, but there
was still controversy [51], [52], [53], [54], [55], [56]. For
example, in a previous brain network study based on resting
state tasks, it was found that in the θ frequency band, the
connectivity between the frontal and occipital lobes, as well
as the connectivity between the central and occipital lobes,
showed significant differences between MCI and NC. But in
the α frequency band, there was no significant difference in the
functional connectivity between the two groups [55]. However,
in a review study, it was observed that the α synchronous
specificity of the temporal parietal lobe (as well as the frontal
parietal lobe) was reduced in MCI patients [56]. On the one
hand, the use of different methods in research leads to an
increase in the comparative complexity of the results. On the
other hand, resting state EEG signals have characteristics
such as susceptibility to interference, significant individual
differences, and limited sensitivity to specific diseases, which
can easily lead to a lack of authenticity in the data. Therefore,
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for the elderly population who are difficult to cooperate with
and have cognitive impairment characteristics, memory related
cognitive paradigms are more likely to obtain specific electro-
physiology and reveal the electrophysiological mechanisms of
cognitive impairment. For example, when using WM tasks in
functional neuroimaging, research reports suggest that changes
in cortical connectivity related to memory are associated with
increased deposition of CSF AD biomarker markers of Aβ

and pTau burden in the brain [57]. In their other study, it was
shown that there was a difference in the left visual WM task
related potential values between NC and amnestic MCI, and it
even can serve as a predictive factor of 5 years follow-up [58].

Based on WM task, our results indicated that differences
in network differential patterns occur more frequently in the
θ band, this is slightly different from previous results based
on resting state. In resting state EEG network research, the
differences between the two groups are mostly concentrated
in the α frequency band [55], [56]. But these results were
similar to EEG studies based on memory task states [59],
[60]. However, research on task states almost only focuses on
the frequency domain energy of brain regions, neglecting the
dynamic interaction processes between brain regions, resulting
in important information in the α frequency band is lost [61],
[62], [63]. In our research, MCI has reduced brain connectivity
from prefrontal lobe to bilateral temporal lobe, showing more
abnormal brain connectivity in the prefrontal occipital and
parietal occipital directions in θ band, as well the abnormal
brain network connectivity also occurred in α band. Compared
with previous resting state brain network results, the similarity
was that there were abnormal connectivity in the frontal and
occipital lobes of the brain in the θ frequency band [55],
there was a significant abnormality in the connectivity between
the frontal and parietal lobes in the α frequency band [56];
The difference was that the results based on the WM task
state showed there was a significant difference in connectivity
between the frontal and temporal lobes in the θ frequency
band. The temporal lobe mainly contains the hippocampal
structure, which plays an important role in the implementation
of WM task [64]. The most direct cause of progressive learning
and memory impairment in AD patients is brain damage,
especially in the hippocampus, where synaptic structures are
damaged or even disappear, and synaptic activity or transmis-
sion efficiency is reduced [65], [66], and age-related memory
problems may be related to a decrease in the participation
of hippocampal prefrontal cortex synergy [67]. Therefore, our
study suggests that in the early MCI stage of AD, the func-
tional connectivity between the hippocampus and prefrontal
cortex may have decreased and may further affect the patient’s
WM ability, resulting in lower accuracy.

In the coding stage of WM, the sensory cortex and primary
visual cortex will represent the content of memory and receive
feedback regulation from the frontoparietal network. With the
memory load, more attention resources are directed towards
the frontal and parietal lobes of continuous activation, and the
intensity of activation increases with the increase of memory
load [68], [69], on the contrary, the primary visual cortex will
show less activation with the increase of memory load [70].
Under higher WM load, the weakening of functional coupling

and the stronger activation of the frontal lobe in this case mean
that the high internal processing load may occupy limited
nerve resources and prevent the frontal lobe from adjusting the
visual area of the posterior occipital lobe from top to bottom.
In our research, abnormal brain connectivity in the prefrontal
and parietal to occipital lobes of the visual cortex in MCI
patients may be the gain signal is regulated by enhancing task
related information or suppressing task independent informa-
tion. In addition, in MCI, there is a stronger visual pathway
from the parietal lobe to the frontal lobe, which is an important
part of the spatial template in the executive element, and also a
basic neural pathway effectively representing WM. Therefore,
these increased information interactions may compensate for
the degradation of brain function, and these compensatory
functional connectivity in θ and α band could be serve as
early indicators of cognitive decline.

V. CONCLUSION

The WM deficit of MCI patients maybe the dysconnectivity
of brain derived from the prefrontal lobe to bilateral temporal
lobes. In addition, the discrepancy brain connectivity pattern
of MCI is larger and more complex driven by core nodes Pz
and Fz. These results provide a new perspective on the neural
mechanism of WM deficiency in MCI patients, thus expanding
previous research and providing a potential therapeutic target
for subsequent clinical intervention.
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