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Abstract— In the context of neurorehabilitation, there
have been rapid and continuous improvements in
sensors-based clinical tools to quantify limb performance.
As a result of the increasing integration of technologies
in the assessment procedure, the need to integrate
evidence-based medicine with benchmarking has emerged
in the scientific community. In this work, we present the
experimental validation of our previously proposed
benchmarking scheme for upper limb capabilities
in terms of repeatability, reproducibility, and clinical
meaningfulness. We performed a prospective multicenter
study on neurologically intact young and elderly subjects
and post-stroke patients while recording kinematics
and electromyography. 60 subjects (30 young healthy,
15 elderly healthy, and 15 post-stroke) completed the
benchmarking protocol. The framework was repeatable
among different assessors and instrumentation. Age did
not significantly impact the performance indicators of the
scheme for healthy subjects. In post-stroke subjects, the
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movements presented decreased smoothness and speed,
the movement amplitude was reduced, and the muscular
activation showed lower power and lower intra-limb
coordination. We revised the original framework reducing
it to three motor skills, and we extracted 14 significant
performance indicators with a good correlation with the
ARAT clinical scale. The applicability of the scheme is
wide, and it may be considered a valuable tool for upper
limb functional evaluation in the clinical routine.

Index Terms— Arm, benchmark, functional evaluation,
hemiplegia, neurological disorders, neurorehabilitation,
performance evaluation.

I. INTRODUCTION

IN THE context of neurorehabilitation, there has been a
rapid and continuous improvement in clinical tools to

quantify body function and dysfunction following neurolog-
ical conditions, such as stroke [1]. The assessment of the
motor functions and the influences of deficits on daily life
activities are important to reveal movement limitations and
drive interventions for improving functional restoration [2].
In both acute and chronic stages, motor recovery is still
possible following proper rehabilitation treatments. A detailed
evaluation is, therefore, fundamental for all phases of neu-
rorehabilitation. The assessment is necessary both in the early
phase, to diagnose the extent of the injury, and in subsequent
phases, to determine the effectiveness of different treatment
approaches and to inform the clinician about the patient’s
progress [3], [4]. In both cases, assessment can be of great help
to identify the most suitable therapy tailored to the patient’s
needs (e.g., tuning training parameters) [3], [4]. Moreover, due
to rising healthcare costs, assessment has an important socio-
economic role, as hospitals and insurance companies offer
their services based on clinically meaningful thresholds on
standardized assessment scales [4].

Upper limbs movements require multiple degrees of free-
dom coordination and control to allow a successful interaction
with the environment [5]. The sensorimotor impairments fol-
lowing a stroke can result in reduced adaptability to task
demands, inefficient movement trajectories, higher energy and
force-consumption, or loss of inter-joint coordination [6].
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Nowadays, the clinical assessment of motor impairments
continues to be largely based on visual and physical inspection
guided by criteria-based ordinal scales [1]. This approach
is part of the so-called evidence-based medicine [3], which
stands on the International Classification of Functioning,
Disability and Health validated clinical scales as the major
outcome for clinical trials. Such techniques have minimal costs
and exploit the capability of the visual system of an expert
human evaluator to identify human motor abilities. From a
statistical point of view, properly validated clinical scales are
reliable and sensitive for measuring gross changes in motor
performance [7]. However, most of them exhibit floor and
ceiling effects and rely on broad ordinal scales [6]. They are
also less sensitive to smaller and more specific changes [8].
Finally, standard clinical scales cannot quantify specifically the
variegate relevant aspects that characterize arm movement.

