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Feature Decoupling for Multimodal Locomotion
and Estimation of Knee and Ankle Angles

Implemented by Multi-Model Fusion
Xisheng Yu and Zeguang Pei

Abstract— Many challenges exist in the study of using
orthotics, exoskeletons or exosuits as tools for rehabilita-
tion and assistance of healthy people in daily activities due
to the requirements of portability and safe interaction with
the user and the environment. One approach to dealing with
these challenges is to design a control system that can be
deployed in a portable device to identify the relationships
that exist between the gait variables and gait cycle for dif-
ferent locomotion modes. In order to estimate the knee and
ankle angles in the sagittal plane for different locomotion
modes, a novel multimodal feature-decoupled kinematic
estimation system consisting of a multimodal locomotion
classifier and an optimal joint angle estimator is proposed
in this paper. The multi-source information output from dif-
ferent conventional primary models are fused by assigning
the non-fixed weight. To improve the performance of the
primary models, a data augmentation module based on
the time-frequency domain analysis method is designed.
The results show that the inclusion of the data augmenta-
tion module and multi-source information fusion modules
has improved the classification accuracy to 98.56% and
kinematic estimation performance (PCC) to 0.904 (walking),
0.956 (running), 0.899 (stair ascent), 0.851 (stair descent),
respectively. The kinematic estimation quality is gener-
ally higher for faster speed (running) or proximal joint
(knee) compared to other modes and ankle. The limitations
and advantages of the proposed approach are discussed.
Based on our findings, the multimodal kinematic estima-
tion system has potential in facilitating the deployment
for human-in-loop control of lower-limb intelligent assistive
devices.

Index Terms— Intelligent assistive devices, motion intent
recognition, multimodal locomotion decoupling, joint angle
estimation.

I. INTRODUCTION

D ISEASES such as stroke and osteoarthritis can affect
people’s ability in daily activities, including walking,

running, ascending and descending stairs [1], [2]. Wearable
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assistive robots (such as exosuit) can assist wearers and reduce
their metabolism, thus helping patients to complete daily
rehabilitation or enhancing the motion capacity of healthy peo-
ple [3], [4]. During the assisting process, the wearable robot
interacts with the wearer and the environment through the
sensing system to accomplish motion intent recognition and
implement assistance planner [5], [6]. Human lower limbs and
joints do not have the same biomechanics in the sagittal plane
due to functional differences in neuromuscular activity dur-
ing different locomotion, which makes developing intelligent
assistive devices that assist multiple gaits challenging [7], [8].

To obtain better human-machine interaction (HMI) perfor-
mance in multimodal locomotion, the gradually accepted way
is to use the locomotion classifier as a high-level controller
to switch the mid-level motion planner and then control the
low-level actuator of the exoskeletons [4], [6]. A wide range
of signals can be used as inputs for high-level controllers
to recognize current locomotion mode [9]. In the motion
planner, relationships between gait variables are created such
as the kinematics and kinetics of the joints. In particular,
joint angles play an important role in providing insights and
fundamental information for human gait analysis and devel-
opment of exoskeletons. For example, the range of motion of
the joints of the lower extremity can be used to understand
the impact of abnormal gait on the energy efficiency and
joint compensation during walking [10], [11] and to provide
feedback for low-level actuator position control in the soft
exosuit to minimize muscle efforts [12], [13].

Traditionally, marker-points data are collected by an optical
motion capture system and implemented into computational
musculoskeletal modeling software such as Open-Sim [14]
to calculate the joint angle. Although reliable measurement
results of joint angles can be obtained in this method, it has
some limitations. The major limitation is that this method can
only work indoors where space is restricted due to the need for
a large number of fixed motion capture components. However,
it has been suggested that the use of wearable inertial measure-
ment unit (IMU) sensors and forward kinematics model can
replace traditional motion capture cameras to estimate human
movements and calculate joint angles outside the laboratory
environment [15], [16]. In order to collect kinematic informa-
tion of lower extremity multi-joints, a full set of IMU sensors
(minimum of 7) must be worn by the subjects. However, the
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use of each IMU sensor requires calibration setup to determine
the position and orientation of the sensors before collecting
motion data. It is very challenging to maintain the relative
stability of all sensors and limbs during movement [17]. More-
over, the large number of sensors also places higher demands
on the performance of the equipment used for data processing,
which is not favorable for implementation in controllers of
portable assistance devices.

It has been hypothesized that significant redundancy can
occur in multi-sensor human motion capture systems [18].
The use of a large number of sensors does not provide a
large benefit in improving motion accuracy. To make the
system simple and increase the reliability, some approaches
based on statistical analysis models or mathematical models
have been proposed to predict target joint angular trajectories
using fewer wearable sensors during human locomotion [19],
[20], [21], [22], [23], [24]. However, the accuracy of the
regression statistical model is affected by the distributional
properties of the sample statistics. Then the inputs of mathe-
matical models have to be discretely mapped to the estimated
outputs, and intermediate parameters such as switching rules,
velocity estimation, gait percentage identification, and look-up
table design are required in the computational process. These
methods are too resource-intensive to be used for real-time
gait tracking. The limitations imposed by these model-based
kinematics estimation methods create difficulties in estimating
gait variables quickly and accurately.

