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Neurophysiologically Meaningful Motor Imagery
EEG Simulation With Applications to
Data Augmentation

Catalina M. Galvan™, Rubén D. Spies™, Diego H. Milone™, and Victoria Peterson

Abstract— Motor imagery-based Brain-Computer Inter-
faces (MI-BCls) have gained a lot of attention due to their
potential usability in neurorehabilitation and neuropros-
thetics. However, the accurate recognition of Ml patterns
in electroencephalography signals (EEG) is hindered by
several data-related limitations, which restrict the practical
utilization of these systems. Moreover, leveraging deep
learning (DL) models for Ml decoding is challenged by the
difficulty of accessing user-specific MI-EEG data on large
scales. Simulated MI-EEG signals can be useful to address
these issues, providing well-defined data for the validation
of decoding models and serving as a data augmentation
approach to improve the training of DL models. While
substantial efforts have been dedicated to implementing
effective data augmentation strategies and model-based
EEG signal generation, the simulation of neurophysiolog-
ically plausible EEG-like signals has not yet been exploited
in the context of data augmentation. Furthermore, none
of the existing approaches have integrated user-specific
neurophysiological information during the data generation
process. Here, we present PySimMIBCI, a framework for
generating realistic MI-EEG signals by integrating neuro-
physiologically meaningful activity into biophysical forward
models. By means of PySimMIBCI, different user capabil-
ities to control an MI-BCI can be simulated and fatigue
effects can be included in the generated EEG. Results
show that our simulated data closely resemble real data.
Moreover, a proposed data augmentation strategy based on
our simulated user-specific data significantly outperforms
other state-of-the-art augmentation approaches, enhancing
DL models performance by up to 15%.

Index Terms— Brain—computer interfaces, surface EEG,
motor imagery, deep learning, data augmentation, EEG
simulation.
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[. INTRODUCTION

ECODING methods for the development of Brain-

Computer Interfaces (BCIs) are commonly based on non-
invasive Electroencephalography (EEG) recordings. Despite
the significant progress observed in the last decade, these
systems still face several data-related challenges which restrict
their use in real-world scenarios [1]. One of the main chal-
lenges arises from the inability to determine the actual mental
activities of users throughout the experiment based on EEG
signals. This is even more evident for endogenous BCIs, which
rely on users’ intentions regardless of the external stimuli
presented. Consequently, the artificial generation of EEG-like
signals plays a crucial role in providing well-defined data for
the development, validation, and interpretation of decoding
models.

Although real experiments and real data will ultimately
always be needed for testing and validating experimental
hypotheses, collecting large-scale data under specific exper-
imental conditions is expensive, time-consuming, and quite
often not possible. Despite the existence of publicly avail-
able EEG-BCI databases, they remain scarce, hindering the
development of algorithmic solutions for these systems. Motor
imagery (MI) BCIs for motor rehabilitation are particularly
affected by these data limitations since the MI is an endoge-
nous process hard to master by the BCI user [2]. In addition,
the desirable MI-BCls-based rehabilitation scenario should
minimize the time spent in system calibration and maximize
the feedback delivery to enhance the rehabilitative impact [3].
Data scarcity in the field of MI-BCIs has become even more
critical with the advent of deep learning (DL) models, whose
performance strongly depends on the volume of available data
for training [4].

To address these challenges, there have been mainly two
lines of work: model-based EEG signal generation and data
augmentation techniques. Multiple alternatives have been pro-
posed within each of these lines. Regarding data augmentation,
one of the simplest approaches consists in generating new EEG
trials by combining randomly selected segments of the few
available trials [5], [6]. Similarly, channel-level recombination
is presented as a data augmentation method in [7]. Another
strategy consists of the generation of new training samples by
the addition of Gaussian noise to each sample of the original
training data, as suggested in [8] and [9]. In the same line,
in [8] and [10] a set of augmentations based on transformations
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that do not affect the meaningful information of EEG data
were used. In the last few years, methods using generative
adversarial networks (GANs) have gained much attention
among artificial MI-EEG data generation techniques [11],
[12], [13], [14], [15]. For instance, in [11], a GAN model
was trained to generate artificial EEG samples that exhibited
notable similarity to real data in the time, frequency and
time-frequency domains. A cross-subject EEG classification
framework using a GAN-based model for augmentation was
proposed in [15]. In particular, in order to preserve the spatial
features of the EEG signals and enhance the discrimination
between different classes, a specific module was introduced
in the discriminator. Similarly, in [16], customized neural-
based generative models were used to generate steady-state
visual evoked potential EEG signals for data augmentation
purposes. Nevertheless, existing data augmentation methods,
whether employing data transformations or neural networks,
can generate data that disregard the key neurophysiological
information from the EEG, creating signals that might not be
observed in real-world scenarios [17].

From a different perspective, multiple works have been
dedicated to model-based EEG signal generation through
the development of neurophysiologically plausible models.
These models aim to capture the underlying mechanisms
and dynamics of brain activity, allowing for the creation
of synthetic data that closely mimic the patterns observed
in real-world recordings. In this line, in [18] the authors
generated simulated EEG data by combining biologically
plausible activity with user-specific head models based on
magnetic resonance imaging (MRI). Similarly, the SimBCI
approach [19] stood out by providing a pipeline to simulate
EEG data following particular experimental BCI protocols.
These advancements in generating meaningful EEG-like data
have significantly contributed to the exploration and validation
of novel decoding algorithms in the field of EEG analysis
and BCIs. However, though relevant in the field, the level of
attention, fatigue and user MI brain modulation ability have
not yet been included as possible inputs in the state-of-the-art
models.

