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Characterizing Disease Progression in
Parkinson’s Disease from Videos

of the Finger Tapping Test
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Abstract— Introduction: Parkinson’s disease (PD) is
characterized by motor symptoms whose progression is
typically assessed using clinical scales, namely the Move-
ment Disorder Society-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS). Despite its reliability, the scale is
bounded by a 5-point scale that limits its ability to track
subtle changes in disease progression and is prone to
subjective interpretations. We aimed to develop an auto-
mated system to objectively quantify motor symptoms in
PD using Machine Learning (ML) algorithms to analyze
videos and capture nuanced features of disease progres-
sion. Methods: We analyzed videos of the Finger Tapping
test, a component of the MDS-UPDRS, from 24 healthy
controls and 66 PD patients using ML algorithms for hand
pose estimation. We computed multiple movement features
related to bradykinesia from videos and employed a novel
tiered classification approach to predict disease sever-
ity that employed different features according to severity.
We compared our video-based disease severity prediction
approach against other approaches recently introduced in
the literature. Results: Traditional kinematics features such
as amplitude and velocity changed linearly with disease
severity, while other non-traditional features displayed non-
linear trends. The proposed disease severity prediction
approach demonstrated superior accuracy in detecting
PD and distinguishing between different levels of disease
severity when compared to existing approaches.

Index Terms— Parkinson’s disease, pose estimation,
video signal processing.

I. INTRODUCTION

PARKINSON’S disease (PD) is a multi-symptomatic neu-
rodegenerative disorder for which disease-modifying or

preventive therapies are not currently available. Current ther-
apies focus on mitigating symptoms such as bradykinesia,
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tremor, postural instability, and mood disturbance. There is
great interest in developing novel therapies that can slow down
disease progression [1].

The Movement Disorder Society – Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS) is one of the most used
outcome measures to assess disease progression, severity, and
the effect of therapies [2], [3]. The MDS-UPDRS Part III
offers high test-retest reliability and is a sensitive measure
of disease progression in the mild, moderate, and late stages
of disease [4], [5]. However, MDS-UPDRS Part III scoring
is bound by broad definitions that are anchored to a 5-point
Likert scale that has limited resolution in characterizing motor
symptoms and is prone to subjective interpretation [6], [7].
Further, as this scale is based on symptomatic parkinsonism,
it has limited sensitivity to detect the early or prodromal state
of PD. Clinical assessment in PD would unquestionably benefit
from an outcome measure that is straightforward, objective,
reliably measures motor function, and is sensitive to small
changes in disease progression. Such an outcome measure
would ensure consistent measures across different disease
severities and conditions.

Recently, there has been a growing interest in establishing
objective digital movement markers of PD based on video
recordings of the MDS-UPDRS III using machine learning
(ML) algorithms for pose estimation. In particular, the Finger
Tapping test, a component of the MDS-UPDRS III used to
asses upper limbs bradykinesia, has gained significant atten-
tion [8], [9], [10], [11]. Several research groups, including
ours, have developed custom processing pipelines to extract
objective movement features from videos of the Finger Tap-
ping test using ML algorithms. Such pipelines have been used
to detect PD from videos with accuracy higher than 80% [11],
predict disease severity [8], [9], and quantify the effect of
therapies such as deep brain stimulation [10]. Assessing PD
motor symptoms severity through objective kinematic features
derived from videos of the MDS-UPDRS III benefits from the
scale’s established clinical validity and widespread acceptance
in the medical community while avoiding the limitations of the
5-point Likert scale.

Current approaches that use videos and machine learning
algorithms to evaluate PD severity rely on a common set of
kinematic features across disease severity, with the assumption
that these features vary consistently with disease severity.
However, this assumption may not hold true since motor
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symptoms do not necessarily change uniformly as PD pro-
gresses. We hypothesize that different kinematic features may
become more significant and reliable at detecting PD and
predicting motor symptoms severity at different stages of PD.

In this study, we analyzed video data from 24 healthy
controls and 66 persons with PD. We used ML algorithms for
hand pose estimation to compute video-based kinematic fea-
tures related to bradykinesia. Using these features, we tested
our hypothesis with two different approaches. First, we tested
three classification approaches for prediction of disease sever-
ity based on kinematic features captured by video. These
approaches included a) a multiclass classification model that
uses a consistent set of features for all severity levels, b) an
ordinal binary classification approach that reflects the ordinal
nature of disease severity scores, and c) a novel tiered binary
classification approach that employs different movement fea-
tures according to disease severity. Second, we conducted
statistical analyses to identify which kinematic features differ
between healthy controls and persons with PD, and how these
features changed as a function of disease severity.