The use of technologies, such as kinematics and elec-
tromyography (EMG) sensors, can provide more objective
and repeatable methods to support clinical evaluation. In the
last years, many research groups have used quantitative mea-
sures to assess the upper limb performance of people with
neurological conditions [9]. Kinematic measurements allow
investigating spatio-temporal parameters of a motion act, while
EMG measurements allow analyzing the behavior of muscles
that causes the altered movement patterns. While kinematics
is usually considered in clinical practice, EMG is usually
neglected, due to several technical challenges related to data
acquisition, analysis and interpretation [10]. Schwarz and col-
leagues [2] characterized upper limb movement behavior with
a core set of kinematic metrics in subjects with and without
stroke-related upper limb impairments when performing a
large set of activities of everyday life. They highlighted the
usefulness of kinematics to assess the spatio-temporal aspects
of upper limb movement behavior for total task performance,
as well as for task subphases. Two limitations could be
identified in this study. First, they involved only five healthy
individuals, and this sample size is not sufficient to derive a
normative reference of outcome measures. Secondly, this study
exploited inertial measurement units, which are not as accurate
as optoelectronic motion capture systems [11]. Murphy and co-
workers [12] determined a set of clinically-useful and sensitive
kinematic variables to quantify upper-extremity motor control
during reaching and drinking from a glass in a cohort of
stroke patients and healthy people. They identified a subset
of kinematics outcome measures that can be efficiently used
to discriminate participants with different deficits in motor
performance. They used an optoelectronic system, but they
did not use marker triads. Thus they did not measure axial
rotations, which are relevant to describe arm movements.
Another similar study [13] acquired the kinematics of the
drinking task in people with spinal cord injuries and healthy
volunteers. They used more markers (18), which allowed
them to measure also axial rotations. They could discriminate
between different levels of patients’ residual ability through
kinematics variables, also suggesting the possibility of using
them as therapeutic recommendations to be integrated into
the clinical setting. However, the control group comprised
only 8 participants, which could limit the generalizability of

their results. Recently, robotic devices have been exploited
as an alternative to external sensors to perform quantitative
and repeatable assessments of upper limb functions [4], [14],
[15]. The main example is the Kinarm Exoskeleton (BKIN
Technologies Ltd, Canada), a bilateral robotic exoskeleton
that has been widely used to measure patient-specific impair-
ments in cognitive, motor, and sensory functions [16]. Very
recently, they applied this device to assess a large cohort of
351 neurologically-intact subjects together with a statistical
approach to estimate the recovery of neurologically-impaired
individuals [1]. Despite its huge potential, this robotic platform
only allows horizontal bi-dimensional movements performed
using the exoskeleton. A device-restraint planar task could not
be representative of movement tasks in daily living [2].

As a result of the increasingly frequent integration of
technologies in the assessment procedure, the need to integrate
evidence-based medicine with benchmarking has emerged in
the scientific community [3]. The objective of benchmarking is
to measure and compare the performance of different technolo-
gies or protocols using specific indicators and a reproducible
methodology [17]. Benchmarks have long been established in
the robotics and automotive industry, but it has not been widely
adopted yet in the neurorehabilitation field [18]. Considering
lower limb locomotion functions, we have been witnessing
the widespread of standardized gait analysis. Even if gait
analysis needs a dedicated instrumented motion lab, and expert
personnel, it is a common and universally accepted assessment
methodology when a deeper analysis is desired. As for the
upper limbs, we do not have any correspondence like the
instrumented gait analysis, and here is where our work wants
to give a contribution.

In addition, some ongoing researches are adopting the
benchmarking methods promoted by the EUROBENCH
project [19] for benchmarking muscle fatigue [20], human-
robot interaction [21], muscle synergies [22] and kinemat-
ics [23] when using lower limb exoskeletons.

For the upper limb, instead, we recently developed a
benchmarking framework for evaluating motor capabilities in
clinical and research settings [3]. It includes these elements:
1) a taxonomy for motor skills and motor abilities, 2) a
list of performance indicators (PIs) to quantify each motor
ability, 3) the required sensor networks to extract the PIs, and
4) a standardized protocol that should be followed to obtain
comparable results.

This work presents the first experimental validation of this
benchmarking scheme. The validation approach stands on
three fundamental requirements: repeatability (i.e., “achieve-
ment of comparable results by the same team, measurement
procedure, and locations on multiple trials” [24]), repro-
ducibility (i.e., “obtention of comparable results by different
teams, measuring systems, and locations” [24]), and clin-
ical meaningfulness (i.e., “ability to constitute a relevant
decision-making support system for clinicians in the neu-
rorehabilitation context” [3]). First, we tested repeatability
by performing a Test-Retest analysis on healthy individuals.
Second, we investigated reproducibility on a cohort of healthy
people in different locations using different instrumentation.
In this way, we also determined the normative ranges of
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performance indicators (PIs) of healthy people that can be used
as a standard for comparison. Finally, to investigate the clinical
meaningfulness, we deployed the benchmarking scheme on
a cohort of healthy elderly subjects and post-stroke patients,
evaluating the impact of age and neurological conditions on
the outcome of the scheme.

II. METHODS

We performed a prospective multicenter study on
neurologically-intact and post-stroke subjects. The study took
place between November 2021 and October 2022 at the
Villa Beretta Rehabilitation Institute (Italy) and the Center for
Clinical Neuroscience - Hospital Los Madroños (Spain). It was
approved by the ethical committees of Politecnico di Milano
(Parere n. 13/2021) and Hospital Universitario Severo Ochoa
- Leganés (Código A1366).