Despite the great efforts invested in implementing effective
data augmentation strategies and model-based MI-EEG signal
generation, it is noteworthy that neurophysiologically plausible
EEG-like signals have not yet been exploited in the context of
data augmentation for DL. Additionally, existing neurophysi-
ologically plausible models lack the capability to incorporate
user-specific information, which could be valuable when con-
sidering data simulation as a strategy for data augmentation.

In this work, improvements are simultaneously proposed in
these two specific areas: model-based EEG signal generation
and data augmentation for MI-BCI decoding. Specifically,
a model-based simulation framework for the generation of
realistic MI-EEG-like data built by embedding user-specific
neurophysiologically meaningful activity into MRI-based for-
ward models is presented. The main objectives are two,
namely: i) account for reliable and well-defined data for
building EEG decoding models, and ii) augment training data
for DL in a task- and user-specific manner. Our approach,
which we named PySimMIBCI, extends the method presented
in [19] and can be used to create artificial brain recordings

that are electrophysiologically similar to real data for a given
BCI user. The proposed framework allows the simulation of
different subject modulation capabilities and the introduction
of different sources of EEG variability and artifacts, such as
fatigue and eye-movement. When user-specific information is
included, it becomes an effective tool for data augmentation
in the context of DL models for MI-BCIs. For this purpose,
a way to construct training batches that keeps a fixed number
of real and simulated trials while guaranteeing class balance is
proposed. The presented framework is open source and freely
available (https://github.com/catalinamagalvan/PySimMIBCI),
extending previously existing implementations in the widely
accepted MNE-Python Library [20].

IIl. A FRAMEWORK FOR REALISTIC USER-SPECIFIC
MI-EEG DATA GENERATION

A. Generative Forward Model for BCI-EEG Simulations

There are two main typical approaches in the field of
EEG modeling: biophysical source modeling and statistical
modeling [21]. The former proposes that the EEG signals are
obtained by linear combinations of unobservable physiological
sources, such as a parcel of cerebral cortex with synchronously
firing neurons [22]. In contrast, statistical modeling views
sources as statistical entities, in principle unconnected to
anatomical concepts [23]. PySimMIBCI is based on the bio-
physical source modeling approach [21], motivated by the goal
to generate artificial signals that are neurologically plausible.
Formally, let X € R be the measured EEG observations
over time, where ¢ denotes the number of EEG channels and
t is the number of samples; let also G € R°** be the leadfield
or gain matrix modeling the effects of tissue conduction from
neuronal sources to the scalp, with s being the number of
sources, and Z € R**! comprise the matrix of source activities
in the cortex [24], including both signal and noise components.
Finally, let N € R’ be a matrix of surface noise added
at the electrode level. The linear superposition model leads
to

X=GZ~+N. (D

This biophysical forward model linearly links the current
dipoles located on the vertices of the cortical meshes to the
EEG electrodes located on the scalp. In a simulation frame-
work based on a biophysical source model, the generated EEG
X is obtained by linear mixing unobserved brain sources Z
through the leadfield G. Such a leadfield may vary in complex-
ity from a single-sphere model to a physiologically realistic,
user-specific head model [19], [21]. To get G, we employ
an MRI-based model that includes physiological information
about head and skull morphology, taking into account the con-
ductivity properties of the tissues [25]. Section II-B describes
how Z can be constructed for a left vs. right hand MI scenario.
For simplicity, N is not considered in this work.

The framework described above shows how EEG data can
be modeled from a biophysical perspective. However, when
considering BClISs, it is essential to incorporate specific tempo-
ral and spatial information associated with the particular BCI
protocol. Therefore, to simulate informative EEG data from the
decoding perspective of BClIs, our framework, PySimMIBCI,
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integrates this information into the biophysical generative
model. Each signal component is characterized by three
attributes: events, waveform and spatial information, which are
equivalent to the when, what and where properties, proposed
in [19]. The interpretation of these characteristics is very intu-
itive: the events information (when) defines the specific onsets
and durations on a timeline; the waveform information (what)
specifies the signal content introduced in each event (e.g.
synchronizations/desynchronizations in specific EEG bands or
particularly evoked responses); and the spatial information
(where) indicates the cortical location of the source activity.
Note that this approach assumes independence among signal
components, allowing to analyze the effects of varying these
parameters during the generation process.

B. Simulating Left Vs. Right Hand MI-EEG Data

Different neural signals can be used to design and build a
BCI. In particular, BCIs based on the MI paradigm have a clear
importance in the context of hand motor rehabilitation since
it has been shown that they can provide additional benefits
to conventional physiotherapy [26], [27]. As in [19], here we
simulate right hand MI vs. left hand MI data. Our artificial
MI-EEG-like signals are obtained as a superposition of task-
dependent rhythmic activity generated on the motor cortex and
task-unrelated activity, which includes background noise and
eye-related artifacts. The temporal and spatial properties of
each component in the artificial signals are described below.