II. METHODS

A. Data Acquisition
Videos from 66 participants with PD and 24 age matched

healthy controls were used in this study. The data and acqui-
sition protocol are described in detail elsewhere [12]. Briefly,
participants with PD (<5 years of diagnosis) with a diagnosis
confirmed by a movement disorders specialist using the UK
PD Brain Bank diagnostic criteria [13] were recruited. All
study-related data acquisition sessions occurred at UF Health.
Participants were ineligible if they had a prior history of stroke
or brain tumor, had an implanted electrical device (cardiac
pacemaker or neurostimulator) or aneurysm clip, or were
pregnant or nursing.

Participants with PD who met all eligibility criteria partic-
ipated in two data acquisition sessions, including a baseline
session and a 1-year follow-up session. Data acquisition
sessions were performed in the OFF-medication state after
overnight withdrawal from antiparkinsonian medications, and
included motor and cognitive assessments, such as the MDS-
UPDRS III. PD subjects were enrolled in a clinical trial
to evaluate the effect of rasagiline in PD. There was no
statistically significant difference between the baseline and 1-
year follow-up sessions for all the analyzed outcome measures,
including the MDS-UPDRS III [12]. Consequently, treatment
arm was not considered as a variable in this study. Healthy
controls were recruited from the community; those who met
the eligibility criteria performed a single baseline test consist-
ing of secondary motor and cognitive testing, including the
MDS-UPDRS-III.

MDS-UPDRS III assessments were video recorded. Fig. 1
shows a schematic representation of the recording set-up and
environment. Subject sat comfortably on a chair and videos
were recorded using a standard video camera mounted on a
tripod. Standard, RGB videos were recorded at 30 FPS with a
resolution of 1920×1080 pixels. Video were stored in a local
server and later accessed for processing.

Fig. 1. Recording set-up and environment. Subjects sit in front of a
standard video camera and perform the Finger Tapping task. The task is
recorded, and the video is stored for processing. The task performance
is guided by an expert clinician who provides a clinical score.

During the execution of the MDS-UPDRS III, a trained
clinician stood in front to the participant and provided clear
instructions on how to perform each task. The clinician eval-
uated the performance using a pre-defined criteria [2]. Tasks
were manually evaluated using a severity score from 0 to 4,
where 0 indicates normal movement, and scores of 1 to
4 indicate slight, mild, moderate, and severe motor symptoms
severity respectively.

Videos were recorded for all healthy participants. As for
the subjects with PD, some had their videos recorded only
once, either during the initial baseline evaluation or at the
1-year follow-up visit, whereas others had recordings made
at both visits. To avoid using repeated measures for only
a few subjects, our study used data from healthy controls,
PD subjects with only one video recording (either baseline or
1-year follow-up visits), and the baseline recording of persons
with PD who have two recordings.

Participants gave informed consent to take part in this
study following the Declaration of Helsinki. The University
of Florida Institutional Review Boards approved this study.

B. Video Processing

MDS-UPDRS III videos were manually processed to iden-
tify the start and end time of the Finger Tapping test for the
right and left hands. Finger Tapping videos were processed
using our custom pipeline [10]. As Fig. 2 shows, we used
Google’s MediaPipe markerless hand pose estimation and
tracking algorithm to localize the hands in the video and
estimate the position of 21 hand landmarks in each video
frame [14]. The landmarks consist of the hand’s base and
four points on each finger, including the fingertips and joints.
We have previously validated the accuracy of this algorithm
in persons with PD [10]. Using the landmarks, we calculated
the angular separation between the thumb and index finger
by computing the angle between two vectors formed by
connecting the finger’s tips with the hand’s base.
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Fig. 2. Hand tracking results provided by our video processing pipeline.
We compute the angular distance between two vectors formed by joining
the base of the hand with the tip of the index and thumb fingers as local-
ized by Google’s MediaPipe in each video frame. The angular distance
is tracked through the video to estimate an angular displacement signal.
The bradykinesia related kinematic features are then computed from
the peaks and valleys (green and red dots) of the angular displacement
signal.

Fig. 2 shows the angular displacement signals obtained after
low pass filtering the raw angular separation data (cut-off
frequency of 7Hz). The signals’ peaks and valleys were auto-
matically estimated using standard algorithms. The signal’s
peaks and valleys correspond to the maximum opening and
closing of the fingers.