Different types of wearable sensors generate a large amount
of gait data in multiple locomotion. The data-driven method
is considered to be a promising approach in areas such as
gait analysis and intelligent assistive devices development.
This method can effectively extract features and implicit infor-
mation from the large amount of data. Recently, researchers
have used deep neural networks to map input signals to the
target object space for locomotion mode recognition [25],
[26], [27] and continuous kinematic estimation [19], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39].
A wide range of inputs are used in these works, such as the
partly limb or joint kinematics from IMUs, electromyography
(EMG) signals, force sensitive resistors sensors (FSRs) and
human physiological characteristics (e.g., age, gender, height,
mass and BMI). However, the sensors for collecting raw data
may be affected by multiple noises which originate from
multi-frequency vibrations of the limbs, motion artifacts and
electric fields in the environment. The gait data obtained from
sensor acquisition systems may not provide reliable kinematic
estimation in practical applications. All these limitations are
further aggravated by utilizing conventional deep learning
models such as Long Short-Term Memory (LSTM), Convo-
lutional Neural Networks (CNN) and Gate Recurrent Unit
(GRU) for kinematic estimation.

Our contributions: This work aims to estimate knee and
ankle angles in sagittal plane using fewer input signals
(e.g. hip kinematics and individual characteristic parameters)
under multimodal locomotion including walking, running,
stair ascent and stair descent. To do so, a novel multimodal
feature-decoupled kinematic estimation system is built by fus-
ing the outputs of conventional deep learning primary models

with high performance. Four deep learning models consisting
of CNN, LSTM, and GRU for time-series data predictions are
used as primary models. To address the challenges posed by
the fewer input signals [39], the data augmentation module
is designed to improve estimation performance of conven-
tional primary models and investigate the effect of input sets
with different sizes on the prediction performance. We fur-
ther develop two novel composite models to improve the
locomotion mode recognition accuracy (LMR-FM-Net) and
estimation performance of joint angles (Kinematic-FM-Net)
by combining output from multiple primary models through
the fusion modules in composite models. By conducting
extensive evaluation with model ablation studies, the results
suggest that the proposed composite models outperform each
of the primary models individually or the other combinations.
Furthermore, the complexity of the system is minimized so
that it consumes less computational resources. This system
has the potential to be deployed in real-time HMI controllers
for portable intelligent assistive devices, such as exoskeletons
or exosuit.

II. RELATED WORK

In this section, related works of motion intent recognition
and kinematic estimation methods based on wearable sensors
will be discussed. First, the locomotion classification meth-
ods for high-level controller are discussed. Then, kinematic
estimation methods based on fewer IMUs and mathematical
models are discussed. After that, the data-driven methods for
kinematic estimation and their limitations are discussed.

Accurate locomotion classification by high-level controller
of exoskeleton for multimodal motion is essential for fast
switching of motion planning and the provision of effective
assistance. In [4], a binary classification algorithm based on
the threshold of the potential energy fluctuations is proposed
to recognize human motion states (walking or running). The
recognition result is used as a switching signal for the actuation
profiles of the portable exosuit. Since different features are
used to detect multiple gait modes in different periods of a
reference-point transformation period (RPTP), it is difficult
to use a threshold-based method to detect the gait modes.
A fast gait pattern detection method based on a fuzzy logic
algorithm with human sensor system is proposed in [6]. The
results consist of five modes including level walking (LW),
stairs ascent (SA), stairs descent (SD), ramp ascent (RA) and
ramp descent (RD), which can be used to select appropriate
kinematic and kinetic models for the motion planner. The
model complexity in these methods is related to the kind
of motion patterns, which is challenging for real-time gait
detection applications for multimodal motion.

The data-driven methods are being increasingly used as
a substitution for the locomotion classification. In [26],
researchers proposed an ensemble learning-based hybrid deep
learning framework to recognize the multitask human walking
activities using human gait patterns. The IMU sensors is placed
on the chest, left thigh, and right thigh to collect the data for
7 different activities. The results show that the hybrid deep
learning framework has provided a promising classification
accuracy of 99.34% over other models. Similarly, to detect
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more movement patterns, a method for recognizing human
activity from wearable sensors based on SensCapsNet, which
is able to recognize 19 movement patterns (including upper
and lower), is proposed in [27]. These methods demonstrate
the efficiency and potential of using wearable sensors and
neural network models for human activity recognition.

To make the system simple and increase the reliability,
some approaches based on mathematical models have been
proposed to predict the trajectories of target joint. In [19]
and [20], discrete polynomial models were developed for
seven different subphases of the gait cycle to create joint
trajectories as a function of the gait percentage. In addition,
thigh angles and thigh angle integrals have also been used
to create quasi-circular curves and predict knee and ankle
angles as a function of the estimated gait percentage based
on the discrete Fourier transform (DFT) [21]. The work is
then further extended in [22] and [23] to take the effects of
different speeds and slopes into account. Different sets of
phase variables (virtual constraints) are generated for each
speed and slope condition. Individual characterization param-
eters such as gender, age and BMI have also been used to
build multiple regression models to predict lower extremity
joint angles in the sagittal plane [24]. Each of these methods
utilize simulation or experimental data to create a functional
relationship between joint angles and gait percentage or other
parameters. Different sets of phase variables are generated for
different joints, velocities and motion conditions in all function
models, while switching rules are designed separately. All of
these models are too resource-intensive to provide joint angles
estimation in real time.

Due to the limitations of model-based methods and wearable
sensing systems, researchers have focused on estimating joint
angles by deep learning models and multiple types of wearable
sensors (e.g., IMUs in [30], [31], [35], [37], [39], FSRs in [36]
and EMGs in [29], [32], [33], [38]). In [31], an estimation
approach based on a nonlinear auto-regressive model with
wavelets theory was developed that continuously mapped the
inputs (thigh and shank angle from IMUs) to the outputs (knee
and ankle trajectories), which did not require intermediate
parameters. In [33], a framework of online prediction method
of joint angles by long short-term memory (LSTM) neural
network based on surface EMG signals from eight muscles
was proposed. The results show that the proposed method can
realize accurate online joint angle prediction. In [36], a method
utilizing force myography (FMG) was employed to model
and estimate knee joint angles during walking and running.
An eight-channel FSRs data acquisition system was created to
gather data wirelessly. This data was then utilized to train an
artificial neural network (ANN) to predict knee joint angles.
However, the experiment was performed for one subject.
In addition to wearable sensors, speed, anthropometrics and
demographics are also used as inputs of different deep learning
algorithms to estimate joint angles [28], [34].