A. Participants
The sample size consisted of 60 participants divided into

four groups (i.e., Young α, Young β, Elderly, and Patients).
The group Young α included 15 healthy people aged between
18 and 35 years, recruited at the Villa Beretta Rehabilitation
Institute. Participants from groups Young β, Elderly, and
Patients were recruited at the Center for Clinical Neuroscience
- Hospital Los Madroños. Participants of the group Young β

and Elderly were healthy individuals aged between 18 and
35 years, and between 60 and 85 years, respectively. Subjects
were neurologically and orthopedically intact and excluded
if they had any pathology affecting arm mobility, cognitive
disorders, or symptomatic cardiovascular conditions. Finally,
the group Patients included in-patients of the clinical center
with the following inclusion criteria: i) diagnosis of ischaemic
or hemorrhagic stroke causing functional limitation of the
upper limb, ii) age between 60 and 85 years, iii) ability to
passively extend the shoulder from 0◦ to 40◦, iv) ability to
actively extend the elbow from 90◦ to 120◦ (180◦ corresponds
to fully extended elbow), and v) ability to understand verbal
instructions. Patients were excluded if they met at least one
of the following exclusion criteria: global aphasia, severe
unilateral spatial neglect, Box and Block Test (BBT) >1,
Ashworth scale score ≥4, total or severe impairment of visual
acuity, instability of clinical parameters or presence of severe
comorbidities, inability to sit down for more than 10 minutes
or inability to comply with the protocol. All participants gave
written informed consent before inclusion. We assured that all
groups have at least 12 participants, as recommended by pilot
studies guidelines [25].

B. Experimental Protocol
All experiments were performed by experienced clinicians

during a single day of measurements per subject. The experi-
mental procedure strictly followed the benchmarking protocol
described in our previous work [3]. All participants performed
eight repetitions of six motor skills: anterior reaching at rest
position height (ARR), anterior reaching at shoulder height,
moving objects at rest position height, moving objects at
shoulder height (MOS), bringing hand to mouth without

object, and with object (HMO). With stroke patients unable
to extend the elbow until 180◦, the clinician manually sets
the position of the target points in the relative direction at
a distance from the acromion of the evaluated arm equal to
the total arm length, calculated as the sum of the Euclidean
distance between the acromion and lateral elbow markers, and
the lateral elbow and the ulnar styloid markers. We instructed
participants to reach each target as accurately as possible
with the wrist. The object was a 0.5 liter water bottle with
an ergonomic grip, representing a typical object of daily
life. Healthy participants performed the movements with the
dominant side, whereas stroke participants used the paretic
limb.

Participants of the group Young β were additionally assessed
on two different days within two weeks by two different
assessors to investigate the benchmarking scheme repeatability
in terms of Test-Retest and inter-rater reliability. Before retest,
all participants were checked for inclusion and exclusion
criteria, even if we did not expect any change in two weeks’
time span for young healthy volunteers.

C. Experimental Set-up

We followed the upper limb benchmarking scheme pre-
viously developed [3] and recorded kinematics and EMG.
The kinematics was recorded using optoelectronic systems,
which represent the gold standard. In the study α, the exper-
imental setup was represented by the SMART-DX 7000,
BTS Bioengineering (Italy), and the wearable EMG system
FREEEMG 1000, BTS Bioengineering (Italy). In the other
groups (Young β, Elderly group, and Patients group), we used
the optoelectronic system Vicon Vero and the wearable EMG
device Trigno Avanti, Delsys (USA).

To position markers, we followed the guidelines of the
International Society of Biomechanics [26], and adapted the
model proposed by Rab and colleagues [27]. We placed eight
reflective markers on the subject’s trunk and the dominant
upper limb, specifically on the right and left acromion, 7th
cervical vertebra (C7), lateral and medial epicondyles of
the elbow, ulnar and radial styloids, and 3rd metacarpopha-
langeal joint of the medium finger (Figure 1) to build an
8-degree of freedom (DOF) kinematic model of the upper
limb, as described in [3].We considered the wrist as the end-
effector. Precisely, it was defined as the mid-point between
the ulnar and the radial styloid. The corresponding position of
this point on the table was marked as the rest position for each
subject. Each motor skill started and ended in this position.
Moreover, we placed on the table one marker to define
each target point and two markers on the object at opposite
sites.