C. Extraction of Kinematic Features
Fig. 2 demonstrates the kinematic features extracted from

the movement displacement signal. In particular, we computed
the mean and coefficient of variation (CV) of the move-
ment amplitude, the mean and CV of the movement speed
(movement amplitude / movement duration), the mean and
CV of the opening movement speed (movement amplitude/
opening movement duration), the mean and CV of the closing
movement speed (movement amplitude/ closing movement
duration), the mean, CV, and range of the cycle duration, the
movement rate (number of taps over time), and the amplitude
decay (the mean amplitude during the first half of the trial
over the mean amplitude during the second half of the trial).

D. Data Analysis
We analyzed the data to determine the effectiveness of using

kinematic features from Finger Tapping test videos to predict
the severity of motor signs in PD as assessed by clinicians.
We compared three different classification approaches, includ-
ing a multiclass classification model [15], [16], [17], [18],
[19], an ordinal binary classification approach [8], and our
new tiered binary classification approach.

1) Multiclass Classification: In this approach, a single mul-
ticlass classification model is trained to classify all motor
symptoms severities based on video-based kinematic features.
That is, the model output corresponds to the probability that

Fig. 3. Graphical description of the proposed Tiered Binary Classifica-
tion approach. A set of features is extracted from the input video using
ML algorithms for hand pose estimation. Then three binary classification
models are trained to identify different severity levels. Model 1 identifies
if the video belongs to a Healthy Control or a person with PD. If the video
belongs to a person with PD, Model 2 is used to identify if the video
should receive a severity score of 1 or higher. If the video should receive
a severity score higher than 1, Model 3 is used to identify if the video
should receive a score of 2 or 3. Each model uses different movement
features tailored to the disease severity.

a Finger tapping video is assigned a severity score of 0, 1, 2,
or 3.

2) Ordinal Binary Classification: This approach was orig-
inally introduced by Morinan et at. [8]. In this approach,
multiple binary classification models are trained to identify
the motor symptoms severity based on video-based kinematic
features. There are a total of three binary classification models.
The first model classifies videos with a score of 0 against
scores 1, 2, or 3; the second model classifies videos with
a scores 0 or 1 against scores 2 or 3; and the third model
classifies videos with a score of 0, 1, or 2 against scores 3.

3) Tiered Binary Classification: In this approach, multi-
ple binary classification models are trained to identify the
motor symptoms severity based on video-based kinematic
features. Fig. 3 present a graphical description of the proposed
approach. There are a total of three binary classification
models, each model is designed to identify different levels
of disease severity. That is, the first model classifies healthy
controls from persons with PD. If the first model indicates
that the video belongs to a person with PD, then the second
model classifies scores of 1 against scores 2 or 3. Finally, if the
second model indicates that the video should receive a score
higher than 1, the third model classifies scores of 2 against
scores 3.

Classification was achieved using a logistic regression
model for classification. All models included the video derived
kinematic features described above along with the subject’s
age and sex as classification features. Features were normal-
ized to have zero mean and unit standard deviation before
model training. To mitigate the risk of overfitting, we used
a recursive feature elimination (RFE) method, which sys-
tematically removes the least influential features—those with
minimal impact on the model’s coefficients. After removing
a non-influential feature, the model is retrained with the
remaining features. This iterative process is repeated until any
further reduction in features no longer yielded an improvement
in model performance [20].

Data was split into training and testing sets, with 70% of the
data used for model training and 30% for model testing. The
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logistic regression models were trained using a five-fold cross-
validation approach using only the training data. The results
presented in this manuscript correspond to those obtained for
the testing data. Classification models were compared based
on the Area Under Curve (AUC) of the Recall-Precision curve
and the f1-score. Precision refers to the ratio between the true
positives and the sum of true positives and false positives,
and recall refers to the ratio between the true positives and
the sum of true positives and false negatives. The f1-score is
the harmonic mean of precision and recall. We choose these
measurements as they better represent the model performance
for imbalanced datasets. All the analysis was performed using
the scikit-learn library for Python [21].

As our data are unbalanced, we used the Synthetic
Minority Oversampling Technique (SMOTE) algorithm to
oversample the under-represented classes and under-sample
the overly-represented classes in our data to produce datasets
with balanced classes [22]. This technique is commonly used
in clinical application were unbalanced datasets are com-
mon [8], [17], [23], [24], [25].

Finally, we conducted statistical tests to determine whether
the movement features showed significant differences between
clinician assigned scores (0, 1, 2, 3, and 4). Differences
between groups were evaluated using ANOVA for normally
distributed data and Welch ANOVA for non-normally dis-
tributed data. To assess normality of our data, we employed
the one-sample Kolmogorov–Smirnov test. For groups that
demonstrated significant difference, we then performed a
Tukey’s Honest Significant Difference post-hoc test with
Bonferroni correction to identify which groups were signif-
icantly different. A p-value < 0.05 was considered to indicate
a statistically significant difference. All statistical analyses
were performed using the SciPy and Pingouin Libraries for
Python [26], [27].