1) Task-Related Activity: Tt is well-known that hand MI
causes different event-related synchronization (ERS) and
desynchronization (ERD) patterns in multiple bands of the
EEG in the sensorimotor cortex [28]. Briefly, an ERD cor-
responds to a decrease in power, whereas an ERS represents
an increase in power relative to a baseline. The most relevant
frequency bands involved in MI-EEG modulation have been
found to be the o (8-14 Hz) and B (14-30 Hz) bands [29].
The proposed simulation considers the typical ERD in the «
band in the contralateral hand motor area [30], [31]. Thus,
the generators of this rhythm are assumed to be dipoles in
the right and left hand motor areas. For the precise localiza-
tion of sulco-gyral structures in the cortex the aparc.a2009s
parcellation [32] available in the FreeSurfer' package is
employed. For the spatial information, circular patches of
30 mm radius, centered on the centroids of the right and left
prefrontal area parcels are configured. Data is generated as
standard Gaussian-Distributed Signals [33] filtered in order to
restrict the frequency content to a narrow subband, with a
specific central frequency and bandwidth within the « band.
Rhythmic activity in this subband is present in both the left
and right hand motor areas throughout the experiment, with
a reduction in amplitude (ERD) on the contralateral side
during the hand MI tasks. To simulate the acquisition protocol,
an artificial timeline with randomly ordered trials of each class
is generated.

2) Task-Unrelated Activity: One type of noise and two
types of artifacts are considered in our simulation framework:
background noise, blink artifact and eye-movement artifact,
as in [34]. Background noise comprises aperiodic neural

1 http://surfer.nmr.mgh.harvard.edu/

activity, that is, spectrally pink components related to neural
background processes [18]. It is modeled by 1/f*. This com-
ponent is consistently present throughout the cortex surface for
all frequencies f. In order to generate it, temporally and spa-
tially uncorrelated white Gaussian noise is temporally filtered
to have a specific power spectral density (PSD) according to
the noise exponent A. Subsequently, by means of a coloring
transformation [35], the resulting components are forced to
have a predetermined covariance matrix. Through this spatial
filtering, a covariance structure determined by the proximity
of sources, that is with closer sources exhibiting a stronger
correlation, is obtained. Furthermore, we simulate the effects
of eye-related artifacts, specifically blink and eye-movement
artifacts. For the blink artifact, the mne.simulation.add_eog
function of MNE-Python [20] is used. In this implementation,
random activation onsets are drawn from an inhomoge-
neous Poisson process with blink rate oscillating between
4.5 and 17 blinks/minute according to the low and high blink
rates [36]. The activation kernel consists of a 250 ms Hanning
window. Two activated dipoles are located in the z = 0 plane at
+30° away from the midline (nasion). Eye-movement artifacts
are modeled as a Poisson process. In each activation, the
eye-movement is generated as random signal with maximum
random duration of 500 ms. The two generator dipoles are
located as in the blink artifact implementation [20].

Fig. 1 summarizes PySimMIBCI for the task of right hand
MI. Firstly, as shown in the left side of the figure, source
activity is simulated by combining specific spatial, waveform
and events’ information. In this example, spatial information
comprises right and left hand motor areas and task-related
waveform is the characteristic ERD in the o band in the
contralateral hand motor area. Events’ information involves
a typical protocol stimulation timeline for MI: 4 s of MI
followed by an inter-trial break of variable duration. All this
information is mixed at the source space and gives origin to the
source activity Z. Through a forward projection, characterized
by a leadfield matrix G, this information can be accessed at
the sensor level, where different types of noises can be added
via matrix N resulting in the simulated EEG signal X.

C. Simulation of Users With Different Brain Modulation
Capabilities and Inclusion of Fatigue Effects

When developing EEG decoding methods, it is often use-
ful to generate data corresponding to different groups of
users with diverse levels of proficiency in controlling an
MI-BCI. This enables researchers to test hypotheses and gain
insights from the obtained results. To this end, two strategies
for generating artificial users with different MI modulation
characteristics are proposed here. The first strategy involves
manipulating the percentage of @ ERD in the contralateral
hand motor area described in Section II-B. Higher percent-
ages of ERD indicate stronger modulation and thus would
correspond to more proficient users, while less pronounced
ERDs would be associated with users with reduced modulation
capability. The second strategy simulates scenarios where the
user does not perform the required task (also known as null
signals in the Evoked Potentials literature [37]). This is done
by including a certain proportion of failed MI trials, that is,
trials without ERD in the corresponding area. Artificial users
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Fig. 1.

PySimMIBCI pipeline exemplified by the simulation of right hand MI-EEG data. Source space data is generated by the combination of

specific spatial, waveform, and events’ information related to the BCI task. A forward operator is then used to get sensor space data and at this

level different types of surface noise and artifacts are added.

with different levels of competence to control an MI-BCI can
be then simulated by separately or jointly combining these
ideas, as further shown in Section III.