The traditional network models are used in most of the
current studies. Therefore, the advanced models with more
complex structures or multi-model fusion have been proposed
to improve estimation performance [30], [38], [39]. In [39],
as a novel framework, DeepBBWAE-Net was proposed that

Fig. 1. The graphical description of the problems to be addressed.

implements ensemble techniques such as bagging, boosting,
and weighted averaging to improve kinematic predictions.
In the framework, five conventional deep learning networks are
used as the base learners. Their developed algorithm estimates
unilateral joint angles using two shoe-mounted IMU sensors
in different walking conditions. This study provides a practical
and accurate estimation of joint kinematics which can reduce
the number of IMU sensors. The estimation performance is
improved compared to other deep learning models. However,
it will consume more digital resources due to more compli-
cated networks and learning parameters. In addition, the IMU
sensor fixed to the foot is not suitable for the patients wear-
ing prostheses due to transfemoral amputation [31]. Another
limitation of this work is the limited dataset.

Most of the current studies focus on the kinematic estima-
tion under single locomotion mode [33], [34], [36] or discrete
multi-mode motion [29], [32]. The limitations of these studies
are compounded further with the use of conventional deep
learning models and more wearable sensors, which limit more
accurate multi-variable human kinematics estimations. The
problems to be addressed are shown in Fig. 1. To address the
limitations imposed by these discussed works, a novel deep
learning model fusion method is proposed to continuously
and smoothly estimate lower limb knee and ankle joint angles
using proximal joint (hip) kinematics that can be obtained
from fewer IMUs under multiple outdoor locomotion. This
estimation method is not only applicable to assist in healthy
people, but can also be used for patients with transfemoral
amputations.

III. METHODS

A. System Architecture
Fig.2 illustrates the architecture of a multimodal kinematic

estimation system for knee and ankle angles. At the start,
raw data including age, sex, height, weight, body mass index
(BMI) and sagittal plane multi-joint kinematics in differ-
ent locomotion modes are collected from publicly available
datasets. For this purpose, three datasets involving 115 healthy
subjects and four modes are used, including 42 in walk-
ing [40], 28 in running [41], 43 in stair ascent, and 43 in stair
descent (41 of the subjects are included both in stair ascent
and stair descent) [42]. The kinematic data from different
subjects are preprocessed for classification and normalization
to create initial datasets and locomotion labels. Then, the data
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augmentation module extends the hip kinematic data to get
different sizes of input sets for the training and testing of deep
neural networks.

After the data preprocessing, the system is divided into
two parts. The upper layer is a locomotion classifier which
performs feature decoupling for multimodal tasks. This can
address the problem posed by heterogeneous data to deep
neural networks for kinematic modeling. It enables the pri-
mary models to be more focused on the estimation for a
particular locomotion. LMR-FM-Net, the multimodal loco-
motion classifier, is trained and tested to take locomotion
modes recognition. It consists of LMR-Nets and a fusion
module, with the LMR-Nets consisting of four primary models
including LSTM-net, GRU-net, CNN-LSTM-net, and CNN-
GRU-net. Taking the augmented hip kinematic data and
individual characteristic parameters as input, LMR-FM-Net
outputs one of the four modes as the result of the mode
recognition.

The lower layer is the joint angle estimator which relies
on multi-source information fusion to accomplish optimal
estimation of the gait variables in the identified mode.
Kinematic-FM-Net, the optimal joint angle estimator, con-
sists of four Kinematic-Nets and a fusion module based
on the Kalman filter. The type of primary models used
in Kinematic-Nets is the same as in LMR-Nets, with the
difference that the last layer is a regression layer instead
of a classification layer. The input of the angle estimator
includes the results of locomotion mode recognition from
the LMR-FM-Net, the augmented hip kinematics and the
individual characteristic parameters. The optimal parameters
of the primary models are different for each locomotion mode.
After matching the mode according to the result from LMR-
FM-Net, Kinematic-Net is used to estimate other joint angles
of the lower limb in the sagittal plane. The fusion module
based on the Kalman filter integrates the output of each
primary model for information fusion and iterative updating.
The ultimate output is expected to approximate the real joint
angles.

B. Dataset Description
After removing the abnormal data from the public datasets,

the joint kinematics data and individual characterization
parameters are used to train and test the deep network models
for locomotion modes classification and joint angles esti-
mation. The trained models can adapt to the biomechanical
properties of most populations. Data from the hip, knee, and
ankle joints in the sagittal plane are used to construct the
deep learning model, while pelvic and foot data are discarded.
We focus on predicting joint kinematics rather than limb
kinematics.

The first dataset (publicly available), in which 42 subjects
(24 young adults (27.6 ± 4.4 years, 171.1 ± 10.5 cm, 68.4 ±

12.2 kg, BMI: 23.2 ± 4.0) and 18 older adults (62.7 ±

8.0 years,161.8 ± 9.5 cm, 66.9 ± 10.1 kg, BMI: 25.6 ±

3.6)) walked at different speeds (subject-specific, 0.36 ∼

2.23 m/s), is obtained from [40]. Each participant was asked
to perform walking trials in the over-ground walking and
treadmill walking conditions. Under the over-ground walking,

the participant first walked at a self-selected comfortable speed
(level OC), and then at speeds 30% faster (level OF) and 30%
slower (level OS) than the comfortable speed. In addition,
the participants walked on the treadmill at eight different
controlled speeds corresponding to levels T01, T02, . . . , and
T08. Within these 11 speed levels, walking speed was not
the same across participants. The second dataset (publicly
available), in which 28 subjects (34.75 ± 6.69 years, 176.0 ±