III. RESULTS

A. Data
TABLE I summarizes the demographic information for the

study’s participants. The data included a total of 180 videos,
44 from healthy individuals and 123 from persons with PD.
There were 42 videos with a clinician provided motor symp-
toms severity score of 0, 20 with a score of 1, 62 with a
score of 2, and 56 with a score of 3. Typically, each subject
provided two finger tapping test videos, one for each hand, but
not all subjects had both videos. This dataset did not contain
any subject with the worst possible severity score of 4.

Subjects were early in the disease progression, with an
average disease duration of 20.8 ± 17.9 months [28].

B. Video Processing
Fig. 2 illustrates the hand tracking results provided by our

video processing pipeline. The figure shows three keyframes
during the movement cycle, including the thumb and index
fingers fully closed, fully extended, and fully closed again. The
figure shows the landmarks positions provided by Google’s
MediaPipe, the vectors formed by joining the base of the hand

TABLE I
DEMOGRAPHIC INFORMATION

and the tip of the thumb and index fingers and estimated the
angular distance between the vectors.

Fig. 4 presents a 3s segment of the angular displacement
computed from twelve videos in our dataset. Fig. 4 A, B,
and C show the angular displacement for subjects that received
a severity score of 0 by a trained clinician. In this case, the
subjects fully opened and closed their fingers in each move-
ment cycle. Fig. 4 D, E, and F show the angular displacement
for subjects that received a severity score of 1. In this case,
the movements are similar to those observed for scores of 0.
Fig. 4 G, H, and I show the angular displacement for subjects
that received a severity score of 2. In this case, displacement
signals show increased cycle-to-cycle movement variability,
and one of the subjects demonstrated a continuous decrease of
amplitude during the tasks, a phenomenon known as sequence
effect. Finally, Fig. 4 J, K, and L show the angular distance
for subjects that received a clinical score of 3. In this case,
subjects demonstrated small movement amplitude with large
cycle-to-cycle variability.

C. Classification Results
1) Multiclass Classification: A multiclass logistic regression

model was trained to predict the clinician-provided severity
score for the Finger tapping task based on video-based kine-
matic features, age, and sex. The feature selection procedure
identified six key features critical for classification, including
Mean Amplitude, Mean Speed, Mean Opening Speed, Mean
Closing Speed, Mean Cycle Duration, and CV of Cycle
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Fig. 4. Angular distance between the index and thumb derived from videos of subjects performing the finger tapping test using ML algorithms for
hand pose estimation. A, B and C) Subjects that received a clinician score of 0, indicating normal movement. D, E, and F) Subjects that received
a clinician score of 1, indicating slight motor symptoms. G, H, and I) Subjects that received a clinician score of 2, indicating mild motor symptoms.
And J, K, and L) Subjects that received a clinician score of 3, indicating moderate motor symptoms.

Duration. Using these six features, the model demonstrated
an average AUC of the Recall-Precision curve of 0.39 and an
average f1-score of 0.42. The model accuracy was 30% for
score of 0, 67% for score of 1, 21% for score of 2, and 59%
for score of 3.

2) Ordinal Binary Classification: Three binary logis-
tic regression models were developed to predict the
clinician-provided severity score for the Finger tapping test
based on video-based measures, age, and sex.

i) Score [0] vs. Scores [1, 2, 3]:
The feature selection procedure identified three key fea-

tures critical for classification, including Mean Speed, Mean
Opening Speed, and Mean Closing Speed. Using these
three features, the model demonstrated an AUC of the
Recall-Precision curve of 0.94 and a f1-score of 0.87. The
model accuracy was 69% for score of 0 and 86% for score
1 to 3.

ii) Score [0, 1] vs. scores [2, 3]:
The feature selection procedure identified five key features

critical for classification, including Mean Amplitude, Mean
Opening Speed, CV Closing Speed, Mean Cycle Duration,
and CV of Cycle Duration. Using these five features, the
model demonstrated an AUC of the Recall-Precision curve
of 0.85 and a f1-score of 0.84. The model accuracy was 60%
for score of 1 or 2 and 89% for score of 2 or 3.

iii) Score [0,1,2] vs. scores [3]:
The feature selection procedure identified five key features

critical for classification, including Mean Closing Speed, Mean
Opening Speed, CV Amplitude, CV Opening Speed, and sex.
Using these five features, the model demonstrated an AUC of
the Recall-Precision curve of 0.56 and a f1-score of 0.61. The
model accuracy was 84% for score of 1,2, or 3 and 60% for
score of 3.