Another important issue is the fact that prolonged engage-
ment in a cognitively demanding task, such as MI, can lead to
mental fatigue, degrading mental activities performance [38].
In other words, attentional focus becomes less efficient and
more error-prone as the time spent on the task increases.
These consequences of mental fatigue are accompanied by
changes in the brain activity, particularly in low-frequency
bands, resulting in altered EEG signals [39]. In order to
generate realistic MI-EEG signals that reflect fatigue-related
effects, we propose a way to include them in the simulated
data. Several studies of EEG oscillations have found that both
0 (4-8 Hz) and « (8-13 Hz) band powers increase with mental
fatigue [40], [41], [42]. More specifically, in [43] and [44]
mental fatigue has been associated with progressive increases
in both frontal 6 and parietal o powers with task duration.
Thus, these neural markers serve as a way of simulating mental
fatigue. In our simulation framework, 6 and « brain generators
are assumed to be dipoles in the frontal and parietal areas,
respectively. As before, we generate this component by a
standard Gaussian-Distributed Signal filtered to get the 6 and
o band activities. Fatigue can be added from any specific onset
time and its level is linearly increased with time, as shown in
Section III.

D. User-Specific MI-EEG Generation for
Neurophysiologically Meaningful Data Augmentation

Data augmentation techniques aim to enlarge training
datasets by artificially increasing its size and diversity. A tra-
ditional approach involves creating additional training samples
through label-preserving transformations, such as the geomet-
ric transformations used in computer vision [46]. In the context
of MI-EEG decoding, data consists of a collection of noisy,
non-stationary time series from different electrodes and, thus,
straightforward geometric transformations are not suitable
since they may distort temporal and spatial-domain features.
Additionally, while GAN models have been employed to
generate MI-EEG data [13] and can generate data through

user-specific training, the personalized neuromodulation infor-
mation associated with MI can potentially be degraded or even
lost during the data generation process. This becomes partic-
ularly relevant in MI decoding since the models are typically
user-specific, i.e. they are trained and tested on data from the
same person. To address these limitations, our proposed data
simulation framework is conceived for generating user-specific
MI-EEG signals for data augmentation.

The first step to generate user-specific data consists in
calculating the PSD of real MI-EEG training trials for each
channel by the multitaper method [47]. As shown in Fig. 2 a),
three different average PSDs of interest are obtained: Average
1), the average over all right hand MI trials for channel
C4; Average 2), the average over all left hand MI trials for
channel C3, and Average 3), the average over all training
trials and over all channels. Next, the fitting oscillations and
one-over f (FOOOQOF) [45] method is employed to get specific
parameters from the different average PSDs, as seen in Fig. 2
b). The FOOOF method is a physiologically-informed tool to
parameterize neural PSDs in two constituents: aperiodic and
periodic components. The aperiodic activity is exponentially
decreasing with frequency and it can be described by

L(f) = b —log(f"), 2)

where A is the exponent which characterizes the pattern of
aperiodic power across frequencies, b is the offset that spec-
ifies the uniform shift in power and f is the frequency [45].
In contrast, periodic components of neural data consist of
overlying putative periodic oscillatory peaks, which in FOOOF
are individually modeled by a Gaussian-like function

—(f - c)z)
2w? ’

where a is the power, c¢ is the central frequency and w is the
width of the peak.

It is reasonable to expect that aperiodic activity will be
similarly distributed throughout the cortex and not associated
with any specific MI tasks. Hence, for the aperiodic component
parameterization, we employed the average PSD computed
over all training trials and across all EEG channels (Average
3). On the contrary, taking into account that the two main EEG

P(f):aexp( (3)
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Fig. 2. Extraction of user-specific periodic and aperiodic information. a) First, PSD is calculated for each channel of each training trial. b) After that,
periodic and aperiodic parameterization is done over different sets of average PSDs using FOOOF [45].

channels on the hand motor area are C3 and C4 [31], only the
information in these channels is used for fitting the periodic
components. That is, the average PSDs to extract periodic
components are calculated over all training trials belonging
to each class for both channels (Average 1 and Average 2).

After the extraction of these parameters from real MI-
EEG, user-specific data is simulated as described below. The
aperiodic exponent A is employed to generate the user-specific
background activity. Further, the « ERD is generated based
on the parameters of central frequency and bandwidth of the
highest peak in the 7-14 Hz band. If the user has no peak
detected in the o band, a generic peak with central frequency
¢ = 11.5 Hz and bandwidth w = 3 Hz is considered, according
to the most likely o peak across all real users (Fig. Al in
Supplementary Material).

[1l. DATA AND EXPERIMENTAL SETUP

In order to evaluate the quality of our simulations, an analy-
sis comparing the artificial MI-EEG data with their real-world
counterparts was conducted. Further, to show the impact of our
data augmentation approach in DL, we employed real MI-EEG
data to train the model and compare its performance before
and after the inclusion of simulated data. In both cases, two
publicly available datasets were used in this work:

o Dataset-1 [34] comprises two sessions of left vs. right
hand MI-EEG data from two users (b and g). For each
user, the first session contains 100 trials per class, while
the number of trials for the second session varies among
users. Data was recorded at 1000 Hz using 59 electrodes
densely distributed over the sensorimotor areas. Since the
simulation process requires knowing the exact electrodes’
position, only the 41 channels from to the 10-5 interna-
tional electrode system were used. To train and test DL
models data were downsampled to 250 Hz following [48].

o Dataset-2 [49] is a 54-users two-sessions left vs. right
hand MI-EEG dataset. Each session comprises 100 trials
per class. EEG was recorded at 1000 Hz using 62 elec-
trodes positioned according to the international 10-20
system. For running DL models, 20 channels in the
motor region were chosen, as in [49], and, here again
following [48], data were downsampled to 250Hz.