6.8 cm, 69.6 ± 7.7 kg, BMI: 22.4 ± 1.6) were asked to run on
a treadmill at fixed speeds of 2.5, 3.5, and 4.5 m/s, respectively,
is obtained from [41]. Observation of the joint angle curves
in different planes for walking and running illustrates that
the speed has a significant effect on each joint kinematics.
This may be due to a change in the proportion of the swing
phase and support phase in the gait cycle [4]. The third
dataset (publicly available), in which 45 subjects (6-72 years,
116.6-187.5 cm,18.2-110 kg, BMI:11.7-33.6) ascended or
descended stairs at several speeds (stair ascending:0.49 ±

0.06 m/s, stair descending: 0.52 ± 0.15 m/s), is obtained
from [42]. In the first and third databases, each subject walked
at self-selected speeds which were not necessarily similar
to another participant’s speeds. Unlike the second database,
the locomotion of participants was not required to be set at
fixed speeds. Other detailed information on the protocol of the
experiment is described in [40], [41], and [42].

C. Data Augmentation Module
Data augmentation can effectively expand the data samples

and prevent overfitting of the training model, which is critical
for the successful use of deep learning models as it is a
useful tool for increasing the quality and dimension of the
input features [43]. It has been shown to be effective in many
applications such as time series forecasting [44], [45]. In addi-
tion, Data augmentation can minimize sensor inputs to reduce
the requirements of marker data and sensor for the estimation
of gait variables [46], thus have potential for gait analysis
as well as assistive device design. Time-domain, frequency-
domain and time-frequency domain transforms are typical data
augmentation methods. Among them, time-frequency analysis
is widely used for time series prediction [47]. In this paper, the
data augmentation module is designed based on Hilbert-Huang
transformation (HHT) and Hilbert transformation (HT) of
multiresolution analysis based on maximal overlap discrete
wavelet transform (MODWT-MRA). It enriches the feature
types and increases the dimension of the data series. Raw sig-
nals, augmented time-frequency domain signals and individual
parameters are combined as inputs for the primary deep neural
networks.

In [43], [48], and [49], the HHT, which contains empirical
mode decomposition (EMD) and the Hilbert transform, is pro-
posed to analyze the gait signals. The EMD method allows
the decomposition of any signal into a finite small number
of intrinsic mode functions (IMFs). That offers a possibility
to exploit the information hidden in the gait signals. The
shortcoming of EMD is that the number of IMFs decomposed
from the same type of signal is uncertain. The IMF of the
hip signal for one gait cycle is less than or equal to 2 in this
study. Input feature size of deep neural network is required
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Fig. 2. Architecture of the multimodal kinematic modeling system. The EMD (empirical mode decomposition) and MODWT-MRA (multi-resolution
analysis based on maximum overlap discrete wavelet transform) blocks in the data augmentation module decompose the hip kinematic signals into
many IMFs and MRAs in the time-frequency domain. The Hibbert transform of the sub-signals expands the input feature dimension of the deep
network model. The GRU, LSTM, CNN-LSTM, and CNN-GRU are the primary models used in this system. Both LMR-FM-Net and Kinematic-FM-
Net are generated by fusion of primary models.

to be a fixed constant. Therefore, the first component of the
IMFs is selected to apply the HT during the preprocessing of
the dataset. The analytic signal z(t) is defined by:

z(t) = u1(t)+
1
π

PV
∫

∞

−∞

u1(τ )

t − τ
dτ · j (1)

where u1(t) is the first IMF of gait cycle signal, PV denotes
the Cauchy principal value of the integral. The calculation of
the instantaneous frequency and instantaneous energy of z(t)
is described in [43].

Among many variants of wavelet transform, maximum
overlap discrete wavelet transforms (MODWT) is especially
attractive for time series analysis [50], [51]. It can decompose
the signal into multiple wavelet components with different
frequency domain scales to realize the sparse representation
of the signal. One of the advantages is that no mode mixing
occurs with MODWT. Assuming that the hip kinematic signals
are samples of a function f (x) evaluated at N time points,
the function can be expressed as a linear combination of the
scaling function φ(x) and wavelet ψ(x) at varying scales and
translations as follows:

f (x) =

N−1∑
k=0

ck2
−J0

2 φ(2−J0 x − k)

+

J0∑
j=1

N−1∑
k=0

d j,k2
− j
2 ψ(2− j x − k) (2)

where J0 is the number of levels of wavelet decomposition,
the first sum is the coarse scale approximation of the signal,
ck are the N scaling coefficients, d j,k are the (J0 ∗ N ) detail
coefficients.

TABLE I
INPUT SETS OF THE PRIMARY DEEP NEURAL NETWORKS

Like EMD, MODWT-MRA is also a signal decomposition
method based on the wavelet transform, that can return the
projections of the function f (x) onto the various wavelet
subspaces and final scaling space. Each row in projections is
an MRA component of f (x) onto a different subspace. This
means the original signal can be recovered by adding all the
components. By default, the maximum decomposition level
is rounded to negative infinity of log2(N ). In this paper, the
number of levels (J0) is set to 3. Similar to the HHT, the HT
of the MRA components can obtain time-frequency domain
information of the signal in the space of different frequency
scales. The decomposed components and results of HT are
used as input features for the primary models. Table I shows
the different input sets used to train the different networks.