3) Tiered Binary Classification: Three binary logistic regres-
sion models were developed to predict the clinician-provided
severity score for the Finger tapping test based on video-based
measures, age, and sex.

i) HC vs. PD The feature selection procedure identified five
key features critical for classification, including Mean Speed,
Mean Closing Speed, Mean Cycle Duration, Amplitude Decay,

and age. Using these five features, the model demonstrated an
AUC of the Recall-Precision curve of 0.97 and a f1-score of
0.91. The model accuracy was 85% for HC and 88% for PD.

ii) Score [1] vs. Scores [2, 3]:
The feature selection procedure identified six key features

critical for classification, including Mean Amplitude, Mean
Speed, Mean Opening Speed, CV Closing Speed, Amplitude
Decay, and CV of Cycle Duration. Using these five features,
the model demonstrated an AUC of the Recall-Precision curve
of 0.97 and a f1-score of 0.88. The model accuracy was 100%
for score of 1 and 77% for score of [2] and [3]

iii) Score [2] vs. Score [3]:
The feature selection procedure identified four key fea-

tures critical for classification, including CV Opening Speed,
Range of Cycle Duration, Amplitude Decay, and age. Using
these four features, the model demonstrated an AUC of the
Recall-Precision curve of 0.89 and a f1-score of 0.81. The
model accuracy was 84% for score of 2 and 80% for score of 3.

D. Differences Between Groups
Table II presents the group differences for the video-based

movement features as a function of clinician assigned sever-
ity score. Ten features demonstrated significant difference
between groups, including Mean of Amplitude, Speed, and
Cycle Duration, CV of Amplitude, Speed, Opening Speed,
Closing Speed, and Cycle Duration, range of Cycle Duration,
and Amplitude Decay.

Finally, Fig. 5 presents the results of the Tukey’s Honest
Significant Difference post-hoc test with Bonferroni correc-
tion between different pairs of severity scores for all the
video-based movement features that demonstrated signifi-
cant difference between groups. Next, we will discuss the
video-based measures that differ between severity scores.

- Score [0] vs. Score [1]
Mean Cycle Duration, and Range of Cycle Duration were
significant different between persons with severity Score of
0 and 1.

- Score [0] vs. Score [2]
Amplitude Decay was significant different between persons
with severity Score of 0 and 2.
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TABLE II
GROUP DIFFERENCES FOR THE VIDEO-BASED MOVEMENT FEATURES AS A FUNCTION OF CLINICIAN ASSIGNED SCORE

Fig. 5. Groups differences for the movement features identified by the ANOVA analysis to be significant different between groups. A) Mean
Amplitude, B) Mean RMS Velocity, C) Mean Cycle Duration, D) Movement Rate, E) Amplitude Decay, F) CV Amplitude, G) CV RMS Velocity, H)
CV Average Opening Speed, I) CV Average Closing Speed, and J) CV Cycle Duration. p-values were corrected for multiple comparisons using
Bonferroni correction. p-value legend, ∗: 1.00e-02 < p-value <=5.00e-02, ∗∗: 1.00e-03 < p-value <= 1.00e-02, ∗ ∗ ∗: 1.00e-04 < p-value <=

1.00e-03, ∗ ∗ ∗∗: p-value <= 1.00e-04.

- Score [0] vs. Score [3]
Mean Amplitude, CV of Amplitude, CV Speed, CV of Open-
ing Speed, CV of closing Speed, and CV of Cycle Duration
were significant different between persons with severity Score
of 0 and 3.

- Score [1] vs. Score [2]
Range of Cycle Duration, CV of Speed, and CV of Cycle
Duration were significant different between persons with
severity Score of 1 and 2.

- Score [1] vs. Score [3]
Mean Amplitude, Mean Speed, CV of Amplitude, CV of
Speed, CV of Opening Speed, CV of Closing Speed, Range
of Cycle Duration, and CV of Cycle Duration were significant
different between persons with severity Score of 1 and 3.

- Score [2] vs. Score [3]
CV of Amplitude, CV of Speed, CV of Opening Speed, CV of
Closing Speed, and CV of Cycle Duration were significant
different between persons with severity Score of 2 and 3.