As DL model for MI decoding we used the Filter Bank
Convolutional Network (FBCNet) proposed in [48], a hybrid
model designed for user-specific MI-BCI classification. The
main reason for selecting this state-of-the-art model is because
it has demonstrated superior performance in several datasets,
and its implementation in PyTorch [50] is open and readily
accessible. FBCNet comprises four stages: i) spectral filter-
ing of the EEG in multiple narrow bands; ii) extraction of
spatial discriminative patterns for each view by a depthwise
convolutional layer; iii) compact representation of the temporal
information by a variance layer; and iv) classification by a
fully connected layer. In all the experiments, the architecture
was trained using Adam optimizer with default settings and
the log-cross-entropy loss, following the original work [48].
The model was trained using early stopping with a patience
of 200 epochs. Once the stopping criterion was reached, the
network parameters with the best validation accuracy were
restored. The maximum number of training epochs was limited
to 1500. The architecture and hyperparameters settings are
described in detail in Section 7 of the Supplementary Material.

A. PySimMIBCI for Realistic MI-EEG Data Simulation

As described in Section II-C, users with different mod-
ulation characteristics were simulated, and subsequently
compared with real MI-EEG data from Dataset-1. User g
from this dataset was employed as the guide BCI-user since it
had obtained the best classification performance in the origi-
nal study [34]. Neurophysiological information was extracted
from this user following the steps described in Section II-D.
For each simulated user, 200 artificial trials were generated
(100 per class). First, ERD percentage was varied from 50%
(ideal user [34]) to 10% (S10) in steps of 10%. Then,
we simulated users that do not perform the required task by
including an increasing proportion of trials without ERD, from
10% (user SF10) to 40% (user SF40). In the latter cases, the
ERD percentage was always set to 50%. A summary of the
simulation parameters can be found in Table L.

Next, to illustrate the effects of mental fatigue, we intro-
duced the associated parietal o band and frontal 6 band
activities, as detailed in Section II-C. As before, user g
from Dataset-1 was the guide BCI-user and 200 trials were
generated. Considering that mental fatigue is most likely to



GALVAN et al.: NEUROPHYSIOLOGICALLY MEANINGFUL MOTOR IMAGERY EEG SIMULATION

2351

TABLE |
SIMULATION PARAMETERS FOR ARTIFICIAL USERS WITH DIFFERENT
BRAIN MODULATION CAPABILITIES
User name ERD [%] Failed trials [%]

ideal 50 0
S40 40 0
S30 30 0
520 20 0
S10 10 0

SF10 50 10

SF20 50 20

SF30 50 30

SF40 50 40

manifest towards the end of a long session, the first half
of the trials excluded fatigue effects, while the second half
included a progressively increasing level of fatigue, simulated
by a linearly increasing amplitude with time in both bands.

B. PySimMIBCI as a Plausible Data Augmentation
Strategy

To leverage PySimMIBCI for data augmentation purposes,
100 trials per class were generated for each real user with the
ideal parameters (50% of ERD and 0% bad trials) and the
corresponding periodic and aperiodic extracted information,
as described in Section II-D. To see the corresponding ablation
study, refer to Section V of the Supplementary Material.

The proposed data augmentation strategy was compared
with state-of-the-art approaches, which were selected to cover
the main strategies presented in the literature at which method
implementation was clear or publicly available. We briefly
describe them below:

« Segmentation and recombination (SR): training trials (2 s)
were splitted into 8 segments and new trials were created
by concatenating random analogous segments from trials
of the same class, as in [51].

o Gaussian noise addition (GNA): copies of each training
trial were generated by adding Gaussian noise with zero
mean and standard deviation equal to 0.2 [9].

o Time Masking (TM): augmented trials were derived from
the original training trials by zeroing out all channels of
randomly chosen 100-sample time segments [8].

« Channels Dropout (CD): new training trials were obtained
by zeroing out randomly chosen channels from the orig-
inal training trials. The probability of dropping each
channel was 0.2, as in [10].

« Bandstop Filtering (BF): new trials were generated by
applying a 5 Hz bandwidth bandstop filter, with random
central frequency, between 0 and 40 Hz [8].

o Wasserstein GAN (WGAN): The model in [16] was
adapted for generating MI-EEG data. Training was con-
ducted on a user-specific basis.

In all the cases, the size of the obtained augmented dataset
was twice the size of the original real MI-EEG dataset.