Nine bipolar EMG surface electrodes were placed on the
following muscles according to the SENIAM (Surface Elec-
troMyoGraphy for the Non-Invasive Assessment of Muscles)
guidelines [28]: trapezius descendens, pectoralis major, ante-
rior deltoid, medial deltoid, posterior deltoid, triceps brachii
(long head), biceps brachii (long head), brachioradialis, and
pronator teres. The setup procedure lasted less than 5 minutes
per participant.
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Fig. 1. Anatomical landmarks (blue), and EMG electrodes placement
(red) that define the experimental set-up for the benchmarking scheme
for a right upper limb evaluation.

D. Signal Pre-Processing
Kinematic data were acquired at 250 Hz in the group Young

α, and at 100 Hz in the groups Young β, Elderly, and Patients.
EMG was recorded at 1000 Hz and 2000 Hz, respectively.
In terms of acquisition frequencies, we relied on the set-up
already in use at the two centres, to preserve the standard
clinical setting to show that the instrumentation already used
for other scopes can be useful for the proposed benchmark-
ing scheme as well. The PIs calculated separately for the
two centers are comparable (see Supplementary Materials(1)
for details). Data from all studies were then post-processed
with the same method. After interpolation to fill in missing
data, kinematic data were low-pass filtered with a 3rd-order
Butterworth filter at 15 Hz. With EMG signals, a standard
pre-processing was applied, including high-pass filtering with
a 3rd-order Butterworth filter at 20 Hz, rectification, and
low-pass filtering with a 3rd-order Butterworth filter at 4 Hz.
As for signals normalization process, given that patients often
are not able to generate as large a contraction (in terms of
EMG signal levels) as the they will generate in an active
physical situation, and given the high number of muscles we
recorded, we excluded the maximum voluntary contraction
recording. The envelopes were then normalized to the 80%
of each muscle’s maximum observed during the session [29],
[30], thus obtaining signals ranging from 0 to 1.

Each motor skill was subdivided into the constituting motor
primitives, as described in [3]. To this aim, the onset of each
sub-movement was derived from the EMG signal through the
Teager-Kaiser operator [31] summed across all EMG channels
as suggested by [32]. Movement offset, instead, was detected
when the velocity of the wrist midpoint was less than 2% of
the maximum velocity during that primitive [12].

E. Outcome Measures
We computed the kinematic and EMG PIs suggested in [3]

for each participant. For each motor skill, we computed
the global PIs as the median across all repetitions and all
motor primitives, excluding the “idle” motor primitive where
the subject is not moving. For the Patients group, we also
collected the Action Research Arm Test (ARAT) before the
instrumented analysis.

F. Statistical Analysis
Given the reduced sample size, we followed a non-

parametric approach. First, we investigated the repeatability of
the scheme by comparing data from the Test-Retest experiment

on the group Young β. We computed the Kendall τ as a
non-parametric measure of the degree of agreement to quantify
the inter-rater reliability for each PI [33], [34]. We followed the
guidelines from Cicchetti et al., who suggested the following
interpretation when dealing with the clinical significance of
the level of agreement: τ < 0.40 is poor, 0.40 ≤ τ < 0.60 is
fair, 0.60 ≤ τ < 0.75 is good, while τ ≥ 0.75 is excellent [35],
[36]. For each PI, we defined the Minimum Detectable Change
(MDC), which is the smallest change in score that is likely
to reflect a true change rather than a measurement error [37].
To compute it, we calculated the Standard Error of Measure-
ment with the formula: Standard Error O f Measurement =

Grouped I nterquartileRange ∗
√

1 − K endallT au [38].
To define the Grouped I nterquartileRange, we adapted
the grouped formula for standard deviations suggested by
Deeks et al. [39]. Then, the MDC was computed as follows:
M DC = Standard Error O f Measurement ∗1.96∗

√
2 [40].

Please note that in the case of absolute agreement, τ=0, and
as a consequence, MDC is equal to zero. This means that any
variation of the analyzed PI can be considered a true change.

Then, we extracted the most relevant PIs following two
criteria. We excluded PIs with Kendall τ < 0.60, consid-
ered poorly repeatable [35], [36]. Then, we computed the
Spearman correlation coefficient between PIs, considering
kinematics and EMG separately. Precisely, the correlation
analysis was performed separately for the ten motor abilities
that describe the benchmarking scheme: accuracy, efficacy,
efficiency, movement amplitude, muscular effort, intra-limb
coordination, planning predictability, power, smoothness, and
speed [3]. Coefficients ≤ of −0.50 or ≥ 0.50 were defined
as significant [2]. In this case, we selected only the PI with
the higher correlation with the others, excluding the others.
We considered only the PIs that respected the two criteria in all
motor skills. In the EMG domain, we performed the features
extraction considering the couple of antagonist muscles biceps
and triceps, which were mostly involved in all motor skills.