IV. DISCUSSION

The Finger Tapping Test is commonly used to assess
bradykinesia in the upper extremities. This motor evalu-
ation is an important component of several standardized
clinical test used to assess upper limbs motor function in
different neurological conditions, including PD and other
forms of parkinsonism [2], [29], [30]. Individuals with
PD and other neurological diseases demonstrate diminished
movement speed and amplitude with increased movement hes-
itations/halts when compared to healthy controls [31]. Some
patients also demonstrate increased movement variability and
a progressive reduction in movement amplitude during the
repetitive tapping movement (sequence effect) [32], [33]. Sev-
eral studies have shown that is possible to quantify kinematic
features related bradykinesia such as amplitude, speed, and
rate from videos of the Finger Tapping videos using ML
algorithms [8], [10], [11], [15], [16], [17], [18], [19], [34],
[35]. In this study, we showed that other, non-traditional
kinematic features such as opening and closing movement
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speed, amplitude decay, and measures related to movement
and timing variability could also be quantified from videos.
Our results show that these kinematic features are significantly
different as a function of motor symptoms severity, and they
are key for video-based prediction of motor symptoms sever-
ity. Previous studies that collected data using accelerometers
attached to the fingers or motion capture systems found similar
results [33], [36], [37].

The ability to automatically predict the severity of PD
from videos could revolutionize PD management by facili-
tating monitoring and quantifying motor symptoms severity
from simple video recordings. Currently, assessment of motor
function in PD requires a neurologist with expertise in move-
ment disorders, and assessments occur scarcely due to the
limited availability of clinical experts. Furthermore, clinician
assessments are bound by a 5-point Likert scale that might
not be sensitive to subtle, yet significant alterations in motor
function [2], [38], [39]. A commonly cited reason for failure
of PD disease altering clinical trials is the lack of perfect
progression endpoints in PD, heterogeneity among subjects
is significant to the point that PD may be more appropri-
ately called a syndrome with multiple causes [1]. A known
floor effect, intra- and inter-rater reliability issues, and great
susceptibility to symptomatic treatment related variability are
additional concerns about using the MDS-UPDRS to monitor
progression of motor symptoms [40]. In contrast, video-based
assessments can help monitor disease progression or treatment
response on regular basis, and the quantitative nature of video
derived kinematic features can help to quantify disease severity
as a continuous rather than a discrete variable, potentially
increasing the scale’s sensitivity.

Previous studies have used kinematic features derived
from finger tapping videos using ML algorithms for hand
pose estimation and tracking to automatically predict dis-
ease severity. Most studies employ a multiclass classification
approach, where movement features are used as part of
a multiclass classification model to predict disease sever-
ity (a score from 0 to 4) [15], [16], [17], [18], [19].
Using this approach, we observed a moderate classification
performance, the average test set accuracy was 45%. Our
results align well with the results recently published by
Islam et al. [17].

These results highlight the limitations of using a single
multiclass model for predicting disease severity in PD. Such
a model assumes that the movement features change propor-
tionally across disease severity. However, this assumption does
not align with reality. Our results from Table II show that
most of the video-based kinematic features differ significantly
between groups, but when analyzing the differences between
severity scores, we observed that the features that differed
between groups with the lower scores (Mean Cycle Duration,
Rate, and Amplitude Decay) were different from the features
that differed between groups with the highest scores (all
the variability measures). This observation agrees with our
hypothesis that the features that mark disease severity differ
as the disease progresses. Therefore, it may be more effective
to use a combination of models or a multi-stage modeling
approach that accounts for different feature sets at various

severity levels, rather than relying on a single multiclass
model.

Morinan et al. proposed an alternative to the multiclass
classification approach [8]. Their methodology, known as
‘Ordinal Binary Classification’, employs a series of binary
classifiers designed to reflect the ordinal nature of disease
severity. Using this approach, we observed a moderate to good
classification performance. The average test set accuracy was
74%. Our results align well with published results.

In this study, we introduced a new classification approach
based on our hypothesis that features able to the characterize
disease severity differ as the disease progresses. Our methodol-
ogy, called ‘Tiered Binary Classification’, employs a series of
binary classification models trained to identify different levels
of disease severity. The first model classifies healthy controls
vs. persons with PD, the second model classified scores of
1 vs. scores of 2 and 3, and the final model classified scores
of 2 vs. scores of 3. The average test set accuracy was 86%.

The multiclass, ordinal binary, and tiered binary classifica-
tion approaches cannot be compared directly. However, in our
dataset, all videos with a clinical severity score of 0 belonged
to HC, thus, it is possible to directly compare the ability
of these three approaches to identify HC from patients. The
multiclass classification approach yielded an accuracy of 30%
when classifying videos with a severity score of 0. In the
case of the ordinal binary classification approach, the accuracy
was 69%. Finally, for our proposed tiered binary classification
approach, the accuracy was 85%.