D. LMR-FM-Net and Kinematic-FM-Net
In this paper, LMR-FM-Net and Kinematic-FM-Net are

built with four primary models and a fusion module,
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Fig. 3. Entire structure of LMR-FM-Net and Kinematic-FM-Net.

respectively, as shown in Fig. 3. The primary models are
conducted by different deep learning layers including LSTM,
GRU, Conv2D and fully-connected dense layers. There are
differences in the predictive performance of these primary
models due to their different structures. The loss function
of each primary model is minimized so that the final fusion
model can have better prediction performance. The results of
multiple primary models are fused using a hybrid algorithm in
the sequence-to-last model for locomotion mode classification.
For the kinematic estimation model, a fusion method based
on Kalman filtering is used with the number of iterative steps
equal to the sequence length. All the components of LMR-FM-
Net and Kinematic-FM-Net will be described in this section.

1) Primary Models: LSTM-Net: The LSTM-Net solves the
problems of gradient vanishing and gradient explosion in
RNN networks. It consists of an input layer followed by a
Batch Normalization (BN) layer, a LSTM block and a fully
connected (FC) Block. Due to the heterogeneity of input data
types, the BN layer is applied after the input signal to perform
an operation similar to the standard normalization of the input
data. In the LSTM block, a bidirectional LSTM (Bi-LSTM)
layer and a dropout layer are used. A dropout layer is added
after the Bi-LSTM layer to avoid overfitting during the training
of the model.

GRU-Net: Like LSTM-Net, GRU-Net is a type of RNN.
It realizes the dependence on past information in time-series
neural networks through gate control units. The difference is
that the cell structure is simplified into an update gate and
reset gate in the GRU-net. The network structure is more
concise and has fewer computational parameters. In GRU-
net, the same architecture as LSTM-net is used with only the
LSTM block being replaced by the GRU block which has a
GRU layer and a dropout layer.

CNN-LSTM/GRU-Net: There is the CNN-LSTM-Net from
LSTM-Net by adding the series-connectable Conv2D block.
To perform the convolutional operations on each time step
independently, a sequence folding layer is included before the
Conv2D block. In the Conv2D block, a conv2D layer is used
followed by a BN layer, a Relu layer and an Averagepooling2D
layer. The Conv2D layers are capable of extracting local
features of a one-dimensional time series and maintaining
continuity. The BN layer helps to reduce internal co-variance

shift, while the Relu layer is applied to enhance the nonlinear
fitting ability of the model. Then, an Averagepooling2D layer
is applied to reduce the feature space, which helps reduce the
model’s complexity and select dominant features. Since LSTM
layers expect vector sequence input, to restore the sequence
structure and reshape the output of the convolutional layers to
sequences of feature vectors, a sequence unfolding layer and
a flatten layer are inserted between the Conv2D block and the
LSTM block. Following the same architecture as CNN-LSTM-
net, CNN-GRU-net is built by replacing the LSTM block with
the GRU block.

2) Fusion Module of LMR-FM-Net: For LMR-Nets, hard
voting is initially performed based on the outputs of the four
main models. However, this may not ensure the accuracy of the
results. Since the number of neural network models is even,
the voting results of the four primary models may be 2:2 and
1:1:1:1. In order to avoid the impact of these situations on the
recognition accuracy, a fusion module is designed to create the
LMR-FM-Net using a hybrid algorithm based on hard voting
and Markov chain. Firstly, in the fusion module, hard voting
is used. The prediction of the output (categories) depends on
the category with the highest frequency of output from the
primary model. Then, to solve the misclassification caused by
the voting result of 50% vs 50%, a state transfer process based
on the Markov chain is designed. The specific algorithmic
process is presented as algorithm S1 in Supplement materials.

3) Fusion Module of Kinematic-FM-Net: In Kinematic-Nets,
initially the simple average of the output is taken from
four primary models. However, this may not ensure optimal
performance from four models as equal weights are assigned
to all the models. Since the performance of each model will
be different, proper gain weight needs to be assigned to
ensure the best performance gain from these four models.
Therefore, a fusion module based on Kalman filter is designed
to create the Kinematic-FM-Net. By treating the output of
each neural network as a joint angle sensor observation, data
fusion of multi-source sensors based on the Kalman filter is
implemented in this paper. The output of the fusion module
represents the optimal estimation of the knee and ankle angles.
For the time series with length = 101, optimal estimation
of joint angles is taken by iterative updating of gain and
covariance matrices at each step. The specific algorithmic
process is presented as algorithm S2 in Supplement materials.

E. Bayesian Optimization and Evaluation Procedures

Tuning of model hyperparameters is required when using
deep learning models. Bayesian optimization seems to be a
good choice. For an overview of Bayesian optimization, see
Snoek et al. [52]. The objective function of Bayesian optimiza-
tion is to minimize the RMSE of the neural network model.
For different modes of network model training, Adam [53]
is used as the optimizer. All the models are optimized and
trained with the maximum Epochs of 200 and minibatch size
of 16 in MATLAB (MathWorks, USA) with RTX3060Ti. GPU
(NVIDIA, CA). The optimized hyperparameters of the primary
deep neural network are listed as Table S.1 in Supplement
materials.
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Fig. 4. Classification accuracy of different network models.

In this work, five-fold cross-validation is implemented to
evaluate the performance of all the deep learning models. This
procedure is carried out to recognize the locomotion modes
and estimate knee and ankle angles. For locomotion mode
recognition, the proportion of correct labels recognized in the
test set is calculated. The root means square error (RMSE),
Normalized RMSE (NRMSE) and the Pearson Correlation
Coefficient (PCC) are used to evaluate the estimation quality
of the joint angles for the above four locomotion modes. The
angle range of different joints varies considerably, e.g., the
knee has the largest angle during walking which is much larger
than the ankle. The value of RMSE cannot be used to compare
the kinematic estimation performance of different motion
patterns and joints. Therefore, PCC and NRMSE are used as
the major evaluation metric. To obtain the NRMSE, the RMSE
is normalized by the range of joint angles (the difference
between the maximum and minimum values) measured by
the corresponding experiment. Repeated-Measures Analysis
of Variance (ANOVA) with a least significant difference cor-
rection post hoc test is conducted for RMSE, NRMSE and
PCC separately with a p-value less than 0.05 to determine
if our proposed method significantly improves the kinematics
estimation compared to other models.