Baseline and augmented models share the same hyperpa-
rameter setting but differ in the training data composition. For
all the tested data augmentation strategies, training batches
are constructed with a fixed number of real and simulated
trials, always guaranteeing class balance. More precisely, each
batch comprises Nj, trials and has the following structure: N,
augmented trials for each class, randomly sampled from the
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Fig. 3. Temporal, spatial and spectral plots for real and simulated EEG
data. a) 20 s of both signals in channels C3 and C4. b) First and last
CSP patterns. c) Average PSDs.

total of simulated trials, and N, = (Np — 2N,)/2 randomly
sampled real trials of each class. This sampling approach intro-
duces valuable variability, which has a regularizing effect on
model calibration. Simultaneously, it conserves class balance
within each batch and fixes real/simulated trials ratio across
batches. With these considerations, we ensure that the model
benefits from diverse training examples while preserving a
consistent data composition across different batches (refer to
Fig. A2 in Supplementary Material to see the effect of different
sampling methods for batch construction). In this study we
used N, = 1 since no differences were found when adding
more simulated trials into each training batch (see Fig. A3 in
Supplementary Material).

To evaluate the impact of the proposed data augmentation
strategy we used the relative change (RC) in accuracy over a
baseline performance, defined as follows:

RC =" )
ar
where a, refers to test accuracy with data augmentation, that
is, ratio of number of correct predictions over the total number
of predictions, and a, is the reference test accuracy (without
data augmentation). If RC > 0, data augmentation improves
model performance while if RC < 0, it deteriorates it.

IV. RESULTS
A. PySimMIBCI for Realistic MI-EEG Data Simulation

To assess the similarity between artificially generated sig-
nals and real MI-EEG data, a qualitative comparison based on
temporal, spectral and spatial information was first conducted.
The simulated data corresponded to the 200 trials from the
ideal user (Table I), while the real data comprised 200 trials
from session 1 of user g from Dataset-1.

The visual comparison of real and artificial data in the time
domain was made at channels C3 and C4. Fig. 3 (a) shows
20 seconds of both simulated and real signals. The spatial
assessment was made by examining the scalp topographies
of the first and last CSP patterns (Fig. 3 b)), which represent
time-invariant EEG spatial source distributions. These patterns
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Fig. 4. Results for simulated data corresponding to different brain modulation capabilities and fatigue effects simulation. a) 10-fold CV results for
real and simulated data. Each point corresponds to test accuracy for one fold. Light-blue points represent the results obtained for two real MI-EEG
users, and green points the results for the ideal simulated user (50% of ERD and 0% of failed trials). Simulated users with decreasing percentages
of ERD (50-10%) are in an orange palette while a pink palette was used for simulated users with increasing proportions of failed trials (0-40%). b)
Accuracy values obtained for two test partitions, one with low and the other with high mental fatigue. The model was trained on data without fatigue
effects. c) Topographic maps in the 6 and a bands for the two test partitions with fatigue effects.

provide insights into the underlying cortical activity of each
MI task [52], [53]. Finally, to analyze the spectral contents of
both signals, the average PSD across the 200 trials was plotted
for C3 and C4 channels (Fig. 3 c¢)). As it can be observed,
spatial, temporal and spectral traces of the simulated MI-EEG
very well resemble their real counterparts.

To quantify the similarity between simulated and real data,
we computed the cross-correlation between the corresponding
channels of different pairs of signals: 1) simulated vs. real
signal (simulated-real), 2) two real signals, i.e. user b vs. user
g from Dataset-1 (real-real), and 3) randomly generated vs.
real signal (random-real). It turns out that the differences in the
maximum cross-correlation values for the pairs simulated-real
and real-real are negligible, and in some cases, the similarity
simulated-real exceeds that of the real-real pair. These results
can be found in Fig. A4 in the Supplementary Material.

The classification performance of simulated MI-EEG data
was also evaluated and compared with real data accuracy in
a 10 fold cross-validation (CV) scenario. Eight folds were
used for training, one fold was utilized for validation and the
remaining fold for testing. Only session 1 (200 trials) of real
data was part of this analysis. Regarding simulated data, the
200 trials for each one of the users of Table I were considered.

Fig. 4 a) shows the results of this CV analysis for users b
and g of Dataset-1 and for the nine simulated users described
in Table I. Users with decreasing percentages of ERD are
represented in an orange palette while a pink palette is used for
simulated users with increasing percentages of trials without
ERD. As can be seen, simulated data can yield similar classifi-
cation performance as real MI-EEG data. Further, as expected,
lower percentages of ERD and higher proportions of bad trials
lead to decreased classification performance.

To show how the effects of fatigue may influence decoding
performance, signals with simulated fatigue can be used as
training and testing data. In our analysis, the first half of the
session described in Section III-A, where no fatigue effects
were present, was used as training data. Data from the second
half of the session were divided into two test partitions: one
with low and one with high fatigue effects. Fig. 4 b) shows the
accuracy obtained for the two test sessions. A notable decrease
in accuracy is observed when mental fatigue effects are simu-
lated over a prolonged session. Further, Fig. 4 ¢) illustrates the
topographic maps in the 6 and o bands. As expected, these
plots show that, as simulated mental fatigue level increases
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Fig. 5. Data augmentation results in two real MI-EEG datasets. Each

point corresponds to the mean RC values across 10 random seeds
for one real user (dark squares: Dataset-1, bright circles: Dataset-2).
Average RC value across all the users is shown by a black triangle.

throughout the session, powers in 6 and « bands in the frontal
and parietal areas increase as well.