The reproducibility of the protocol in different locations was
evaluated by comparing data from group Young α and data
from the Test of groups Young β with the Mann-Whitney U
test. If data were resulting from being samples from the same
population, we defined the Normality Range for each PI as the
union of the interquartile ranges of the two groups. Precisely,
the minimum was defined as the lowest 1st quartile and the
maximum as the highest 3rd quartile between the two groups.

The effect of age and stroke was investigated by a multiple
comparisons of groups Young β, Elderly group, and Patients
group with the Kruskall-Wallis test. Post-hoc comparisons
with Bonferroni correction were used to identify statistically
significant differences between the three groups. The age
match between Elderly and Patients groups was verified with
the Mann-Whitney U test. We investigated the clinical mean-
ingfulness of the benchmarking scheme in terms of: i) ability
to distinguish healthy subjects from neurological ones, and ii)
the correlation of the scheme results with the ARAT scale.
For this final aim, we computed the correlation of PIs with
the ARAT scale with the Kendall τ coefficient [41], [42].

For all tests, the significance threshold was set to 0.05. The
statistical analyses were performed using Matlab 2022b.
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TABLE I
DEMOGRAPHIC CHARACTERISTICS OF PARTICIPANTS. M = MALE; F =

FEMALE; R = RIGHT; L = LEFT; AGE IS GIVEN IN YEARS IN TERMS OF

MEDIAN (INTERQUARTILE RANGE)

III. RESULTS

For the sake of simplicity, this section focuses on the
results obtained on anterior reaching at rest position height
(ARR), hand to mouth with object (HMO), and move object
at shoulder height (MOS). After a first preliminary anal-
ysis, we selected these three most significant motor skills
with an increasing level of difficulty according to clinicians’
opinions. Results on other motor skills can be found in the
Supplementary Material.

A. Participants Results
60 subjects (15 per group) completed the benchmarking

protocol and were included in the analyses.
Table I shows the demographic characteristics of each

group. Elderly and Patients groups were not significantly dif-
ferent in terms of age (p-value = 0.13). Eight patients had an
ischemic stroke, while seven were hemorrhagic. The median
time since the acute event was 8.00 [4.25 - 9.75] months.
Median ARAT score for patients was 46, with interquartile
range equals to 30. Full patients’ description is given in
Supplementary Material(2).

B. Repeatability Results and Features Extraction
14 subjects of the group Young β completed the Test-Retest

protocol on two different days. In the EMG domain, three
couples of muscles showed good repeatability: trapezius and
pectoralis, anterior and posterior deltoid, and biceps and
triceps. Medial deltoid, brachioradialis, and pronator teres
showed poor repeatability in most PIs for all motor skills,
confirmed by EMG signals visual inspection. Therefore,
we considered them non-repeatable, and excluded them from
further analyses.

We excluded 21 PIs (15 kinematics and 5 EMG) that
had τ < 0.60 in at least one motor skill. The repeatable
PIs for each motor ability are the following. Accuracy:
end point error (0.66<τ<0.89), area index (0.64<τ<0.92).
Efficacy: success rate (τ=1), number of movement stops
(τ=1). Efficiency: described by three repeatable kinematics
and one EMG PIs (i.e., movement time, path traveled, path
length ratio, and waveform length). Intra-limb coordination:
joint angle correlation (0.60<τ<0.77), co-contraction index
(0.65<τ<0.86). Movement amplitude: three kinematics PIs
(i.e., maximum reached distance, elevation angle ROM, and

elbow flexion/extension ROM). Muscular effort: integrated
EMG (0.63<τ<0.85), root mean square (0.61<τ<0.91), and
activation level of the EMG signal (0.64<τ<0.89). Plan-
ning predictability: time to peak velocity (0.62<τ<0.70).
Power: mean frequency (0.60<τ<0.8), median frequency
(0.61<τ<0.82), and power spectrum ratio (0.60<τ<0.77).
Smoothness: five kinematics PIs (i.e., number of velocity
peaks, movement arrest period ratio, normalized dimensionless
jerk, spectral arc length, and mean acceleration) and one EMG
PI (i.e., slope sign change) had good or excellent repeatability
in all motor skills in the motor ability. Speed: mean velocity
(0.76<τ<0.93), peak velocity (peak velocity: 0.81<τ<0.96).