IV. RESULTS

A. Locomotion Mode Classification
Fig. 4 shows the variation in the recognition accuracy of

the multiple primary deep neural networks with respect to
different sizes of input sets. For LSTM-Net and CNN-LSTM-
Net, the performance is best when the input is Set5. The
accuracies are 94.06 ± 1.54 and 96.89 ± 2.95 [%] (mean ±

std), respectively. For GRU-Net, the most appropriate input
is Set1. The accuracy is 96.68 ± 1.79 [%]. However, when
the input is Set3, the result is close to Set1 and better than
other sets with an accuracy of 96.67 ± 2.54 [%]. For CNN-
GRU-Net, the most appropriate input is Set3. The accuracy
is 94.79 ± 2.82 [%]. According to Fig. 4, it can be seen
that the accuracy of the LMR-FM-Net fused by the primary
models with optimal performance is much higher than that of
each component model. The recognition accuracy is 98.56 ±

1.67 [%].

B. The Impact of Input Size on Estimation for Different
Primary Models

Fig. 5 shows the variation of the mean ± std of RMSE of
the primary models with respect to different sizes of input
set in four locomotion modes. It is the average RMSE of the
knee and ankle angle estimations, which are used to evaluate
the performance and determine the optimal input sets of the
primary models. In Fig. 5A, it has a higher average RMSE
for LSTM-Net in the stair descent. For all sets, the values
significantly decrease in the order of stair descent > stair
ascent > running > walking. This trend can also be seen in
Fig. 5B. For Fig. 5C and 5D, the RMSE is largest in the stair
descent mode and smallest in the walking mode, which is
consistent with Fig. 5A and 5B. Unlike Fig. 5A and 5B, the
RMSE of running is sometimes greater than the RMSE of stair
ascent in Fig. 5C and 5D. Fig. 5A also shows that increasing
the dimension of the input set does not necessarily lead to a
continuous decline in the mean RMSE. This is also found in
Fig. 5B to 5D.

The results of the selected input set for the primary models
in different locomotion modes are shown as Table S.2 in Sup-
plement materials. It should be noted that, CNN-LSTM-Net
and CNN-GRU-Net all have the best performance at Set2 in
stair descent and stair ascent, respectively. Compared with the
determined input set, the difference is very small. Therefore,
a compromise between the network training complexity and
estimation performance can be reached.

C. The Impact of the Number of Primary Models in the
Fusion Module on the Angle Estimation Performance

The fusion model improves the performance of joint angle
estimation for all locomotion modes by assigning iteratively
non-fixed weights at every step to the prediction of primary
models (GRU-Net, LSTM-Net, CNN- GRU-Net, and CNN-
LSTM-Net). Table II demonstrates that integrating the fusion
module into Kinematic-Nets improves the performance of the
primary models in all locomotion modes, i.e., significantly
reducing the average RMSE and increasing the PCC. Among
them, the fusion module based on four primary models has
the best performance.

D. RMSE, PCC, and NRMSE for Knee and Ankle
Estimation in Different Locomotion Modes

Fig. 6 shows the RMSE (A), PCC (B) and NRMSE(C)
values for knee and ankle estimations of all subjects in
different modes. For the estimation results of Kinematic-FM-
Net in different locomotion modes, blue circles represent the
estimation of the knee angle, red triangles represent the estima-
tion results of the ankle angle and cyan squares represent the
average value of each joint angle. For better comparison, the
results are also presented as Table S.3 in Supplement materials.

E. Knee and Ankle Angles: Estimated Vs. Gait Data
As an example, the gait cycles of several subjects in

different locomotion modes are plotted in Fig. 7 to demon-
strate a sample qualitative comparison of actual value and
estimation from the model. Then the estimations of knee
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Fig. 5. The change of mean RMSE for the primary models with respect to different input sets under multimodal locomotion.

TABLE II
EFFECT OF FUSION OF DIFFERENT MODELS ON RMSE AND PCC FOR MULTIMODAL KINEMATIC MODELING

Fig. 6. (A) RMSE, (B) PCC and (C) NRMSE values for knee and ankle angle estimations in different locomotion modes.

and ankle angles are compared with gait data obtained from
thie optical motion capture system according to multimodal
kinematic modeling explained in the Section II. To validate
the trajectories, we applied the estimated knee and ankle
trajectories of one subject under walking to the human walking
model built in Automatic Dynamic Analysis of Mechanical
Systems (ADAMS). The walking simulation is performed in
ADAMS. The simulation results are shown as Fig. S1 in the
Supplementary material. From the results, the robot model is
able to walk stably following the desired joint trajectories.

F. Comparison With State-of-the-Art
A number of studies have suggested different methods to

estimate knee or ankle angles. In those works, different input
sources, algorithms and data-driven models are proposed and

used, and the approaches are verified on different numbers of
participants. Table S.4, S.5, and S.6 in Supplement materials
present a summary of the related results obtained from several
studies and make a comparison with the results obtained in
this study. The tables show that both mechanical and EMG
signals are used to estimate the joint angles depending on the
algorithm. Furthermore, biometric data such as age and height
are used in a number of studies as well, e.g., [20] and [34].
The results of this current study are in the range reported by
other studies.

V. DISCUSSION

In this study, hip kinematic information and individual
biometric data of the subject are used to estimate knee and
ankle angles for multiple motion conditions in daily life.
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Fig. 7. The estimated knee and ankle angles vs. gait data for various locomotion modes are explained in the methods section.