In our proposed classification approach, a video undergoes
an analysis by an initial model that determines whether the
subject is a healthy individual or a person with PD. If PD is
detected, the video is further assessed by a series of specialized
models to evaluate disease severity based on motor perfor-
mance. The second model discerns whether to assign a severity
score of 1 or higher, while the third model distinguishes
between scores of 2 and 3. Due to the absence of subjects
with a severity score of 4 in our dataset, we did not develop
a model for this stage. Each model utilizes distinct movement
features identified through a data-driven approach, reinforcing
our hypothesis that different movement characteristics become
more indicative of disease severity at progressive stages of
the disease. Our findings indicate that features such as move-
ment amplitude, speed, cycle duration, and amplitude decay
are particularly telling for distinguishing healthy individuals
from those with mild or moderate PD. In contrast, features
concerning movement and timing variability are more discrim-
inative for differentiating between mild and moderate severity
levels.

Finally, our findings indicate that traditional movement
features such as amplitude and speed consistently decreased
with increasing disease severity, as depicted in Fig. 5 A
and B. In contrast, other movement characteristics exhibit
non-linear trends. Notably, the mean cycle duration was sub-
stantially longer for severity score 0 compared to score 1,
then increased slightly for severity scores 2 and 3. This
pattern is attributable to the fact that while subjects at severity
score1 demonstrated a reduced movement amplitude compared
to score 0 (32.86±12.95 deg vs. 36.81±18.96 deg), their
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movement velocity remained similar (230.82±70.67 deg/s vs.
231.11±125.4 deg/s), resulting in a shorter time to complete
a movement cycle. Moreover, amplitude decay escalated from
severity scores 0 to 1, then again from 1 to 2, but dimin-
ished from 2 to 3, potentially due to the reduced movement
amplitude at score 3, which hinders the detection of amplitude
changes within the task in patients with more severe motor
symptoms. As shown in Fig. 5 G – J, the variability measures
decreased from severity scores 0 to 1 but then rose significantly
with further disease advancement. The initial reduction in vari-
ability could be due to compensatory mechanisms that attempt
to maintain functional movements. However, as the disease
advances these compensatory strategies cannot be maintained,
leading to an increase in movement irregularities and variabil-
ity as the neuromuscular system’s ability to control movement
deteriorates. These trends underscore the complexity of PD
progression and highlight the potential for these nuanced
features to improve the accuracy of severity assessments.

Our study includes several limitations. First, the disease
accuracy was based on a single clinician assessment of the
Finger Tapping test. The assessment occurred live while the
subjects were performing the test. It is known that multiple
raters might provide a different score for the same subject,
especially for low scores, indicating that a score provided by a
single rater might not reflect the true severity of motor symp-
toms [2], [38], [39]. To make a fairer comparison between
clinician-provided and automatic scores, future studies must
employ multiple raters and identify their agreement. Second,
we included a limited number of participants, and our dataset
is unbalanced, with more videos with a score of 2 and 3 than
0 and 1. We employed the SMOTE algorithm to balance our
dataset [22], but such imbalance might still affect our models.
Future studies should develop balanced datasets to avoid this
issue altogether. Third, our patient’s dataset only included
persons with PD with slight, mild, and moderate motor signs.
We did not include patients with very subtle or severe motor
symptoms. Consequently, the observations made in this study
might not translate to early-stage or late-stage PD. Future
studies must include de-novo patients with only subtle motor
alterations and patients in the later stages if the disease to
get a full picture of the disease progression. Finally, during
the recording sessions, a clinician was present to guide the
participants during the execution of the task. Because of this,
our data has little variability regarding hand position, so that
we could not study the effects of hand position in the hand
pose estimation results.

V. CONCLUSION

This study offers two significant contributions. First,
we introduced an automated approach to objectively quantify
kinematic features related to bradykinesia from videos of the
Finger Tapping task. Similar to previous studies, our method
quantifies traditional kinematic features such as movement
amplitude, speed, and amplitude decay, which vary linearly
with motor symptom severity. Additionally, we quantified
non-traditional kinematic features, including cycle duration,
opening and closing speeds, and variability measures. These
features are challenging to estimate visually and are not

commonly used by clinicians when assessing motor symptom
severity. Our results demonstrate that these non-traditional
kinematic features can be accurately estimated from videos,
exhibit significant but non-linear changes with motor symptom
severity, and enhance the video-based prediction of disease
severity.

The second contribution of this study involves the intro-
duction of a novel tiered classification method that utilizes
different kinematic features based on the severity of the
disease. This approach contrasts with traditional methods that
rely on a consistent set of features across all severity levels.
The tiered classification method mirrors the clinical practice of
assessing patients, where clinicians focus on different motor
aspects to assign increasing scores. Moreover, our approach
demonstrated superior accuracy in predicting disease severity
and distinguishing between different severity levels compared
to existing methods. This technique enhances the ability to
provide a continuous and detailed assessment of motor symp-
toms, potentially leading to significant improvements in PD
management and the evaluation of treatment efficacy.