From this set of PIs coupled with the Spearman correlation
analysis, we extracted 13 kinematics PIs and 4 EMG PIs that
can be suggested for the instrumented assessment of upper
limb capabilities. Table II shows the results of the MDC
for each PI and motor skill. Kinematic PIs were generally
characterized by lower MDC in ARR than HMO and MOS,
due to a lower Standard Error of Measurement. It demonstrates
that ARR is a highly standardizable and repeatable motor
skill to be included in an assessment procedure considering
the kinematics domain. With the EMG PIs, instead, we did
not observe any trend related to the different motor skills.
This optimized set of PIs was used for the subsequent
analyses.

C. Reproducibility Results and Normative Pattern
Definition

All selected PIs were estimated as reproducible with dif-
ferent lab equipment for all motor skills (p-values > 0.05).
Results are shown in Supplementary Material(1).

Table II shows the normative range within which a
neurologically-intact and young person should lie for the two
motor skills. Normative ranges of the other motor skills are
shown in Supplementary Material(3,4). Note that the end point
error takes into consideration that the markers are on the dorsal
side of the wrist’s subject while he/she reaches the target
marker with the palm of the hand down.

D. Effect of Age
The Elderly group revealed little differences compared to

the young one (Figure 2). Considering the kinematics, only in
ARR, the Elderly group showed lower accuracy characterized
by larger variability among subjects (end point error - Young:
3.31 [0.60], Elderly: 4.62 [1.33], p-value = 0.02). The median
value for this PI was also outside the normality range. Figure 3
shows the kinematic of ARR in the horizontal plane (parallel
to the table) of a representative young and an elder participant.
It can be observed that Elderly showed greater variability
of reaching the central and controlateral target compared
to Young. Both Young and Elderly had a small variability
around the median trajectory when reaching the ipsilateral
target. Analyzing MOS, we observed a higher path length
ratio in the young group (Young: 1.24 [0.06], Elderly: 1.15
[0.20], p-value = 0.03), meaning that young people followed
a trajectory more curvilinear, although less efficient, where the
most efficient trajectory is the linear one [3].
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In general, the speed of Elderly was reduced. Considering
EMG, we noticed a general decrease in mean EMG frequency
in the Elderly for all motor skills, indicating less power (i.e.,
higher fatigue) compared to Young [43].

E. Effect of Stroke
All patients were able to complete the motor skills ARR

and hand to mouth without object. Three patients could not
perform MOS, whereas one patient had the residual ability
to complete only ARR and hand to mouth without object.
The success rates confirmed the hypothesis of the increasing
difficulty in ARR, HMO, and MOS.

As it can be observed in Figure 3, the kinematic profile of
patients was characterized by less accuracy and smoothness.
We focused our analysis on the post-hoc comparison between
Patients and Elderly groups to maintain the age match.

In ARR, HMO, and MOS, smoothness, movement ampli-
tude, and power were significantly different between Patients
and Elderly. In particular, for smoothness, the number of
velocity peaks and the spectral arc length were able to differ-
entiate between groups, and results obtained by Patients also
fell outside the normality ranges. For movement amplitude,
the ROM of the elbow flexion/extension joint was statistically
different between groups, even if the median results of patients
were within the normality ranges.

Finally, the power analysis revealed lower mean frequencies
of activation for all muscles, suggesting higher fatigue [43]
and reduced power in patients. We also observed differences
in efficiency and planning predictability, which are related to
the timing of movements. In ARR and MOS, patients were less
efficient, as detected by the movement time, while in ARR and
HMO, the time required to reach the peak velocity decreased.
HMO and MOS also revealed a decreased accuracy of patients,
as quantified by the end point error.

With MOS, we observed more differences between the
elderly and patients compared to ARR and HMO (Figure 2).
The results confirmed the significant differences observed for
ARR and HMO, but the difference in the median value of the
PIs was more pronounced. The movement was significantly
less smooth, as also detected by the movement arrest period
ratio. MOS was associated with a reduced shoulder elevation,
but the decrease was not significant (Patients: 30.36 [19.28],
Elderly: 59.11 [22.08], p-value = 0.075). It could be hypoth-
esized that patients who could reach the target with complete
elbow extension compensated with the trunk.