To this end, a multimodal feature decoupled kinematic model-
ing system fusing primary deep neural networks is constructed
and the results are shown. Our system model is applied to
the public dataset and five-fold cross-validation is performed.
A wide range of speeds and population characteristics are
included in the datasets, which makes our model have a high
generalization capacity. In addition, as our model is established
and evaluated on the public datasets, other researchers can
validate our model with their algorithms and also have the
potential to improve our contribution in this field further.

In this paper, a data augmentation module is designed
based on HHT and MODWT-MRA-HT. This module is
capable of signal decomposition and time-frequency domain
feature expansion for hip kinematic signals. Firstly, EMD
and MODWT-MRA are utilized for signal decomposition,
while the time-frequency domain information (instantaneous
frequency and energy) of the analytic signal can be obtained
after the Hibbert transform. Then, raw and augmented analytic
signals are combined to produce six different input sets for
the primary models. Fig. 4 and 5 demonstrate the locomotion
mode recognition and kinematic estimation performance of the
four primary models for different input size. The classification
performance of LSTM-Net, GRU-Net, CNN-LSTM-Net and
CNN-GRU-Net is improved when the HHT-based data aug-
mentation is used. It is worth noting that when the input is
Set3, the accuracy of GRU-Net is 0.01 less than the optimal
(Set1). For lower extremity joint kinematics estimation of
the primary models, the inclusion of the data augmentation
module is beneficial. In particular, from the performance of the
primary models in Fig. 5 and Table S.2, the data augmentation
of MODWT-MRA-HT is better. From the results, HHT is
suitable for time series classification, while MODWT-MRA-
HT is more suitable for kinematic estimation. This may be due
to the fact that continuously kinematic estimation is harder
and requires more input features than mode classification.
Overall, the inclusion of the data augmentation module can
result in improved classification and regression performance
of the conventional primary models.

The LMR-FM-Net and Kinematic-FM-Net proposed in
this paper consist of four primary models constructed by
different traditional deep learning layers and multi-source
information fusion algorithms. Multimodal feature decoupling
is achieved using deep learning networks for locomotion mode
recognition. This enables the wearable assistive device to
quickly and accurately update the control strategy in multi-
tasking scenarios. LMR-FM-Net is built by integrating the
four primary models together using the hybrid algorithm based
on ensemble voting and Markov chain. From the results in
Fig. 4, the classification accuracy of the four optimal primary
models is greater than 94% with some differences in their
network structures, thus can be used as base classifiers for
ensemble learning. Compared with the base model, LMR-FM-
Net with fusion module can effectively improve the accuracy
of locomotion mode recognition.

The primary models for kinematic estimation with different
network parameters are developed for multiple motion tasks.
The kinematic estimation performance of each base model is
improved so that the estimation accuracy of the Kinematic-
FM-Net can maximized based on the Kalman filter. From
the results in Table II, the fusion model integrated with four
primary models outperforms other combination approaches or
single models. This validates that our approach of fusing dif-
ferent types of primary models can improve locomotion mode
classification accuracy and kinematic estimation performance.
Moreover, the direction of further reducing the RMSE of
joint angle estimation can be seen through the fusion of more
primary models.

According to the results shown in subsections III-C, D and
E, the estimation quality is generally higher for faster move-
ment or proximal joints. Table II shows that all primary
models and their combinations have the highest average PCC
and the smallest standard deviation in running mode. The
minimum speed in this mode is 2.5 m/s which is much greater
than the speeds in the other modes. This might potentially have
some connections to the fact that a higher speed of motion is
energetically more efficient [54]. The estimation performance
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of different speeds in the first and second datasets is also
investigated and comparatively analyzed. For walking, the
PCC of the three speeds under over-ground walking condition
is 0.906 ± 0.032, 0.911 ± 0.020, and 0.919 ± 0.016 (OS,
OC, and OF, respectively). For walking on a treadmill, the
estimated performance is also positively correlated with speed
(T01: 0.855 ± 0.029, T03: 0.893 ± 0.020, T05: 0.909 ±

0.023 and T07: 0.915 ± 0.017, respectively). The PCC of
the three speeds under running condition is 0.939 ± 0.013,
0.960 ± 0.013, and 0.961 ± 0.015 (2.5 m/s, 3.5 m/s and
4.5 m/s, respectively). The results show that the same dis-
cipline exists when comparing the estimated performance of
different speeds. Nevertheless, whether and how kinematics
and gait energetics could be correlated and impact the esti-
mation performance requires further investigations. On the
other hand, the results of stair ascents and descents do not
support the above statement. Though the mean velocities of
the two modes are similar (0.49 and 0.52), the values of
NRMSE and PCC differ considerably. This may be due to the
different biomechanical properties of lower limb joints in these
two modes. Unlike walking and running, limb strength of the
subjects, such as the power of the rectus femoris, had a greater
influence on the gait cycle during stair ascent and descent.
There is no significant correlation between gait behavior and
speed in these two modes.

From the results in Fig. 6 and Table S.3, the performance
of the ankle estimation is inferior to the knee. There is
a greater correlation between the hip and knee for each
locomotion mode compared to the ankle. Furthermore, the
standard deviation at the ankle is higher in comparison to
the knee. This may be due to the fact that the hip and
knee are proximal joints that are more kinematically related
to each other. The same result has been seen in the [31]
where the estimation performance of the ankle angle using
the shank angle is better than the estimation using the thigh
angle. The estimation of the ankle angle in stair descending
has the poorest performance compared to the other models.
This may be due to the low contribution of this joint during
stair descent. The complex kinematic properties of this joint
create difficulties in estimating the angles of the primary
models. Another explanation could be that the number of input
sources or type of inputs, or even the processing algorithm is
not suitable for that locomotion mode. The results might be
improved if, e.g., the inputs are combined with EMG signals
or if the number of inputs is increased [29], [32], [33]. As can
be seen in Fig. 7, the gait cycle profile of the knee joint is
simpler compared to the ankle. This enables the deep learning
model to have a higher kinematic modeling performance of the
knee. These characteristics can be considered when designing
the control strategies for wearable assistive robots. The above
discussions can form starting points for further investigations.