B. PySimMIBCI as a Plausible Data Augmentation
Strategy

In this section, we show the impact of using model-based
user-specific simulated data as a data augmentation strategy
for MI-BCI decoding based on DL. The results correspond to
a within-subject cross-session analysis. In this analysis, for
each subject, the data from session 1 was used for model
training while session 2 data was used for model testing.
The training data was further divided into a training and a
validation set (25 trials per class). To account for variations in
model initialization, this process was repeated 10 times using
different random seeds. Fig. 5 shows the RC yielded by each
tested data augmentation method in the within-subject cross-
session scenario. The mean RC values across 10 random seeds
are plotted for a total of 56 users (dark squares: Dataset-1,
light circles: Dataset-2). PySimMIBCI achieves the highest
average accuracy value (66.72% +2.65%), followed by GNA
(65.74% =+ 2.35%), STM (65.64% + 1.71%), CD (65.54% £
2.03%), BF (65.32% + 1.75%), SR (65.21% =+ 2.28%) and
WGAN (64.08% =+ 2.69%). The baseline accuracy (i.e. with-
out data augmentation) was 64.98% =+ 2.42%. Remarkably,
PySimMIBCI is the only approach that does not result in a
performance decrease of more than 5% for any of the users.
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The statistical analysis supports the effectiveness of the
proposed method. The Friedman test [54] rejected the null
hypothesis (p-value < 0.05) that there is no difference in
the central tendency of the methods. Additionally, the post-
hoc Nemenyi test [55] revealed that PySimMIBCI, GNA and
STM methods are significantly better (p-value < 0.05) than
the baseline. It also showed that PySimMIBCI is significantly
better than SR, WGAN, BF, CD and STM, but similar to
GNA. An evaluation of PySimMIBCI across four additional
EEG decoding models with varying degrees of complexity and
diverse input types can be found in Supplementary Material,
Section 6.

V. DISCUSSIONS AND CONCLUSION

In this work, we introduced PySimMIBCI, a novel approach
to generate realistic and user-specific MI-EEG-like signals
by embedding neurophysiologically meaningful activity into
MRI-based forward models. Different user capabilities to
generate distinguishable brain MI patterns were simulated and
for the first time the effect of fatigue in EEG signals was
considered in artificial data generation. By leveraging these
user-specific simulated data for data augmentation we were
able to significantly improve the training of DL models with
application in MI-BCI decoding.

A complete framework to generate realistic MI-EEG data
for right vs. left hand MI scenarios was presented in the first
part of this work. Our results convincingly demonstrated the
electrophysiological similarity between our simulated data and
real MI-EEG data. The temporal traces of the simulated signals
exhibited comparable amplitudes and visual appearance to
actual EEG data (Fig. 3 a)). Moreover, when analyzing the
CSP patterns, we observed a clear correspondence in the spa-
tial properties of the simulated and real data (Fig. 3 b)). These
patterns further reinforced the neurophysiological plausibility
of the simulations, as it can be verified by the amplitudes in the
hand motor areas where ERDs take place in both real and sim-
ulated MI-EEG data. Additionally, the spectral characteristics
of the simulated signals closely resemble those of real signals,
with both exhibiting a typical 1/f* shaped spectrum and a
noticeable peak in the « band (Fig. 3 c). It is worth clarifying
that the o peak is not always as prominent as shown in Fig. 3 ¢
in real MI-EEG data. It should be mentioned also that despite
our simulations simply use the typical and well-described ERD
in the o band of the contralateral hand motor area, effective
results were achieved. In fact, by inspecting the spectrum of
real EEG data, a clear task-related o peak was visualized
in most of the cases (Fig. Al, Supplementary Material),
exhibiting a variety of central frequencies and bandwidths and
allowing us to parameterize it. On the contrary, that was not
the case for the 8 band, as only 7 out of the 56 users exhibited
a characterizable peak within this frequency range. Naturally,
the inclusion of more complex patterns and their impact in the
MI-EEG data generation process is undoubtedly an interesting
topic to explore in the future.

It is timely to mention here that in our simulations two
sets of user-specific parameters are considered: a) the cen-
tral frequency and bandwidth in the o peak, and b) the
exponent of the 1/f* aperiodic activity. This approach is
in line with recent findings that emphasize the significance

of non-oscillatory activity as a predictor of individual motor
abilities, complementing the well-studied sensorimotor char-
acteristics [56]. By estimating the periodic parameters we can
identify user-specific variation in the task-related ERD activity.
Additionally, the user-specific fitting of the aperiodic activity
enables to preserve cognitive function capability and retain
valuable information about individual visuomotor skills [56].

In the development of an EEG-BCI decoding model, it is
essential to assess its performance with varying degrees of data
distinguishability and account for typical neurophysiological
changes that occur between BCI sessions. To address these
issues, users with different modulation capabilities and levels
of attention were modeled by employing a range of ERD
percentages and introducing different proportions of failed
trials, respectively. Through our experiments, we demonstrated
that these two strategies effectively simulate users that achieve
different classification performances. However, as it becomes
evident from the results shown in Fig. 4 a), the two scenarios
have different effects from the classification perspective. When
the percentage of ERD decreases, the classes become almost
completely overlapped, dropping the accuracy to near by-
chance levels. In contrast, adding trials without ERD produces
data from a new different class, which are randomly assigned
to any MI class, causing, as expected, a less pronounced loss
in model performance.