Considering the correlation between PIs and the ARAT
scale, we found an excellent correlation with the spectral arm
length for both motor skills (ARR: τ = 0.91, MOS: τ =

0.83) and the EMG mean frequency (ARR: τ = 0.75, MOS:
τ = 0.84). The correlation was poor for the movement time
(ARR: τ = 0.31, MOS: τ = 0.29), the number of velocity
peaks (ARR: τ = 0.33, MOS: τ = 0.29), and the Movement
arrest period ratio (ARR: τ = 0.27, MOS: τ = 0.38). For the
other PIs, the correlation was good (0.61 <τ< 0.74).

IV. DISCUSSION

This work presents the experimental validation of the bench-
marking scheme for upper limb capabilities developed in our

previous work [3]. We performed an instrumented assessment
exploring the kinematics and EMG domains. The scheme was
validated in terms of repeatability, reproducibility, and clinical
meaningfulness. First, we performed a Test-Retest protocol
on healthy young subjects to validate repeatability. Then,
we reproduced the scheme on healthy yuong participants in
a different laboratory with different assessors to investigate
reproducibility. Finally, the framework was performed on
elderly individuals and post-stroke patients.

Kinematics can quantify smoothness and coordination
between different joints within the same limb, essential factors
for natural and efficient movement, which cannot be captured
by conventional scales. Incorporating kinematics not only
provides a comprehensive view of recovery, but also allows
for nuanced subject stratification. This approach enables a
deeper evaluation of the impact and effects of technology,
including robotics, in guiding rehabilitation toward correct
movement patterns. Our results are in line with those of a
recent systematic review [44]. PIs with sufficient summarized
evidence according to their criteria were classified in our
analysis with excellent or good repeatability. We obtained an
opposite result for the trunk displacement. It could be due to
our marker placement, which includes only one marker on C7.
Other protocols available in the literature include more mark-
ers for the trunk (e.g., sternum, clavicle, T8). We preferred
to reduce the number of markers to develop a feasible and
easy-to-implement protocol. Moreover, adding more markers
to the trunk would involve a bare-chested protocol, which
could not be comfortable for patients/elderly subjects who are
less comfortable with their bodies. Indeed, the evaluation of
trunk movement is useful for detecting possible compensatory
strategies often present in neurological patients [45], and we
could integrate the protocol in this sense.

This work investigated for the first time the repeatability
of EMG PIs. From our results, we can draw the following
guidelines. Medial deltoid, brachioradialis, and pronator teres
were not considered repeatable. As a result, we suggest that an
instrumented evaluation of the upper limb should include the
following three couples of antagonist muscles: trapezius and
pectoralis, anterior and posterior deltoid, biceps and triceps.
We observed the highest repeatability for the mean frequency.

For each PI, we quantified the MDC, useful for assessing
the efficacy of rehabilitative interventions at different time
points, or computing the required sample size for randomized
controlled studies involving kinematics or EMG PIs as primary
outcome measures. It has to be underlined that this comparison
requires following the same approach for data pre-processing.

Another goal of this work was the identification of a
reduced set of PIs with an optimal trade-off between number
of variables reduction, while retaining as needed variables
to describe performance. We identified 13 kinematics PIs,
mutually uncorrelated, repeatable, and reproducible, useful for
assessing the spatio-temporal aspects of upper limb movement
behavior, and 4 EMG PIs to evaluate the muscular activation
in the time and frequency domains. These PIs also showed
a good or excellent correlation with the ARAT scale, except
for movement time, number of velocity peaks, and movement
arrest period ratio. We can therefore suggest the PIs listed in
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Fig. 2. Kinematics and electromyographic PIs of anterior reaching at rest position height (ARR), hand to mouth with object (HMO), and move
object at shoulder height (MOS) across healthy young (H), elderly (E), and patients (P) groups.

Fig. 3. End-effector kinematics profile of motor skill anterior reaching at rest position height of a healthy young subject, an elderly, a mild impaired
post-stroke patient, and a severely-impaired post-stroke patient in the transversal plane. Blue dotted line = Foreward reaching; Green dotted line =

Backward reaching.

Table II, excluding these last 3 PIs. In this way, each relevant
motor ability could be quantified by at least one PI.

The normality ranges were defined among the population
of 30 healthy young subjects. Some PIs (e.g., mean veloc-
ity, shoulder flexion/extension ROM) are characterized by
greater variability, which we could associate with the large
natural variation between the subjects. Anyway, our results
are comparable with those obtained in two similar studies
performed on healthy subjects on reaching and hand to mouth
motor skills [12], [13]. Another study [46] investigated the

hand to mouth and central reaching motor skills in a larger
population of young and elderly healthy subjects. However,
their marker protocol was extremely simplified (only 5 mark-
ers), and did not consider the axial rotations of the upper and
forearm.