Many studies have applied deep learning algorithms to
estimate the kinematics of different locomotion. In those
works, different algorithms and inputs are proposed and used,
while the approaches are verified on different numbers of
participants. Table S.4, S.5 and S.6 present the performance
of multiple deep learning algorithms for kinematics in other
works. However, it is not valid to take a direct comparison of

their results with those of this study due to the different sensor
modalities, number of sensors, motion conditions and number
of subjects. Moreover, those datasets are not publicly available,
which makes it challenging to apply our system models to
make comparison. Therefore, the differences between their
findings and ours can only be discussed qualitatively. Interest-
ingly, a part of our findings is similar to what other researchers
have reported in different studies. For example, some studies
report better estimation performance (PCC and NRMSE) for
the knee in comparison to the ankle joint in all modes.
Lu et al. [29] implemented kinematic estimation of lower
limb joints from sEMG signals based on the Conv-LSTM
in multiple locomotion modes. Unlike our model, static and
anthropometric characteristics (e.g., age, sex, height, weight,
BMI, etc.) were not used in their study. These parameters can
provide necessary information for human kinematics estima-
tion. Fusing this information into the model has the potential to
improve prediction performance. In addition, results reported
by [29], [32], and [33] show that our estimation performance
for the ankle joint is a little worse than theirs. Their algorithms
may benefit from the EMG signal as an input source. However,
the acquisition and processing procedures of EMG signals
are complicated, while the signal accuracy is affected by the
external environment and limb movement. Therefore, it is not
convenient for the development of portable wearable assistive
devices. More importantly, the generalization capability of our
model is better than others due to the number of subjects,
while the range of test speeds in our work is much larger
than others. Future research on motion planners of wearable
assistive devices can be applied to healthy people.

This work aims to recognize locomotion mode and create a
kinematics connection between the hip and the joint beneath
it, i.e., the knee (ankle) joint. Due to the estimated knee and
ankle angles, the system model presented in this study can
be applied to the real-time control of wearable intelligent
assistive devices, such as the case in [21], [55], and [56].
The embedded platform on which the model is deployed can
be used as a high-level controller to convert all inputs into the
desired angle for the target joints. Finally, the command of the
actuator will be a function of hip kinematics and individual
characterization parameters. Hip kinematics can be obtained
from IMUs mounted on the thigh and upper limb. In these
cases, the actuator is expected to have no limitations on the
range of joint kinematics and to output assistive torque.

Although this paper provides an accurate prediction of joint
angles with extensive locomotion conditions, speeds, good
number of subjects and three independent public datasets,
there are several limitations to this study. Firstly, a relatively
few number of primary models (four) is used to estimate
single-limb kinetics. This may limit the performance of the
final fusion model. More specifically, by meeting the con-
figuration parameters of the portable device, the estimation
performance of the fusion model can be further improved
by using more high-performance primary models. However,
a trade-off between accuracy and computation complexity
need to be made. Secondly, there are interactions and effects
between the bilateral limbs during movement. IMU sensors
mounted on bilateral lower limbs will collect more meaningful
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kinematic information, which may be able to further enhance
the estimation. However, the number of IMU sensors needs
to be minimized for system robustness and wearer comfort.
Therefore, the use of bilateral hip kinematics as an input
source can be considered, which can utilize the common
information from the IMU sensors mounted at the upper limb.
Finally, compared to the other modalities, the estimation of
stair descent has the highest error values. In particular, the
ankle has a lower PCC and the highest NRMSE. Therefore,
a direction for future improvement towards improving the
ankle estimation performance may be to add other relevant
input sources (e.g., EMG signal) and make it roughly equal
to other locomotion.

In this work, we have decent accuracy for healthy indi-
viduals from public datasets. However, patients with gait
abnormalities who have stroke and musculoskeletal issues may
not get an accurate estimation from our system model due
to the lack of training data. Data-driven methods based on
deep learning need to be supported by a large amount of
high-quality data. The models we constructed using publicly
available datasets can meet the basic training requirements.
However, during the development of controllers for portable
intelligent assistive devices, the predicted results are often not
accurate enough due to the discrepancy between constructed
and actual data. Thus, transfer learning may be a probable
future direction to address the limitation [57]. Based on the
rational use of public datasets to construct the model, it is also
possible to obtain good results in the actual testing process.
This can accelerate the development of prototypes.

As we use extensive datasets in the system model, our
outcome provides reliable estimates of joint angles similar
to state-of-the-art studies. Thus, our algorithm can be used
to measure the joint angles in the clinic or other research
labs where they cannot accommodate prohibitive measurement
modalities such as motion capture cameras. Our model also
has the potential to serve as a platform that enables updates
or modifications via retraining of the model to accommodate
kinematics estimation of different subject populations who
have musculoskeletal issues or aging in the future.

VI. CONCLUSION

In this study, a novel multimodal feature decoupled kine-
matic estimation system is proposed for estimating sagittal
knee and ankle joint angles in multiple locomotion conditions
and speeds. From extensive evaluation of the developed model,
the design choices are justified. This accurate estimation
method will enable tracking of kinematics parameters outside
the lab and removing the limitation of traditional optical
motion capture systems. There are still some limitations in this
paper that could be further improved, such as the fewer number
of primary models, interference between bilateral limbs, and
low accuracy of the stair descent. To verify the feasibility of
the proposed method, one direction for future work is to design
a portable smart assistive device based on wearable sensors.
In addition, to obtain a more comprehensive algorithm, the
work can be continued to investigate the functionality of the
proposed estimation method for other locomotion, such as
swimming.
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