Our results demonstrate the feasibility of video-based
assessment for accurate prediction of motor symptoms severity
in PD. In our future work, we will employ the tiered binary
classification strategy proposed here with videos recorded at
home without the direct guidance of a clinician.
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[33] R. Krupič ka et al., “Instrumental analysis of finger tapping reveals a
novel early biomarker of parkinsonism in idiopathic rapid eye movement
sleep behaviour disorder,” Sleep Med., vol. 75, pp. 45–49, Nov. 2020,
doi: 10.1016/j.sleep.2020.07.019.

[34] T. Khan, D. Nyholm, J. Westin, and M. Dougherty, “A computer
vision framework for finger-tapping evaluation in Parkinson’s dis-
ease,” Artif. Intell. Med., vol. 60, no. 1, pp. 27–40, Jan. 2014, doi:
10.1016/j.artmed.2013.11.004.

[35] T. Yu, K. W. Park, M. J. McKeown, and Z. J. Wang, “Clinically informed
automated assessment of finger tapping videos in Parkinson’s disease,”
Sensors, vol. 23, no. 22, p. 9149, Nov. 2023, doi: 10.3390/s23229149.

[36] V. Cochen De Cock et al., “Rhythm disturbances as a potential early
marker of Parkinson’s disease in idiopathic REM sleep behavior disor-
der,” Ann. Clin. Transl. Neurol., vol. 7, no. 3, pp. 280–287, Mar. 2020,
doi: 10.1002/acn3.50982.

[37] M. Yokoe, R. Okuno, T. Hamasaki, Y. Kurachi, K. Akazawa,
and S. Sakoda, “Opening velocity, a novel parameter, for fin-
ger tapping test in patients with Parkinson’s disease,” Parkinson-
ism Rel. Disorders, vol. 15, no. 6, pp. 440–444, Jul. 2009, doi:
10.1016/j.parkreldis.2008.11.003.

[38] D. A. Heldman et al., “The modified bradykinesia rating scale for Parkin-
son’s disease: Reliability and comparison with kinematic measures,”
Movement Disorders, vol. 26, no. 10, pp. 1859–1863, Aug. 2011, doi:
10.1002/mds.23740.

[39] C. Ramaker, J. Marinus, A. M. Stiggelbout, and B. J. van Hilten,
“Systematic evaluation of rating scales for impairment and disability in
Parkinson’s disease,” Movement Disorders, vol. 17, no. 5, pp. 867–876,
Sep. 2002, doi: 10.1002/mds.10248.

[40] O. P. Trifonova et al., “Parkinson’s disease: Available clinical and
promising omics tests for diagnostics, disease risk assessment, and
pharmacotherapy personalization,” Diagnostics, vol. 10, no. 5, p. 339,
May 2020, doi: 10.3390/diagnostics10050339.

http://dx.doi.org/10.1007/978-3-031-46005-0_21
http://dx.doi.org/10.3389/fneur.2021.742654
http://dx.doi.org/10.1002/mds.28838
http://dx.doi.org/10.1136/jnnp.55.3.181
http://dx.doi.org/10.1016/j.neucom.2021.02.011
http://dx.doi.org/10.1109/JBHI.2022.3162386
http://dx.doi.org/10.1038/s41746-023-00905-9
http://dx.doi.org/10.1109/ACCESS.2022.3183232
http://dx.doi.org/10.1007/s40846-022-00701-y
http://dx.doi.org/10.1044/2022_jslhr-22-00072
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1371/journal.pone.0179805
http://dx.doi.org/10.1080/17455030.2020.1810364
http://dx.doi.org/10.1109/ACCESS.2021.3064084
http://dx.doi.org/10.21105/JOSS.01026
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1002/mdc3.12476
http://dx.doi.org/10.1002/mdc3.12476
http://dx.doi.org/10.1002/mdc3.12708
http://dx.doi.org/10.1155/2014/730298
http://dx.doi.org/10.1016/j.clinph.2012.04.001
http://dx.doi.org/10.1016/j.jocn.2015.10.053
http://dx.doi.org/10.1016/j.sleep.2020.07.019
http://dx.doi.org/10.1016/j.artmed.2013.11.004
http://dx.doi.org/10.3390/s23229149
http://dx.doi.org/10.1002/acn3.50982
http://dx.doi.org/10.1016/j.parkreldis.2008.11.003
http://dx.doi.org/10.1002/mds.23740
http://dx.doi.org/10.1002/mds.10248
http://dx.doi.org/10.3390/diagnostics10050339