As seen in the literature [46], age did not significantly
impact kinematic performance, where we only detected lower
accuracy and speed. In contrast, EMG analysis revealed
reduced power in the Elderly group. This highlights the
relevance of EMG measures in clinical evaluation.
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Stroke caused differences among groups, demonstrating
the effectiveness of the benchmarking scheme in detecting
and quantifying different neurological conditions. The motor
skills anterior reaching at shoulder height, and hand to mouth
without object were the easiest ones, and all patients were
able to complete them successfully. Despite this, patients’
movements were characterized by reduced smoothness, speed,
movement amplitude, power, and intra-limb coordination. The
motor skills HMO and move objects at rest position height
could be considered as an intermediate level of difficulty.
We observed greater differences between healthy and patient
groups. In particular, the path length ratio allowed distinguish-
ing patients who can lift the object from the table from patients
who dragged it to the target point. This result is in agreement
with the ARAT scale, since dragging the bottle was the strategy
selected by compromised patients (i.e., ARAT < 35). Two
patients with ARAT equal to 7 and 14 points, respectively,
could not lift the bottle to the mouth and, hence, failed to
perform HMO. It has to be underlined that these motor skills
also require hand functionality. Results between ARR, anterior
reaching at shoulder height, and hand to mouth without object
are qualitatively comparable. The same consideration could
be done for HMO and move object at rest position height.
Therefore, in the case of time constraints, we suggest reducing
the protocol to only ARR and HMO, which represent a
functional task and an ADL, respectively. The MOS was the
most difficult motor skill. Only patients with a good residual
level of ability (i.e., ARAT > 37) were able to complete it.

Despite the relevance of this work, some limitations can
be identified. The assessment has been performed in a con-
trolled laboratory environment, and the results could change
transferring the assessment into an ecological environment.
Our current setup considers kinematics and EMG sensors that
are the gold-standard in biomechanical assessments to prop-
erly validate the benchmarking scheme, technology already
present in some clinical settings for other uses (e.g., gait
analysis). However, the complexity of the setup, the time
needed to place the sensors and the post-processing time
might limit the integration of the scheme in clinical scenarios,
even if a cost/effectiveness analysis is out of the scope of
this manuscript. Other sensors might be considered such as
inertial measurement units. Recently in the scientific litera-
ture, simultaneous measurements obtained wit motion capture
system and IMUs have demonstrated the potential use of IMUs
in clinical settings to quantify movement quality in stroke
patients performing the drinking task [47], even if suggested in
rehabilitation programs in unsupervised settings not requiring
a high level of detail [48]. However, further studies are needed
in this direction, since the effect of sensors positioning and
calibration might affect outcome measures reliability [49].
In this view, we envisage on our side or other research groups
on extending an accurate analysis of the proposed framework
using simpler and cost-effective sensors. Secondly, our sample
sizes were limited, and further research is needed to confirm
our results. Another aspect we did not consider was the influ-
ence of the dominant side of post-stroke patients. Literature
demonstrated that subjects with impairment on the dominant
side showed fewer impairments, but this was not translated into

better performances in activities of daily living [50]. However,
future studies could explore the effect of arm dominance in
the results. Finally, we considered only the median scores
computed among different motor primitives. Future studies
could focus on the analysis of motor primitives. Indeed, their
analysis could uncover maladaptation and relevant limitations
in movement behavior typical of stroke. Test-retest assessment
can be conducted on the elderly group, where patients are
more common, with particular attention to possible fatigue,
and maybe considering to reduce the protocol to facilitate
protocol acceptance. Finally, a further study including longitu-
dinally joint evaluation of clinical scales and the benchmarking
scheme might highlight the capability of the benchmarking
scheme to detect changes occurring in recovery that current
clinical scales fail to identify.

V. CONCLUSION

In this work, we validated a benchmarking framework for
the quantitative assessment of upper limb capacity through
kinematics and electromyography measures [3]. We involved
young and elderly neurologically-intact participants, as well as
post-stroke patients. The scheme was repeatable, reproducible,
and clinically meaningful. It is also feasible and easy to
implement from the point of view of both the patient and the
operator. Considering the vast range of information that can be
obtained through a set of simple motor skills, its potential use
is extensive, making it a significant tool for assessing upper
limb functionality in clinical settings.
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