When trying to control a BCI, other mental states and cog-
nitive processes might affect the ability to maintain voluntary
control of the EEG activity. In particular, during long MI-BCI
sessions, the required high concentration and mental effort,
often lead to mental fatigue, which results in a decline in
system performance [57]. This impact of mental fatigue on
EEG patterns has also been observed in patients undergoing
MI-BCI stroke rehabilitation, who are even more susceptible
to mental fatigue than users without neurological patholo-
gies [58]. In this work, we simulated these effects on the EEG
by progressively increasing power in frontal 8 and parietal
o, as task duration increases. As expected, the inclusion
of fatigue resulted in a noticeable decrease in classification
performance (Fig. 4 b)), which was consistently accompanied
by increases in frontal 8 and parietal o powers, as shown in the
topography maps in the bands of interest (Fig. 4 c). Although
we simulated fatigue effects considering the changes in the
o and 6 bands, patterns that were observed in previous EEG
studies, it is worth noting that other alternative approaches
can also be explored. In fact, there is still a lack of consensus
within the community regarding the EEG effects of mental
fatigue [40]. Moreover, further experiments are crucial to
assess if the synthetic fatigue effect resembles the genuine
mental fatigue impact on the EEG. Importantly, our simulation
of fatigue effects in the EEG highlights the possibility of
introducing other task-unrelated cognitive states into artificial
data generation. This implies that any additional cognitive state
can be simulated, provided that the underlying brain dynamics
are well-known in the temporal, spectral, and spatial domains.
Addressing this aspect is part of our future plans to enhance
the realism of the simulated EEG.

Finally, a data augmentation strategy based on our user-
specific simulated MI-EEG data was proposed. Experimental
results on FBCNet exhibited that the performance of DL
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models can be effectively improved when these simulated
data is introduced within the training phase. It is timely to
mention that such improvements were found by adding only
2 simulated samples in each training batch, a quantity three
times smaller than the lowest found in the literature [14].
Moreover, our method yields a significant improvement over
the baseline and the SR, BF, CD, STM and WGAN methods.
This difference could be attributed to the fact that SR, BF,
CD and STM generate data by simply corrupting the original
trials, and WGAN focuses on generating data with the closest
distribution as possible to the original dataset. Given this, nei-
ther of these methods guarantees the preservation of relevant
neurophysiological information for accurate classification in
the generated data. The lack of significant difference between
PySimMIBCI and GNA suggests that similar classification
performances can be achieved by either of these two strategies.
Nevertheless, a major advantage of PySimMIBCI is that it
takes into consideration neurophysiological principles and it
is based on a model that enables simulation of many realistic
scenarios, as opposed to GNA, which merely adds noise
to real data. Moreover, an evaluation of PySimMIBCI was
conducted across four additional EEG decoding models with
varying degrees of complexity and diverse input types (refer to
Supplementary Material, Section 6). The results suggest that
the proposed method holds promise as a data augmentation
strategy, especially in models proficient at extracting band
power features in relevant frequency bands. These findings
align with the essence of PySimMIBCI, which generates MI-
EEG data by incorporating user-specific spectral information.
When moving towards the particular application of MI-BCIs
for rehabilitation, effective data augmentation strategies would
enable the training of decoding models with just a few trials
from the target user. The beginning of the feedback phase
could be accelerated and thus the applicability and usability of
these systems could be greatly improved. In addition, Pysim-
MIBCI for data augmentation could help reduce the levels of
BCI inefficiency and alleviate frustration in users unable to
generate discriminable patterns necessary for controlling an
MI-BCI system [59]. However, analyses with real patient data
and under rehabilitation conditions are needed to assess the
continued efficacy of our method in this particular scenario.
It is important to mention that the proposed framework can
be further improved or expanded in different aspects, some
of which are mentioned below. Firstly, only hand MI classes
were tested throughout this study. Nevertheless, it is important
to highlight that PySimMIBCI can be easily extended to other
MI-BCI tasks as long as the spatial, waveform and events’
properties are known. Hence, in the future, we will study the
generation of other types of MI that are relevant in the field of
motor rehabilitation, such as hand MI vs. rest [60] and multi-
class scenarios. Moreover, other user-specific information,
such as personalized spatial location of generator dipoles in
the cortex and the use of personalized head models will be
included in the data generation process. Furthermore, it is
worth noting that during our data augmentation experiments,
the training batches were structured to include a fixed number
of real and simulated trials. This might lead to a learning
problem caused when training batches are constructed with
multi-domain data. That is, training batches have a mix of

simulated and real data as in a multi-domain problem. From
this perspective, future studies will explore ideas to improve
gradients’ interference during multi-domain data training such
as those of gradient surgery [61].

In conclusion, we presented and validated PySimMIBCI,
a framework for generating user-specific and meaningful MI-
EEG-like data. These data might be useful not only during the
development of new decoding models but also as a plausible
data augmentation strategy for DL-based MI-BClIs. Therefore,
we strongly believe that this approach holds significant poten-
tial for advancing the development of more accurate decoding
models for MI-BCI systems. In addition, our framework is
open source, freely available, and compatible with implemen-
tations in MNE-Python [20], thereby promoting accessibility
for a wide community of researchers.
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